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We describe a stochastic dynamics of tissue cells with special emphasis on epithelial cells and
fibroblasts and fibrocytes of the connective tissue. Pattern formation and growth characteristics of
such cell populations in culture are investigated numerically by Monte Carlo simulations for quasi-
two-dimensional systems of cells. A number of quantitative predictions are obtained which may
be confronted with experimental results. Furthermore we introduce several biologically motivated
variants of our basic model and briefly discuss the simulation of two-dimensional analogs of two
complex processes in tissues: the growth of a sarcoma across an epithelial boundary and the wound
healing of a skin cut. As compared to other approaches, we find the Monte Carlo approach to tissue
growth and structure to be particularly simple and flexible. It allows for a hierarchy of models
reaching from global description of birth-death processes to very specific features of intracellular

dynamics.

PACS number(s): 87.10.+€

I. INTRODUCTION

Models of growing biological populations have been
extensively studied both in mathematical biology and
in theoretical physics. Recent works have considered a
widely varying range of topics ranging from problems of
evolution at the molecular level (e.g., [1,2]), to epidemi-
ology (e.g., [3,4]) and critical phenomena connected with
environmental pollution (e.g., [5]).

Among such topics the problem of morphogenesis, i.e.,
the pattern formation during the growth of cell popu-
lations, has found particular interest. Many different
approaches have been proposed: these include reaction-
diffusion type differential equations (e.g., [6-11]), cellular
automata (e.g., [13-18]), and generative grammars (e.g.,
[19,20]). Some authors try to explain the emergence of
forms in biological systems in terms which are reminis-
cent of condensed matter physics. They explicitly refer to
mechanical, or viscoelastic properties of cells ([21-23]) or
even treat assemblies of cells like thermodynamic many-
body systems ([24-31]).

In the present work we subscribe to this point of view
and try to describe the growth, pattern formation, and
cell differentiation in epithelial and static connective tis-
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sue (fibroblasts and fibrocytes, no cells of the hemopoetic
and lymphatic system) by Monte Carlo simulations of as-
semblies of very simple model cells. The Monte Carlo
algorithm provides sample trajectories of a stochastic
Markovian cell dynamics (e.g., [32-37]).

Epithelia and connective tissue cells are interesting ob-
jects of study because they constitute—beside muscle
and nerve cells—two of the four basic types of tissue in
higher eucaryotic organisms. Our main emphasis in this
work is on epithelia, which constitute the outer and inner
boundaries of the organism, separating it from its envi-
ronment but also enclosing differentiated organs (e.g., in
138).

As it is not easy to study growing cell populations in
a higher organism, cell cultures have become an impor-
tant tool for the investigation of differentiated eucaryotic
cells. Such cultures of cells on special substrates usually
form two-dimensional populations (e.g., [39—43]). With
the noticeable exception of monolayered epithelial cells,
most other tissue structures are three dimensional and
therefore one cannot hope to reproduce the biologically
correct geometrical arrangement of cells in a cell culture.
This is another reason for us to start quantitative inves-
tigations of differentiated cells with epithelia. Fully de-
veloped, the tissue textures of epithelial cells look quite
regular [68] and the shapes of single cells seem to devi-
ate much less from a compact sphere than cells of other
types of tissue. This facilitates the modeling as we will
see below.

The fibroblasts and fibrocytes of the connective tissue,
on the other hand, form a more or less tightly woven net-
work and fill up the intercellular medium with secreted
substances like collagen. The cells usually possess a com-
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pact soma with offshoots which contribute to the network
structure of the tissue [69].

To set up a Markovian dynamics of cells we first have
to construct an appropriate state space which must in-
clude variables to describe both the geometry and the
internal activity states of a cell. Although the geometry
of the cell membrane is highly variable and there is a
plethora of internal activities within each living cell this
does not necessarily exclude a description of collective ef-
fects in cell assemblies using only a few relevant variables
for each cell. Many “microscopic” details of cells may be
unimportant for certain aspects of collective behavior.

All our models are based on a highly simplified de-
scription of cell shapes. Instead of considering all the ge-
ometrical surfaces which may be realized by a cell mem-
brane, we use a coarse-grained description which takes
into account the cell shapes only in a statistical sense.
We attach to each cell a region in space where most of
the cell volume is located with overwhelming probabil-
ity. The boundaries of these regions define shells around
some geometrical surface which marks the average cell
shape (see Fig. 1). The average shapes may depend on
the internal state of a cell (e.g., its age within the prolif-
eration cycle) and thus will generally be time dependent.
Obviously this description is limited to cell types with ge-
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FIG. 1. (a) Statistical description of cell shapes. Cell mem-
brane configurations are confined to the indicated shell of
width 8/2. (b) Reconstruction of membrane configuration
at cell contacts. Contact lines are assumed to be straight. (c)
Example of a tissue structure reconstructed from the statisti-
cal description.

D. DRASDO, R. KREE, AND J. S. McCASKILL 52

ometrical shapes which do not deviate too much from an
average (cells of the neuronal tissue, e.g., do not belong
to this class). For epithelial cells and cells of the connec-
tive tissue this assumption seems reasonable. Note that
although cell membrane patterns of the tissue cannot be
uniquely reconstructed from the statistical description, it
remains possible to obtain information on the tissue mor-
phologies within our approach. For example, for densely
packed clusters of cells the construction shown in Figs.
1(b) and 1(c) leads to membrane patterns which are al-
most identical to the real ones if cell contact areas are
nearly planar (which is correct for epithelial cells).

Cells interact with each other via surface molecules
attached to the cell membrane (e.g., CAM’s, i.e., cell
adhesion molecules) and via mechanical forces due to
the visco-elastic properties of the membrane and the cy-
toskeleton. Besides these short-range interactions there
are also long-range interactions due to substances which
are secreted by one cell, diffuse or flow through the extra
cellular medium, and are felt (via receptor molecules) by
other cells which respond by a change of internal activ-
ities. In the following we only consider the short-range
interactions which play an important role for the stabil-
ity of tissue structures as has been demonstrated in a
number of experiments (e.g., [44-48)).

