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Test-particle drifts in traveling waves with cyclotron frequencies
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When a test particle moves in the field of a traveling wave with the cyclotron frequency, a particle-
acceleration difI'erence is found to appear between the first half-cycle of the Larmor motion, during
which the particle has a velocity component in the direction of the wave propagation, and the second
half-cycle, during which it has a velocity component in the opposite direction. This asymmetric ac-
celeration modifies the cyclotron-resonance trajectory, yielding the physical origin of the particle drift
perpendicular both to the wave propagation and background magnetic-field lines. A perturbation
method in the orbit theory sucessfully gives analytic expressions for and numerical calculations demon-
strate the drift generation. The result is applicable to particle-Aux control of magnetized plasmas.

PACS number(s): 52.65.Cc, 52.35.Fp, 52.35.Hr, 52.50.Gj

I. INTRODUCTION

The application of radio-frequency (RF) fields in the
cyclotron range of frequencies has been one of the most
used and successful methods in plasma production [1],
heating [2], stabilization [3], and current drive [4]. In or-
der to efficiently perform such works main efforts have
been directed towards controlling spatial profiles of the
excited waves, externally determining wave numbers that
are parallel and perpendicular to background magnetic-
field lines or preferred directions of wave propagation,
and so on. When we focus our attention on phenomena
that are perpendicular to the background magnetic field
in these experimental procedures, it is expected that
power absorption of charged particles from RF fields
near the cyclotron frequencies is accompanied by perpen-
dicular momentum transfer to them, which may in turn
give effects on plasma transport across the magnetic field.
From an experimental point of view, however, much at-
tention has not been paid to this kind of RF-induced
transport, although methods of Aux control by low-
frequency electromagnetic fields were proposed to im-
prove plasma confinement [5] or kinetic theories on the
RF-induced cruxes in magnetic-mirror and toridal plas-
mas were developed [6,7]. By using the azimuthally
rotating-field ion cyclotron range of frequencies (ICRF)
antannae a few experimental trials have been made to
clarify phenomena associated with the RF-induced cruxes
in the Phadrus-B, Gamma 10, and small linear devices
[g].

Here our goal is to give a physical picture for the gen-
eration of test-particle drifts that are perpendicular to
background magnetic-field lines in the presence of travel-
ing RF fields with the cyclotron frequencies. On the
basis of the single-particle orbit theory, we provide clear-
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cut interpretations for the drift generation, which may be
significant in suggesting a direction to experimental pro-
cedures and constructing a kinetic-theoretic description
of the interaction between a wave around the cyclotron
frequency and a magnetized plasma. The result is also
useful for impurity control [9] and helium ash removal
[10] in fusion plasmas, ion-species [11] and isotope [12]
separations, and electron-orbit control in cyclotron fast-
wave tubes such as gyrotrons [13]and peniotrons [14].

In Sec. II, a physical origin of the drift generation is
described. A perturbation method and numerical calcu-
lations in the orbit theory are presented in Secs. III and
IV, respectively. Sections V and VI contain discussions
and conclusions, respectively.

II. PHYSICAL ORIGIN

To illustratively clarify the physical mechanism under-
lying the drift-generation process in the presence of
waves traveling perpendicularly to background
magnetic-field lines Bo that are parallel to the z direction
(directed out of the page), we consider the motion of an
ion of mass m and charge q ()0) in a x-y plane, which
gyrates about the magnetic field with the period T or ion
cyclotron frequency II [=—(q lm )Bo (0]. When a sim-

ple RF electric field directed in the y direction is present
(E =E sincot; E is the amplitude, co/2' is the frequency),
the ion trajectory under the condition of the cyclotron
resonance (co= —0) can easily be obtained from the
equation of motion. As shown by arrows in Fig. 1(a), we
indicate the instantaneous strength and direction of this
RF field on the zeroth-order Larmor orbit in the absence
of the RF field, which is a circle starting at a point "0"
(y = —yo, t =0). Strictly following the upward
("0"—+"2") and downward ("2"~"4") ion motion, the
E-field direction reverses at every half-cycle (points "0,"
"2," and "4") and the RF field continuously accelerates
the ion to yield an ever increasing Larmor radius, as
given on the left-hand side of Fig. 2(b).