The life history of a proliferating cell begins after its
creation by cell division. Here we roughly distinguish be-
tween two age classes, the interphase and mitosis. Dur-
ing the interphase the cell is steadily growing until it has
doubled its mass, its organelles, and its DNA content.
Then it enters mitosis where it deforms until the next
cell division is completed. During its entire life history a
cell may migrate and (if it is not spherically symmetric)
rotate. Cooperative effects arise, because all its activi-
ties are influenced by interactions with other cells. For
example, a growth trial will not always be successful due
to the contact inhibition by neighboring cells and a mi-
gration trial may fail if the cell is tightly bound to a cell
cluster.

To take such effects into account we model the cell
interaction by potentials V and accept the trial of an
activity only with probability o exp(—AV') whenever
the trial will increase the interaction potential, i.e., when
AV > 0. This corresonds to the standard prescription of
the Metropolis algorithm [49], which is used frequently
to obtain statistical samples of equilibrium distributions.
Note, however, that due to the intrinsic birth process
a cell population in an unbounded system will grow in-
definitely (unless cells stop to proliferate) and will never
reach an equilibrium or stationary state. In the present
work we use the Monte Carlo method to simulate the
stochastic dynamics, which is defined by the transition
probabilities. The use of the Monte Carlo approach to
study kinetic phenomena depends critically on the choice
of elementary steps: in particular, whether the transition
states are included as intermediates in the state space or
not. In this case, attention has been given to find the
appropriate states as seen below (e.g., [35-37]).

Experimentally, tissue cells are studied in vivo as well
as in cell cultures. The latter have become an important
experimental tool for the investigation of tissue cells (e.g.,



52 MONTE CARLO APPROACH TO TISSUE-CELL POPULATIONS

[39-43]). These cultures can be regarded as quasi-two-
dimensional structures. As they are more accessible to
quantitative experimental methods and at the same time
can be simulated with considerably less effort than three-
dimensional structures, we restrict most of our present
work to such systems. We like to stress, however, that
this restriction is not essential. All our algorithms can
be used for three-dimensional systems with only minor
modifications.

In the next section, we will give a detailed description
of our modeling strategy and describe the basic model
for proliferating tissue cells. Several biologically moti-
vated variants will be introduced in a separate subsec-
tion. They allow us to simulate more realistic and more
complex histological processes. At the end of this section
we introduce the quantities which we used to characterize
the growth and structure of cell assemblies. Section III
contains the presentation and discussion of our results for
monoclonal cell assemblies. In Sec. IV we outline how to
simulate more complex histological processes. As we con-
sider two-dimensional systems, we can only study analogs
of situations appearing in three-dimensional tissue in
vivo. However, even these strongly simplified analogs dis-
play interesting features and help one to understand how
theoretical modeling may interact with experimental in-
vestigations. In the final section we give a discussion
of the proposed method and the results obtained, spec-
ulate on possible applications, and mention some open
questions for future work. A detailed presentation of the
simulation algorithm is given in the Appendix.

II. A MODEL OF TISSUE CELLS
A. Statistical description of cell shapes

A lipid double membrane separates the cell from its
environment. It also provides a selective diffusion barrier
and takes part in cell-cell recognition, signal processing,
and cell/cell connections (e.g., [50]). The cell membrane
contains glycoproteins and glycolipids, which are respon-
sible for short-range interactions between cells.

A difficulty which one immediately meets in any at-
tempt to model an assembly of growing and interact-
ing cells consists in finding an adequate description for
the highly variable shapes of the cell membrane. Even
the average shape of a cell does not only depend on the
cell type (epithelial, connective tissue, etc.), but also on
its age within a proliferation cycle and on contacts with
other cells. In the following we introduce a statistical,
coarse-grained model of cell shapes which does not at-
tempt to describe all the possible fluctuations of the cell
membrane in detail. We propose this model as a sim-
ple but still adequate description of epithelial cells and
possibly also of fibroblasts and fibrocytes.

As our main emphasis is on cells in culture, we
will sometimes refer to two-dimensional geometrical con-
structs explicitly. (The reader may immediately general-
ize the model to three-dimensional tissue.) In our simu-
lations we assume a cylindrical symmetry of average cell
shapes. Thus the average shapes can be reconstructed

6637

uniquely from (one-dimensional) boundary lines in the
plane of the substrate. Note that epithelial cells possess
convex, polygonal shapes both in vivo and in culture [Fig.
1(c)]- :

Even the average shape of a single cell is not constant.
Most noticeably, a cell grows and strongly deforms during
its proliferation cycle. Within one proliferation cycle we
distinguish between two age classes (see Fig. 2): the
interphase (I cells) and the mitotic phase (M cells). We
will take into account that the average shapes of I and
M cells are very different. Therefore we will discuss them
in sequence.

1. Interphase cells (age class I)

During the interphase, an I cell grows to double its
mass, its organelles, and its DNA content. To describe
its possible shapes, we attach a circle (in a 2D cell cul-
ture) of radius R(7) to each I cell of age 7 within the
proliferation cycle. At the beginning of the interphase
R(t = 0) = Rpin. We assume that shape fluctuations

—
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FIG. 2. Development of average cell shape during a prolif-
eration cycle. At the beginning of the I phase, the cell radius
is Rmin. R will grow until the cell mass is doubled. In the
M phase the distance d between the two centers of the sym-
metrical dumbbell shape is growing until d = 2 X Rnin. At
the same time the radius R shrinks to keep the cell volume
constant.
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are restricted by the requirement that the distance be-
tween the cell membrane and the center of the cell body
never becomes smaller than R(7). This constraint can
be implemented as a hard core potential of radius R(7)
which is seen by the membrane. Physically, shape fluctu-
ations are limited by cell compressibility and viscoelastic
deformation energies of the cell membrane and the cy-
toskeleton. If the cell shapes do not fluctuate too much
(both in time and within the cell assembly), i.e., most
of a cell’s mass and volume are concentrated in a com-
pact soma, the assumption of an incompressible spher-
ical part seems a reasonable approximation (e.g., cells
of neuronal tissue, do not fall into this class). Within
a shell (R(7),R(7) + 6/2) of width §/2 the fluctuating
cell membrane may interact with other cells. Thus ¢ sets
the length scale of short-range cell-cell interactions which
are mediated, for example, by cell adhesion molecules
(CAM’s). On the other hand, § also determines the aver-
age geometrical cell shape which is the three-dimensional
reconstruction from a circle of radius R+4/4 in the plane,
of the substrate. (As we will only use the cell properties
within this plane we will also refer to the circle as the
average cell shape.) Thus cell interaction and cell shape
are not independent in a coarse-grained description.

It is an advantage of this description that one can
consider even these cells as convex which assume con-
vex shapes only in a statistical sense. Therefore we pro-
pose to apply this type of modeling also to fibroblasts
and fibrocytes of the connective tissue. The membrane
offshoots of these cells will lead to a coarse-grained in-
teraction which is of much longer range than the under-
lying chemical bonds of CAM’s whereas the average cell
shape—and noticeably the incompressible part of the cell
body—remains spherical (see Fig. 1). For such cells an
interaction potential which decreases continuously with
distance (instead of the potential described above with
finite cutoff §/2) may be more appropriate. The range of
the interaction is not so easy to estimate but is certainly
larger than one average cell diameter for many connective
tissue cells.

A lower bound for § can be estimated from the length
of a sugar residue of a typical surface glycoprotein in the
nm range while cells are in the pm range (which leads
to § =~ 0.2Ry, [51]). For epithelial cells we expect in-
teraction ranges that are not much different from this
value.

Having noticed that membrane fluctuations lead to a
coarse-grained cell interaction we proceed and model this
interaction by a phenomenological (attractive) “poten-
tial” V'(r) which is seen by the membranes of other cells.
Its form and its influence on the cell dynamics will be
discussed in the next subsection.

In general the statistical description does not allow
one to reconstruct the membrane configurations uniquely.
For densely packed cell clusters, however, the simple ge-
ometrical construction shown in Figs. 1(b) and 1(c) will
lead to a one-to-one correspondence between a configu-
ration of spheres (circles) and cell membrane polygons of
the actual cell shapes, provided the contact areas (lines)
between cells are planar (straight). This is justified for
epithelial cells. For the cells of the connective tissue, on
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the other hand, the construction may not lead to sensi-
ble results because of the long range of interactions. In
this case we can obtain geometrical information by per-
forming a Voronoi construction to extract the regions of
space which are dominated by specific cells. Our model
may also be generalized to cell types with nonspherical
average shapes by replacing the spherical hard core by
an ellipsoid.

An I cell will grow until it has doubled its volume and
mass. Thus after the circle of the average cell shape ex-
ceeds a radius Rypax = (Rmin, ¢ > 1 corresponding to
doubled volume, it enters the age class M. The precise
value of ( depends on the three-dimensional cell shape.
In most of our simulations we used ¢ = v/2, which corre-
sponds to cylindrical prisms.

2. Mitotic cells (age class M)

Biologically, the interphase stops with the beginning of
the so-called prophase, during which the cell reduces its
surface structure and its protein synthesis ([52-55]). Our
age class M, however, mainly refers to the last phase of
mitosis, i.e., the telophase during which the cell develops
through symmetrical dumbbell shapes into two spheri-
cal cells of the next generation. We checked that the
results presented here do not depend critically on the
exact shape of the cells during mitosis. This deforma-
tion appears at approximately constant volume. Figure
3 shows the evolution of coarse-grained cell shapes dur-
ing a proliferation cycle. A dumbbell is described by
the vector jjoining its centers ¥ () and 7 ). Due to
the volume constraint, d also determines the radius of
the two spheres (circles) R(Y) = R() = R. It should
be mentioned that an approach with a planar dumbbell
or an approach where the deformation process is accom-
panied directly by the area increase also works, while a
purely spherical approach without deformation of the cell
(where the division step is strongly discontinuous) does
not lead to useful results [56].

An M cell will increase the distance d between the two
centers of its dumbbell until the two cells of the next
generation appear as separated spheres with radii Ryjy,.
While d is growing, the radii of the two spheres (circles)
forming the dumbbell have to shrink such that the cell
volume is kept approximately constant.

B. Stochastic cell dynamics

The state S; of a cell ¢ is described by its position,
its age class, and its shape. The cell position is given
by the vector 7; of its center of mass. For an I cell,
the shape is characterized by its radius R;, whereas for
an M cell it is the vector d; joining the centers of the
corresponding dumbbell which fixes its shape. As the
radii Rz(l) = R§2’ = R,; of the spheres making up the
dumbbell are equal and furthermore determined by the
length of d_;', we may also describe the shape by R; and a
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unit vector (iz which fixes the orientation of an M cell in
space.

During a single updating step, only one randomly cho-
sen cell is considered as active and tries to perform one
of the following actions a: (i) af € {migration, growth}
for I cells, (ii) @™ € {migration, rotation, deformation}
for M cells.

A single migration trial consists of a shift 7; — 7; +
6r; of cell 7 in a random direction with a step length
which is chosen at random out of an interval [0, 67max].
A rotation trial is defined analogously. During a growth
step, the radius of an I cell is increased by a random
amount 6R € [0,0Rmax] whereas during a deformation

step the length of d is increased and at the same time
the dumbbell radius is decreased such that the volume of
the cell is kept constant. All these trials are described in
detail in the Appendix.

Whether cell 7 actually performs its chosen trial or
not depends on its interaction with other cells. Follow-
ing the discussion of the preceding subsection, we model
the interaction between two cells 7 and j by potentials
Va(Si,Sj). Note that these interaction potentials may
be different for different types of actions a. We will dis-
cuss the biological basis of this complication below.

The cell dynamics is based on the assumption that a
trial is accepted according to the standard prescription
of the Metropolis algorithm [49], i.e., an action « is al-
ways accepted if the change of the state S; — S; of cell ¢
induced by « leads to a decrease of its interaction poten-
tial with other cells E,(S;) = 3_; Va (S, S;), whereas it is
only accepted with probability exp (—[Ea(S:) — Ea(S:)])
if E,(S;) is increased by o.

In order to describe the cell behavior in accordance
with biological facts we have to allow for age class and
activity-dependent interaction potentials. In our basic
model (which will be called model A henceforth) we as-
sume that the migration of I cells is controlled by a
spherically symmetric two-body “potential” VII(i,j) =
VI (|7 — ) VI = VL 4+ VA is composed of a hard-
core part VHc correspondmg to the incompressible cell
core and an attractive part VAl due to chemical or me-
chanical bonds between the membranes of the interacting
cells. The functional form of VA () depends on the de-
tails of the interaction mechanisms. For most of the sim-
ulations of the present work, we used a square-well form,
ie., VAI = —e =const within the interaction range [see
Fig. 3(a)]. With R;;(7) := R;(7) + R;(7) we thus get

00 for

VciVIM(’L',j;’T') — fa(iyk;jal;T) for

0 for
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FIG. 3. The two forms of interaction potentials between
cells: (a) square-well potential and (b) harmonic well.

oo for |75 — 7-‘}| < R;i(7)
—e for Ry(7) < |7 — 7| < Rij(1)+ 6
0 otherwise.