Next let us consider the case when the RF field travels
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FIG. 1. Vectors of RF electric field E~ at co= —0, which are
indicted on the ion Larmor trajectory (circle) in the absence of
the RF field. (a) k=0 and (b) k)0. The magnetic field is
directed out of the page.

in the y direction [E =E sin(cot —ky); k is the wave
number]. In order to gain an intuitive insight into wave-
number effect, k is assumed to be infinitely small
( ky~ &&1). Even under the condition of co= —A, the
resonant relation between the instantaneous ion position
and RF field is now collapsed due to a finite phase shift
arising from the ky term, as shown in the vicinity of the
points "2" (y =yo, t = T/2) and "4" (y = —yo, t = T ) of
Fig. 1(b), where a case of k )0 is illustrated. To better
understand, E is plotted as a function of t in Fig. 2(a).
Being different from the case of k =0 (the cyclotron reso-
nance), a finite RF field that is directed upward is already
present at the staring point "0," and the E-field direction
reverses at points "2"' (y =y&, t = t2 ) and "4"' (y =y&,
t = t 4 ) just behind the point "2" and just ahead of the
point "4," respectively, while the ion changes its direc-
tion at the points "2" and "4" along the zeroth-order or-
bit. Since the total amount of ion acceleration by the RF
field in the left-hand part of the Larmor circle
("0"~"2") is larger than in the right-hand part
("2"~"4"),as is evident from Figs. 1(b) and 2(a), the ion
attains a maximum velocity around the position "2" and
a minimum velocity around the position "4."According-
ly the curvature of the projection of the trajectory in the
upper part ("1"~"3")becomes smaller than in the lower
part ("3"~"1"). As a result the circle is converted into
an asymmetric curve; in the motion along this curve the
projection of the ion is gradually displaced to the right
(x )0) with its gyroradius increasing, as presented on the
right-hand side of Fig. 2(b). This displacement is the

FIG. 2. (a) The RF electric fields at co= —A along the ion
Larmor trajectory, which are plotted versus time in accordance
with Fig. 1. (b) Temporal evolutions of the ion trajectory at
co= —0 for the cases of k =0 and k )0.

traveling-RF-field drift perpendicular both to the wave

propagation and background magnetic-field lines, the
generation-mechanism explanation of which is similar to
that of a dc electric-field drift in a magnetic field [15].

Here we can estimate a difference of times when the
RF fields change their directions in Figs. 1 and 2(a). This
ht between the two cases of k =0 and kAO is given as
follows:

At2 —t2 t2-
co /k

At =t' —t4 4 4 (2)

III. PERTURBATION METHOD

In this section an orbit theory is developed in order to
derive an analytic expression for the drift generation.
For simplicity we consider two perpendicular RF electric
fields, E and E, 90 out of phase (revolving in the posi-
tive sense in the x-y plane) in the magnetic field, which
travel in the y direction with wave number k and ampli-

because ~t2 ~, cot2 ky2 ~ y2 yo, and cot4=2~,
~t4 —ky 4 =2' y g — yp respectively. Thus, the travel-

ing RF field takes longer time by the value of At2 —At4
[=2yo/(co/k)=Larmor-diameter/phase velocity] to
sweep the particle with a velocity component in the
direction of wave propagation ("0"—+ "2") than to sweep
the particle with a velocity component in the opposite
direction of wave propagation ("2"~"4"). This
difference of acceleration (interaction) time during one
Larmor cycle is considered to be the origin of the
particle-drift generation. The direction of the drift rev-
erses (x &0) when the wave propagates in the opposite
direction (y &0), and an electron under the infiuence of
RF fields with the electron cyclotron frequency drifts in
the opposite direction of the ion drift described above.
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tudes of e E and e E, respectively: as follows:

Ei=e E cos(cot —ky )x+e E sin(cot —ky)y . (3)

BB,-=kc E sin(cot —ky) . (4)

Here x and y are unit vectors in the x and y directions,
respectively. From Maxwell's induction equation, the
RF magnetic field is given by

Ex CO+ Ey 0
x=xo+a

2 2 (1—coscot)
co(co —Q )

Ex 0+Eye Vyp Vxpa + (1—cosQt )+ sinQt,
Q(co —Q ) 0

%'hen we define E~=E +iE and v~=v +iv, the equa-
tion of nonrelativistic motion of a charged particle with
perpendicular velocity (v, v ) is

x + CyCO Vxp
y =yo —a sincot + "

(1 co—sQt )
co(co —Q ) 0

dVj 8—iQ l+ vz= E~,
dt 80 I (5)

ExQ+ Eye Vyp+ a + sinQt,
Q(co —Q )

(7)

where Q is the cyclotron frequency ( (0 for ions, )0 for
electrons). The particle trajectory can generally be ob-
tained by solving the nonlinear differential equation (5)
after substituting Eqs. (3) and (4) into Eq. (5). Here we
separately treat two cases, co%+ Q and co= +Q (upper
sign for ions; lower sign for electrons).