V”(i,j;'r) =

(1)
Note that this potential will change in time due to the
change of the average cell shapes. We also considered
a harmonic well potential (restricted to the interaction
shell) [see Fig. 3(b)]. This form of a potential contains
an increasing energy gain from larger contact areas which
one would expect for chemical bonding between CAM’s
distributed on the cell membrane with a constant density.
In Sec. IV we will illustrate biological effects which result
from changes in the functional form of the interaction
potential.

In contrast to cell migration, the dynamics of growth
and deformation steps of model A depends only on the
hard-core part Vgc. This corresponds to the assumption
that cell growth (as well as cell division) steps are not
influenced by the existence of chemical bonds between
surface molecules but still have to respect the limited cell
compressibility. Several biologically motivated variants
of the dependence of interactions on activities and age
classes will be introduced in the next subsection.

During all cell interactions an M cell is treated like
a composite of two, partially overlapping spherical cells.
The total interaction energy of two M cells is assumed to
be independent of the size of the cells. Thus, e.g., the to-
tal interaction energy between two M cells, for example,
is of the form

7% — 7591 < Rig(7)
with k,1 = 1,2

Rij(r) < |7 — 7" < Ris(r) +6 @
for at least one k € {1,2} and one ! € {1,2}

Ri(7) > |7, = 750 + 8
Vi,j with ¢ # j and k,l = 1,2.

Here, i, j are the cell indices, k is the index for the two overlapping circles forming cell ¢, I is the index for the two
overlapping circles forming cell j, and f, (3, k;j,1; T) is defined by
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Falink; 5,557) = Va (7, = 7)) + V(17D = 7P 1) + Va (17, = 705 7)

+Vo (17 ® = 7P 1))/ [0 (R (1) +

5 =17 =70 + O(Ry(r) +6 — 7Y = 7))

+O(Ry; (1) + 6 — |7 — 7)) + O(Rij (1) + 6 — |7 — 7).

Here the upper indices on the right-hand side refer to
the two circles which determine the average shape of the
M cell. In general interaction V, will consist of a hard-
core part and possibly of an attractive part which need
not, however, be equal to the interaction between two I
cells.

A polarity of cells which results in an anisotropic ex-
primation of CAM’s can be taken into account by an
appropriately modeled angular dependence of the attrac-
tive part of the interaction potential (see Fig. 4). In some
simulations we considered cells which possess a polar di-
rection 7 such that there exists a sector of angular width
A¢ around 7 where attractive surface molecules are lo-
cated whereas the interaction between two such polar
cells is strongly repulsive outside this sector. This in-
teraction stabilizes one-dimensional topologies of rings
and chains [see Fig. 4(b)] (surfaces of spherical or plane
topology in the three-dimensional analog are stabilized if
attractive and repulsive regions are interchanged so that
a cell potential is repulsive in the angular vicinity of its
poles and attractive within a circular ring around the
equator). For these polar cells we use model potentials
of the form

U (7,75, 75, 15) = Ve (|[7i — 7515 7) + Vaee (7555 7)
X f(Fig - i) F(Pag - 75)- (3)

Here 7;; := 7; — ¥; = |7;|7sj, Vuc is the spherical hard
core, and V4, is one of the spherically symmetric attrac-
tive potentials introduced above, so that Vi, < 0. The
function f selects the attractive and repulsive sectors. In
our two-dimensional simulations we used

f(cos p) := { ({0 >1 for [¢] < A¢

for |¢| > Ad. (4)

FIG. 4. Interaction between polar cells. (a) Within the
hatched sector the interaction is attractive. (b) Once a closed
ring is formed the anisotropic potential stabilizes the ring
topology even for a growing population.

Although the above prescriptions are very simple mod-
els of the complicated active cell processes which take
place during migration, growth, and cell division, they
nevertheless account for salient biological facts. They
take into account contact inhibition and cell adhesion as
factors which modify cell migration and at the same time
contain a density regulation mechanism of growth and
proliferation. Furthermore, they provide flexible frame-
works for the inclusion of more specific biological mech-
anisms, as will be discussed subsequently.

To complete the introduction of our model of cell dy-
namics we will now discuss the time scales 7 for the dif-
ferent age classes and different cell activities . In some
of our simulations we varied the ratio f/M = T1/TM of
the average lengths of the time intervals that a single,
noninteracting cell spent in the I phase and in the M
phase (TT and T™, respectively). We find that fIM is
increased by a factor of =~ 3 due to interaction effects. If
we use typical experimental values from tissue (see e.g.,
[57]) of 26 h for the cell cycle time and 1-2 h for T™,
i.e., fIM ~ 12-25 we conclude that the ratio should be
chosen fIM = 4-8 to correctly reproduce the observed
value in tissue. For most of our results which we will
discuss below, however, we used fI™ = 1 for simplic-
ity (we carried out computer simulations with selected
values for the growth rate and the diffusion rate, and it
turns out that fI™ = 8-20 for interacting cells depend-
ing on the growth rate due to the interaction of cells in
the cell population if f/M = 4 for a single free cell [56]).

We always assumed that Tiot < Trig K Tgrowth = Tdef
which is reasonable for the cell types we considered. The
relative time scales are fixed by fixing the number of rota-
tion updates v;o4 per migration update and the number of
migration updates vz per growth-deformation update.
Typical values are vt = 1-10 and vmig = (5 X 10°)—
(5 x 10%). The quantity

1
= 5
Tg Tenig (5)

is a measure of the intrinsic growth rate of the cells and
will be used as a basic model parameter in the following.
The total number of update steps is related to real time
by enhancing t — t+ At in an assembly of N (¢) cells after
N (t) migration updates. In this way At corresponds to
the time scale for migration of an isolated cell which can
be estimated from measuring its diffusion constant D and
using D =~ (67)2/(4At), where (67)2 = 0.5(67max)? is the
variance of the distribution of migration steps used in the
simulation. A flow chart diagram of the basic simulation
algorithm is depicted in the Appendix [see Fig. 34].
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C. Variants of the basic model

We have studied several variants of the above described
model A which are motivated by biological observations
[58,59]. In fact, the growth behavior of model A4 cells is
more like that of malignant tumor cells than like normal
tissue. For example, model A cells never leave the prolif-
eration metabolism to become differentiated tissue cells.
By introducing variants which take into account more
and more properties of normal tissue cells it becomes
possible to investigate how certain changes in cell behav-
ior (e.g., transformation into malignant tumor cells) are
reflected by the growth patterns of cell cultures.

Model A. In our basic model, the mobility of I and M
cells is identical and the interaction potential depends
only on the cell activity, but not on the age class, i.e.,

V= Vic + Vattr for migration and rotation (6)
1 Vac for growth and deformation.

Model B. Cells reduce their number of surface
molecules during mitosis, which leads to a reduction of
the attractive cell adhesion in age class M. To study the
effects of this reduction we switched off Vi, during age
class M:

V= Viac + Vater for migration of I cells (7)
1 Vac otherwise.

Model C. The mobility of M cells can be much higher
than that of I cells. In fact, many cells in the inter-
phase have a tendency to build up mechanical contacts
with the substrate which are reduced during mitosis (e.g.,
[52-55]). Therefore we considered a model which is char-
acterized by the interaction potential of model B and age
class dependent vp;g,

o urInig for I cells 8)
Vmig = V‘%g = IOV;Lig for M cells.

Model D. This variant of model A takes into account
the possibility of cell death. After each cell division one
of the daughter cells is killed with probability pp. Thus
we describe a birth-death process which reaches its crit-
ical point at pp = 1. (In the present work we are not
interested in the universal properties near this critical
point.) Such a situation may correspond to a low-dose
treatment of a growing tumor with drugs or radiation.

Model E. This model introduces mechanisms which
may lead to stable tissue patterns by a collective regula-
tion of cell differentiation. We assume that a cell leaves
the proliferation cycle to become a functioning tissue cell
according to criteria which are based on the local neigh-
borhood of this cell. In Sec. IV we will present results
based on one of the following two criteria: cell 7 switches
from proliferation to tissue function if (i) the number of
interaction partners n; reaches a threshold value n. and
(ii) the change in cell radius after a fixed number (20) of
trials remains below a threshold |R;(t+20) — R;(¢)| < R.
due to blocking by other cells. Other criteria which de-
pend on cell polarity will be discussed elsewhere [56,60].

Model F. In some simulations (see Sec. IV) we needed
polar cells with an anisotropic interaction potential of
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the form Egs. (3) and (4), which influence migration,
growth, and the axis d of cell division. For a more de-

tailed discussion of polar cells we refer the reader to Refs.
[56,60].

D. Simulations

In our first type of simulations we started from one
cell individual at the beginning of age class I and usually
stopped when the cell assembly consisted of 800 cells. We
also performed some runs with up to 5000 cells to check
whether the results obtained from the growth of the 800
cell assemblies remained stable.

In Sec. IV we describe simulations with two differ-
ent types of cells. In these simulations we started from
a macroscopic pattern of epithelial cells (a monolayered
circular ring) which we created with model F cells (see
Fig. 4 and Fig. 29). In addition, the initial configuration
consisted either of a single model A cell in the center of
the ring or of 800 model E cells which fill up the circle.
We consider the first scenario as a rough approximation
of a growing sarcoma reaching an epithelial boundary
as will be discussed in Sec. IV. In the second scenario,
the initial configuration was disturbed by cutting out a
sector of cells. Afterwards, we observed the healing pro-
cess to study whether and how the original macroscopic
pattern was reconstructed. Although this still remains a
crude model for a wound healing process (see [56,60]), we
believe that it already contains crucial regulation mech-
anisms which can be tested against experiments.

The maximal step width for migration, rotation,
growth, and deformation were adjusted such that those
evolution histories which should be impossible in real
cell assemblies were never observed. This led us to
|67 max| = Rmin/6 for migration, damax = /4 for ro-
tations. During a growth step as well as during a de-
formation step the radius of a circle was changed by at
most § Rmax = Rmin/12 . To avoid boundary effects due
to drift of the center of mass of the whole cell assembly
we used periodic boundary conditions with a quadratic
unit cell of length L = 1. For a population of up to 800
cells we chose Ry, = 0.007, for larger populations we
scaled down the cell radius accordingly, so that always
L ~ 140R;n. If not stated otherwise in the text we use
an interaction range § = 0.2R,;, as discussed above.

E. Characterization of cell assemblies

From our simulation data, we evaluated a number of
quantities which are useful to characterize the growth
and structure of cell assemblies.

(a) Total number of cells N(t).
N (t) as a function of real time.

(b) Morphology. For increasing sizes n = k x 100 with
k = 1,2,3,...,8 of a population, we plotted the cell
shapes, i.e., the boundaries of the incompressible parts
of the cells of the assembly. These plots display the com-
plete geometrical information contained in the state of
the cell assembly.

(c) Cluster size distribution n(s). The number and size

The number of cells
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of connected subpopulations (clusters) of the final cell as-
sembly are shown in diagrams which depict number n of
clusters versus cluster size s. Two cells are considered as
connected if their distance is less or equal to the maximal
interacting distance, i.e., they belong to one cluster.

(d) Cluster masses and boundary lengths M (C), £(0C).
The boundary dC of a cluster C is defined as the shortest
polygon which joins all the centers of boundary cells. The
cluster mass is taken to be proportional to the total area
covered by the cells of the corresponding cluster. We
studied the scaling of the length £(8C) of the boundary
with cluster mass M(C).

(e) Density profile (|7 — ﬁcml) The number of cells
per area as a function of the distance from the center of
mass of the assembly. This quantity was calculated by
ordering the final cells into groups of 50 cells in circular
rings according to increasing distance from ﬁc.m..

(f) Space filling profile o4 (|7 — ﬁcml) Instead of the
number of cells, o4 gives the fraction of area covered by
cells.

(g) Statistics of interaction partners. We evaluated
the frequency p(n) of cells with n interaction partners
and the spatial profile of the average number of partners
n(|F — ﬁcm|) From p(n), the mean number of interac-
tion partners of a cell in the final population  and its
standard deviation was evaluated.