In the case of k =0, Eq. (5) is reduced to a linear
differential equation and the trajectory is easily obtained

I

where a=(q/m )E, and (v o, v~o) and (xo,yo) are the ini-
tial velocity and position, respectively.

In order to represent the finite-k effect analytically, we

apply a perturbation method for solving the nonlinear
equation (5). Let us substitute the trajectory for the case
of k=0 [Eqs. (6) and (7)] into Eqs. (3) and (4) after ex-
panding them in terms of the small parameter ky

~

(( I
(long wavelength or small Larmor radius approximation).
Then Eq. (5) is reduced to a linear differential equation,
dvi/dt +p(t )vi =q(t ) with

ke a
p(t) = i Q —1+ coscot

coA

q(t ) =(e„K,+i E K~ )cos(co —Q)t+( e,K2+ie K, )s—in(co —Q)t

+(e a ie K )—c3sotco+(e, K +3ie a)sincot+( e„K,+i@—K2)cos(co+Q)t
—(c„Kz+ie~K&)sin(co+Q)t+e K4 cos2cot+i e K4 sin2cot —e K&,

X [1—cos(co+Q)t ], (10)

where the terms of orders higher than the second in k are
neglected, and K, =(ka/2Q) (v~o+P), K2=kav„o/2Q,
K3 =ka(yo+ v„o/Q), K4 =kaP/2co, and /3=a(e, Q
+ e co)(co —Q ). Solving the differential equation, we ob-
tain the particle trajectory in the presence of finite k.
Focusing on the frequency range around the cyclotron
frequency (co=+Q) and picking up the most effective
terms [ ~ 1/(co+Q) ] with respect to k in the expression
of x and y, the trajectory is given by the following equa-
tions:

Fx 67+ Ey 0 e 0+a co
x =a (1—coscot ) —a (1 —cosQt )

co(co —Q ) Q(co —Q )

(e Q+e co)[e ( 2+Q)co@+~ ]co+ kcx
2co (co+Q) (co+ Q)(co+2Q)

written as

(&x+~y) E . 2 ot
(x —x )+y = sin

g2 g2 20

(~x+~y) E . 2 ot
xd =+k sin

(12)

(13)

The trajectory described in Eqs. (12) and (13) is a circular
gyration whose radius varies sinusoidally at the beat fre-
quency ~6~ /2m. Due to the finite k effect, in addition, the
gyration center is forced to oscillate in the x direction
with the beat frequency 5~/2m.

The situation when co=+0 represent a singular case
because the solution given by Eqs. (10) and (11) becomes
indeterminate. It is therefore necessary to go back to the
original equations of motion and re-solve the problem for
this case.

Cx 0+E'yCO

p —cx
Q(co —Q )

0 singlet +sinQt
67

If we write 6=~+0, then the above equations can be
When co = + Q and k =0 (this case is called "the cyclo-

tron resonance"), the trajectory is determined by the
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+ 6y+ at sinQt,
2Q

Vxo 2u OQ+(e +e )a
y =yo+ (1—cosQt )+ sinQt

Q 2Q

(14)

same procedure as in the case of Eqs. (6) and (7) in the
following equations:

6'y Vy 0 VyOQ + Ey CK Vxo
x =x0+ a — + " cosQt+ sinQt+-Q Q Q Q

fields revolve or not. When the RF electric field is
represented by a scalar potential (k~~Ei) such as electro-
static waves, the secular drift is obtained by eliminating
the RF magnetic field B, in Eq. (5), i.e., the second term
in Eq. (16). The result corresponds to Eqs. (20) and (21)
for the case of e =0.

Here we discuss the case of e =0 to provide a more
quantitative explanation than in Sec. II for the drift-
generation mechanism. Then, the electric field in Eq. (3)
is approximated by

E'~ + 6'y
at cosQt . (15) Ei=e E(+ sinQt —ky cosQt)y . (22)

Since the secular terms ( ~ t ) become dominant after a
sufticient length of time, the orbit is described by
x +y = [(e„We )at /2Q], which yields an ever-
increasing Larmor radius [16].