(h) Age distribution N(7;ts). We define an age of a cell
% in a cell assembly which developed out of one cell indi-
viduum at ¢t = 0 up to time t; as the difference between
ty and the time of “birth” of cell i.

(i) Subclone statistics. The number and distribution of
offspring of all the cells has been evaluated. We present
diagrams which show the number of offspring of each cell
in chronological order by counting all the cells according
to their appearance (again, one of two daughter cells in
every cell division inherits the ordering number of the
mother cell). We also present figures which show the
morphologies of subclones.

(j) Generation statistics. -‘The initial cell constitutes
the generation number 0. After each division of a cell
of generation g, both daughter cells belong to generation
g + 1. We calculated the frequency p(g) of cells of gen-
eration numbers g and the average generation number
profile g(|7 — Re.m.|)-

(k) Statistics of cluster forms. To get an impression
of the temporal development of cluster forms we intro-
duced polar coordinates centered at R‘C.m. of a cluster and
plotted the distance d(¢,t) = |Tboundary(P:t) — R‘C.m_ ()]
as a function of the polar angle ¢ for various times t.
From angular averaging of d(¢) we obtained the average
cluster radius Rc(t) = (d(#,t)). Its variance ARc(t) =

((Ad(¢,t))?) is a measure of boundary roughness. As
an alternative measure we also considered a boundary
width defined as max{d(¢) — d(¢)} for 0 < ¢,¥ < 2m.
Finally we evaluated the temporal correlation of local
roughness, i.e.,

(Ad(g,t)Ad(8,) ©
ARG()ARG ()

C(t,f) =
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To perform the angular averaging numerically, we
grouped cells into angular intervals of width n/12-7/9.

III. PROPERTIES OF MONOCLONAL
CELL POPULATIONS

A. Noninteracting populations

To facilitate the understanding of the simulation re-
sults presented below, we first briefly reconsider the
growth of an interaction free cell assembly. In this case
the proliferation cycle and migration behavior of each cell
is completely independent from the other cells.

The life history of a cell consists simply of a sequence
of migration steps corresponding to a random walk and
of growth or deformation steps. With the above choice of
parameters and f'™ =1, an I cell needs ~ 10 successful
growth trials to reach the M phase where it also takes
= 10 deformation trials for the completion of cell division.
Thus on the average, the doubling of a cell population
takes 20 growth and deformation steps corresponding to
T3 = 20/ry time steps. The noninteracting population
will grow exponentially with a characteristic time scale
To = T2/1n2 = 1.475. Due to the diffusive motion, cells
separate from each other and the length scale of the as-
sembly grows like v/£. On the other hand, the assembly is
growing exponentially due to cell proliferation and thus
we can calculate a crossover time t., (beyond which cell
interaction effects must become important) from the re-
quirement that the length scale of growth becomes larger
than the diffusive length scale. This leads to

ldiﬂ'(tcr) = lgrowth(tcr)
ie., (10)

const X v/t ~ exp(te/2m0) — 1

A/ (7?27 =~ 0.1.
from the typical diffusion length in two dimensions using
the central limit theorem and comparing the result with
the solution of the homogenous problem represented by
a two-dimensional diffusion equation. This leads to
diffusion constant of D = (67)%/(4At), where () =
and (7)2 = 6r2,, /2 (see the Appendix and Sec. IIC).
is the mean radius of a cell, and can be calculated by

1 N 27
r=gw | [ v@mdsam,

where v(¢, m) denotes the distance from the construc-
tion point (z,y) of the cell to the border of the cell and
depends on the angle for M cells.

Table I contains a list of crossover times for the growth
rates used during our simulations. Furthermore this table
displays the total time necessary to build up a population
of 800 individuals #¢(800) and the total length of the
diffusive path of a single cell [((800) during this time.

with const~ const can be calculated

[=TR}

il
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1y = 0.2 1000 gy
100 ¢
N /
10 »/r
1 DU
100 1000
t/At
1000 : :
7y = 0.0002 100 /
N
10}
P
0.2 0.6 1.0
100 t/At

FIG. 5. Morphologies and growth law N (¢) without attrac-
tive interaction (e = 0).

Note that for our smallest growth rates, the crossover
time exceeds £¢(800) and lo(800) is of the order of the
system size L = 140. Therefore we expect to observe ex-
ponential growth over the entire simulated time interval.
In the absence of attractive interactions the correspond-
ing assemblies should be homogeneously distributed over
the entire simulation area. To estimate absolute time
and length scales assume an average cell cycle time of
26h =~ 9.4 x 10% sec, a mitosis time T™ ~ 1-2 h, and
a cell diameter of ~ 5-25 pm. Then a single updating
time step ~ 9.4 X 10*/(20vp;g) shrinks from 940 sec for
high growth rates (ry = 0.2) to 0.94 sec for our lowest
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TABLE I. Useful time and length scales obtained from
noninteracting cells. r, denotes the growth rate, 70 the dou-
bling time of the population, ¢(800) the number of time steps
necessary (move updates per cell) to produce a population
of 800 cells, and 1o(800) the diffusion length for a single cell
during the time ¢(800). t.. is the crossover time defined in
Eq. (10).

ry | T | te | to(800)|  10(800)
0.2 140 90 1x10® 3.16
0.1 280 504 2 x 103 4.47
0.01 2.8 x 103 13720 2 x 10* 14.14
0.001 2.8 x 10* 2.16 x 10° 2 x 10° 44.72
0.0002 1.4 x 10° 1.33 x 108 1 % 108 100

growth rate ry = 0.0002. A cell will migrate between
~ 1.5 pm and ~ 250 pm within one cell cycle depending
on its intrinsic growth rate.

B. Growth and geometry

In the next two subsections we discuss our results for
monoclonal growth of cell populations which are gener-
ated by model A. Figures 5, 6, and 7 show morphologies
of final cell populations and the number of cells versus
time for low (ry = 0.0002) and high (ry = 0.2) intrinsic
growth rates and for various strengths of the attractive
cell interaction, including the case ¢ = 0. Figure 8 shows
the population growth for an intermediate growth rate
rg = 0.01. By comparing Fig. 6 and Fig. 9 the influ-
ence of cell rotations on the morphology of the monoclone

10000 £ygg0

Ty =0.2 1000 £

100 ¢ 1000 4000

FIG. 6. Morphologies and growth law N(t)
for strong attractive interaction (¢ = —20).

L 1

1000

1000 ¢

t/At

For ry = 0.2, the growth law N(t) is plotted
for populations of 800 cells (small picture)

4000 10000

re = 0.0002 100 |

T

and of 5000 cells (large picture).

108t/ At
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FIG. 7. Morphology for low growth rate r, = 0.0002 and
intermediate attractive interaction (e = —5).

can be studied. Note that without rotations cell clusters
are considerably less spherical and contain larger inter-
nal holes than clusters of rotating cells. Noticeably these
holes get even larger if the growth rate is reduced.

For t < ¢(800) < t., the case of pure hard-core inter-
action resembles the above discussed noninteracting cell
assemblies. However, as the growth rate increases, the
cell assembly appoaches a single spherical cluster with a
power-law behavior of N(t) ~ t*. The exponent A de-
creases with increasing r, and reached A =~ 2.53 for our
highest growth rate ry, = 0.2. The slowing down of cell
growth from exponential to power law reflects the den-
sity regulation. With increasing density within the cell
cluster more and more cells are prevented from prolif-
erating by the contact inhibition due to the hard-core
cell potentials. If only the ~ v/N cells at the boundary
of a compact cluster could proliferate one would expect
A = 2 because in this case AN x vV NAt. It seems, how-
ever, that there is a large time interval, where growth
can be characterized by effective exponents considerably
higher than 2, which depend continuously on the intrinsic
growth rate. As we observed these exponents even in our
longest simulation runs (up to 5000 cells; see, e.g., Fig. 6
for a simulation with the parameters r4 = 0.2, e = —20),

1000 ¢
100

10t

I T B B A S| 1 L L1

5000 13720
t/At

50000

FIG. 8. Growth law N(t) for strong attractive interaction
but intermediate growth rate. The estimated crossover time
from Table I is t., ~ 13 720.
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(a)

(b)

FIG. 9. Morphologies without cell rotation for ¢ = —20.
(a) rg = 0.2, (b) ry = 0.0002.

it is tempting to consider them as the asymptotic growth
characteristics. Acceleration of growth beyond pure sur-
face growth may result from an influx of free volume gen-
erated by the proliferation near the surface. At present
we are performing much longer simulation runs to settle
this question. But even the existence of a large transient
regime characterized by effective power-law exponents is
of interest for practical purposes as well as for further
theoretical investigations.

As the attractive cell interaction is switched on and
increased, the cell assembly shows a lesser tendency to
disintegrate and for strong attraction (¢ = —20) we ob-
serve only single cluster assemblies even for the lowest
growth rates. Surprisingly, the crossover time is much
less affected than one would expect from a simple es-
timate based on the average density within the clus-
ter. For example, the average density of the clusters for
€ = —20,74 = 0.0002 is =~ 0.8 from the beginning of the
growth process until £(800) ~ 1.6 x 105 = 1.6t,(800).
Nevertheless, N (t) follows an exponential law with 7 =
0.26 x 10% = 1.8879, i.e., neither £(800) nor 7 deviate
significantly from our naive estimates for noninteracting
cells (although the morphology is drastically changed).
We attribute this behavior to the fact that (although the
cluster looks rather compact) there is enough time for free
volume to diffuse across the entire assembly. After one
growth step, the following 5000 migration trials (together
with the rotation trials) are sufficient to reestablish the
average cell distance (which is 6/2 for the square-well
potential).

Although the cell assembly no longer disintegrates for
strong attraction, we observe increasing boundary fluc-
tuations and deviations from spherical cluster shape with
decreasing growth rate (see Fig. 6). For moderately
strong attraction we also observed disintegration into sev-
eral clusters of variable size (Fig. 7). Typical cluster size
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distributions are depicted in Fig. 10.

In a noninteracting assembly, the time ¢,(800) is di-
rectly proportional to rg_l, ie., t0(800) = m/ry with
m = 200. We find that even for interacting assem-
blies, ¢(800) scales approximately linearly with r;l. The
factor m increases with the strength of the attractive
interaction: m(e = 0) = 248, m(e = —2) = 250,
m(e = —5) = 300, m(e = —20) =~ 500. This should
only be taken as an empirical relation which may be of
value for comparisons with experimental results.

The density and space-filling fraction profiles show
plateaus of increasing length and sharper boundaries for
pure surface growth (i.e., A close to 2) indicating compact
cell clusters whereas the plateau length decreases with in-
creasing A until it vanishes completely and a boundary
layer can no longer be defined (see Fig. 11).

The time evolution of cluster boundaries is depicted
in Fig. 12. The boundaries of populations with 100,
200,...,800 cell individuals are shown. Note the in-
crease of fluctuations for populations growing exponen-
tially or with a power-law exponent A larger than 2. Fig-
ure 12(c) shows the local roughness correlation function
C(t(N = 100),¢(N = k x 100)) which shows that clus-
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ters growing exponentially or with A > 2 are strongly
correlated with smaller ancestor clusters whereas clus-
ters with pure surface growth tend to forget the shapes
of their ancestors.

The boundary length £(0C) (as well as the mean clus-
ter radius) scale according to

£9C) o [M(C)M/P (1)

with an exponent 1/D = 0.53 which is nearly indepen-
dent of the growth rate for strong attraction (e = —20).
As 1/D > 0.5, the clusters are not as compact as they
seem from superficial inspection. In fact, 2 — D controls
the fraction of free volume in a cluster. Our statistics
have not been sufficient until now to give reliable esti-
mates of this quantity.

The mean number of interaction partners of a cell pro-
vides a good measure to distinguish compact cell clusters
from disintegrated clusters consisting of only a few cells
as can be seen from Fig. 13, where 7 is plotted versus
the logarithm of the growth rate r,.

N «;
(a)
B |
L 26340 366 480 600 FIG. 10. Cluster size distri-
s bution, (a) for r4 = 0.0002,
€ = —5 (this corresponds to
morphologies as shown in Fig.
7), (b) and (c) for pure hard-
N =. N 8 core interaction comparing (b)
high growth rate r, = 0.2 and
(b) (c) (c) low growth rate r;, = 0.0002.
e gl
o g1l
w g1
.l gl
- | L
o 2007 400 600 800 1000 <o p 4 6 g 10
S S
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C. Internal properties of cells

Even for noninteracting cells, proliferation times are
random and thus we expect to find nontrivial genera-
tion and age distributions. Fluctuations around the av-
erage generation number and age can be easily calcu-
lated exactly from first passage time distributions of one-
dimensional random walks with one reflecting boundary
(at R = Rmin for I cells and R = (Rui, for M cells).