Here the perturbation method described in Sec. III A is
again used to derive the finite k effect. Then p ( t ) and
q(t ) in the reduced linear differential equation are given
by

ke a
p(t ) = i Q—1+ cosQt

Q

q(t)=( eK', +i—e K2)+(e a 'i@ K3)co—sQt

+(e„K3+iEa)sinQt

+(e K', +is K2)cos2Qt+(e K2 ie K—', )sin2Qt

+i e„K4tcos2Qt e„K4tsin2Qt +i e„K4t, (17)

x—E'x + Ey (e„+e) a
t(+K3 cosQt+a sinQt )+k " t2,

8Q
(18)

6'x + 6'y

y = " t( —a cosQt+K sinQt ) .
2Q 3 (19)

where K', =+(ka/2Q)[u o+(e +e )a/2Q],
K4=ka (e„+e~)/4Q. By solving the differential equa-
tion the trajectory, after a sufticient length of time, is ob-
tained as follows:

The second term on the right-hand side is an electric field
E' ' caused by the finite wave number, which is superim-
posed on the first term determining the trajectories of
cyclotron-resonance particles. Here the cyclotron-
resonance trajectory is defined to be of the first order.
The amplitude of E' ' is in proportion to the first-order
particle displacement along the wave-traveling direction,
which is given by y =+(E~/2Q)at cosQt in Eq. (15).
Then, E' '=+k(e /4)(P /Bo)t(1+cos2Qt)y, i.e., E' '

with the oscillation frequency 2~Q~, always points in the
same direction as k for ions and in the opposite direction
of k for electrons. In Fig. 3, F' '

( =qE' ') is depicted on
the first-order ion orbit to illustrate a physical mechanism
of the drift generation in this scheme. Thus, in the sense
of time average, the particle feels a nonoscillatory force
F' ' parallel to the wave-traveling direction. A resultant
drift velocity, (F' 'XBo)/qBO =+k(e~/4)(X'/Bo) tx, is
generated, corresponding to Eq. (21) with e„=O.

In the case of E =0 (kiEi, transverse wave), on the
other hand, the RF magnetic field is induced in the z
direction and is approximated by B,=+km„(E/Q)cosQt
in Eq. (4). Since the first-order velocity in the x direction
is given by u„=(e /2)at cosQt in Eq. (14), an in-phase
component appears in the Lorentz force caused by the
finite wave number F' '=qviXB=+qk(e /4)(P /
Bp )t ( 1 +cos2Qt )y. Since the particle feels a nonoscil-
latory force F' ' parallel to the wave-traveling direction(2)

in the sense of the time average, a resultant drift

Since k is so small that a»K3 in our approximation,
Eqs. (18) and (19) combine to give

Ey k F(2)

(e +e)P
(x —xd) +y = t~,

480

(e +e) g2
x, —+k

8 g02

(20)

(21)

Equation (21) originates from the last three secular terms
on the right-hand side of Eq. (17) (RF electric field) and
the second term on the right-hand side in Eq. (16) (RF
magnetic field). Thus, the secular drift in the x direction
is found to appear for finite k at co= + Q and is perpen-
dicular to the directions of both background magnetic-
field lines and wave propagation. Since the drift appears
even for e„=Oor e~ =0 (linearly polarized wave) in Eq.
(21), it is not essential for its generation whether the RF

Bo

FIG. 3. Schematic for a more quantitative explanation of the
ion-drift generation in the case of longitudinal wave (co= —0).
Fine and bold curves denote ion trajectories for k =0 and k%0,
respectively.
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FIG. 7. Dependences of ion-drift distance on RF-field ampli-
tude and background magnetic-field strength. Circles, triangles,
and squares are numerically obtained for cot/2~=100, 200, and
350, respectively (t is a value for co/2+=10' Hz). Closed and
open marks are for Bo =2.57 kG (co/2~= 10' Hz) and 5.14 kG
(co/2~=2X10' Hz), respectively. Results of the analytic solu-
tion Eq. (21) are indicted by solid lines. The other parameters
are the same as in Fig. 4(a).

in Eqs. (3) and (21) with e =0. In Fig. 8, typical trajec-
tories of a test potassium ion with the initial speed of
1.1X10 cm/sec are depicted for m =+2, E=1 V/cm
and tv= —0 (Bc=2.57 ko). Although the ion starts
from the same position, it drifts radially outward and
finally collides with the antenna, which is regarded as a
wall, in the case of m )0, but it drifts inward in the case
of m &0.

V. DISCUSSIONS

The physical picture of the drift-generation mechanism
described in Sec. II is well verified by the perturbation
method and numerical calculations in Secs. III and IV,
respectively. However, the deviations of the numerical
result from the analytic result are found for larger values
of cot/2', k, and E/Bo in Figs. 5 —7. Since the analytic
expression is derived under the condition of long-
wavelength approximation, Eq. (21) is valid only when
~ky ~

—~ka &&1, where a is an instantaneous Larmor ra-
dius represented by the right-hand side of Eq. (20).
Namely, the relation that

FIG. 8. Numerically calculated ion trajectories at co= —Q
for azimuthal mode number m =+2. Small closed and large
outermost circles denote the initial position and hypothetical
antenna diameter ( =6.9 cm), respectively. P = 1 V/cm,
Bo =2.57 kG (directed out of the page).

has to be satisfied in the analytic solution Eq. (21) for the
drift. By substituting the critical values of t, k, and
E/Bo, where the deviations start to appear in Figs. 5 —7,
into the left-hand side of Eq. (23), it is confirmed that the
analytic solution can actually be used up to

~
ka —1.

Here let us argue from a viewpoint of momentum
transfer from traveling waves. In general, the absorption
of RF fields that are excited by an external source in a
dissipative medium leads to the generation of momentum
Aow into the constituent particles and thus to the appear-
ance of a force acting along the wave propagation direc-
tion. This dissipative force is given by

F=g Q(k),
co k

(24)

Ex+Ey
2

at cosset,

6~+Ey
v — ai sinQt .

2

(25)

(26)

Then the power absorbed by the particle is calculated in
the following way:

Q= —m(v +v )= (e„+e) E t .
At 2 y 4m

(27)

Substituting Eqs. (27) and co= +0 into Eq. (24) gives the
particle drift velocity represented by

FiXBc (e„+e~) E2=+1 tx,
qB0 4 Bo

(28)

which exactly corresponds to the analytic solution Eq.
(21) by the perturbation method in the orbit theory. This
argument is also consistent with the plasma kinetic
theory on radial transport induced by rotating RF fields

Ã].
According to our analysis the secular drift of charged

particles is generated only when co = + Q. However, the
consideration described just above means that the drift
generation occurs whenever the energy of traveling waves
is absorbed by the particles. In magnetized plasmas, on
the other hand, the cyclotron damping of waves propaga-
ting obliquely to the magnetic field persists in the broad
frequency range around the cyclotron frequency. Thus,
the plasma particle is expected to drift in the cyclotron
range of frequencies.

VI. CONCLUSIONS

In the presence of cyclotron traveling waves with
wave-number components perpendicular to background

where Q(k) is the absorbed wave energy in a unit volume
of the medium per unit time and the summation is car-
ried out over all the waves [19]. In our case, on the other
hand, the particle velocity in the case of ~= + Q and
k =0 (the cyclotron resonance) is obtained from Eqs. (14)
and (15) as follows:
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magnetic-field lines, a test particle is found to be subject-
ed to asymmetric acceleration during one Larmor cycle
because it takes a longer time for the waves to sweep the
particle with a velocity component in the direction of
wave propagation than to sweep the particle with a veloc-
ity component in the opposite direction of wave propaga-
tion. This asymmetric acceleration leading to a deviation
from the cyclotron-resonance trajectory is just the physi-
cal origin of the charged-particle drift perpendicular both
to the wave propagation and magnetic-field lines. Ana-
lytic expressions for the drift generation are obtained by
expanding the orbit theory in the long wavelength or
small Larmor radius approximation. Numerical calcula-
tions demonstrate that the analytic solution is valid up to
the condition of ~ka~ —1, where k and a are the wave

number and instantaneous Larmor radius, respectively.
According to the principle clarified here, a radially in-

ward or outward drift of charged particles can selectively
be controlled by exciting azimuthally traveling waves in a
magnetized plasma column. Thus, our result is applica-
ble to Aux controls of plasma particles, impurities, helium
ash, and isotopes.
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