Figures 14 and 15 display generation number and age
statistics. If t < t., we find exponential growth and a
generation statistics which resembles that of noninteract-
ing cells. Note that both the average generation number
and the width of the distribution increase significantly if
density regulation effects appear and the growth is slow-
ing down to a power law. In Fig. 16 cells of specific
generations are marked to show their distribution within
the assembly. For high growth rates the cells of one gen-
eration form an almost concentric spherically symmetric
ring, whereas they appear more and more scattered with
decreasing rg.

It is very interesting to study the statistics of sub-
clones, i.e., the collection of cells with a common ances-
tor. Figure 17 shows the number of offspring N, against
the cell number k, where cells are numbered in chrono-
logical order of their first appearance. For noninteracting
cells we expect Ni(t) = [N(t —tx) — 1] = exp(t —tx) — 1

083
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with t; denoting the time of appearance of cell number k.
This curve is shown to fit the simulation data of exponen-
tially growing interacting cell assemblies quite accurately
(see Fig. 17). With increasing growth rate we observe
strongly increasing fluctuations in the N} as a function
of cell number and the graphs are reminiscent of chaotic
time series. Due to the strong contact inhibition of prolif-
eration the production of offspring becomes increasingly
complicated for a cell. Cell individuals which are located
at or near the boundary and which have passed their cell
cycle faster than the average have the highest probabil-
ity to produce offspring. Once such a rare event occurs,
it produces a cascade and it is the distribution of these
offspring cascades which is reflected in the subclone mor-
phologies of Figs. 18 and 19.

The blocking effects of density regulation also leads to
an increase of the average interphase-mitosis time ratio
F™ by a factor of = 3. We found no dependence of this
enhancement on the ratio we chose for the isolated cell.
It should be noted, however, that the distribution of the
ages of M cells is very inhomogeneous within the clusters
and therefore the average fIM is not a typical quantity
for cells in compact clusters.

Tables IT and III summarize growth characteristics for
cells with interaction ranges which we considered to be
plausible for epithelial cells in culture. The basic time
scales are given in units of the corresponding noninter-
acting population from Table I, i.e.,

e gl ¢y
H o4 = 0.676993 . o4 = 0.139719
3 j =
g | St M T
- | .
S35 3777 4614 8457 §3.00 101.Q <266 3625 32.57 68.86 85.14 101.0_
[F=Rem]| [F=Rem|
Rmin Romin
(a) (b)
FIG. 11. Area filling profile (a) and (b) for
- r pure hard-core potential and ry, = 0.2 (a),
- - rg = 0.0002 (b) (see Fig. 8), and (c) and (d)
SFv Fﬂ} S for strong attraction e = —20 and ry = 0.2
c), rg = 0.0002 (d).
- 0 s (@), 7 @
- o4 = 0.660392 g o4 = 0.515454
= ! s |
!
2 3
= g
< 10.00 28.29 46.57 64.86 83.14 101.0 971 28.0 46.43 67.71 83.14 101.2
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(a)

02 &-
14 ry = 0.0002 ?_ .
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FIG. 12. Temporal development of cell cluster boundary
[e = —20, 7y = 0.2 (a), 7y = 0.0002 (b)] and local roughness
correlation for the boundaries (c).
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FIG. 13. Average number of interaction partners 7 versus
growth rate (logarithmic scale).
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FIG. 14. Generation number statistics for ¢ = 0 and
re = 0.0002 (N, number of cells; g, generation number). This
form is very similar to the generation number statistics of
noninteracting cells.

Tf = tinteract (800)/t0 (800),

T = Tinteract/TO'

(12)

D. Variants of the basic model

The global growth characteristics of models B and C
are collected in Tables IV and V. Figures 20 and 21 dis-

80 4

60 - b

20 - 1

200 - 9

150 | T

50 b

0 L L 1 1 . L
0 500 1000 1500 2000 2500 3000 3500 4000

ta/ At

FIG. 15. Generation number statistics (a) and correspond-
ing age distribution (b) for e = —20,7, = 0.2. to denotes the
age.
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rg =02

ry = 0.0002 [,

FIG. 16. Morphologies of special generations (marked in
black). For r4 = 0.0002 the 10th generation is marked. For
rg = 0.2 it is the 12th generation for ¢ = 0 and the 15th
generation for € = —20.

TABLE II. Growth characteristics of 800 cell monoclones
generated by model A. See Eq. (12) for the definition of 7 and
Ty. A denotes the exponent of power-law growth of N(t). g is
the mean generation number. x denotes values that represent
neither a power law nor an exponential, dashes denote values
that cannot be defined because the growth cannot obey a
power law as well as an exponential at the same time.

Tg Ty T A g (+Ag)
e=0
0.2 2.63 - 2.61 13.8 (£ 3.6)
0.1 2.06 - 2.73 11.9 (£ 2.6)
0.01 1.29 X X 9.84 (+ 0.8)
0.001 1.26 1.2 — 9.80 (£ 0.7)
0.0002 1.15 1.2 — 9.80 (£ 0.7)
€= —2
0.2 3.90 - 1.98 16.2 (£ 4.8)
0.1 3.27 - 2.46 14.8 (+ 4.0)
0.01 1.62 - 3.50 10.2 (+ 1.4)
0.001 1.18 1.3 - 9.8 (£ 0.7)
0.0002 1.17 1.2 - 9.8 (£ 0.8)
€= —5
0.2 4.67 - 2.10 17.0 (£ 5.2)
0.1 3.88 — 2.28 15.5 (+ 4.4)
0.01 2.86 ~ 2.60 11.8 (+ 2.6)
0.001 1.95 b'd X 10.2 (£ 1.3)
0.0002 2.00 b'd X 10.7 (£ 2.0)
e = —20
0.2 4.68 - 2.03 17.6 (£ 5.3)
0.1 4.01 - 2.30 15.5 (+ 4.6)
0.01 2.93 - 2.25 11.8 (+ 2.6)
0.001 2.55 X X 10.4 (£ 1.6)
0.0002 2.53 x x 10.4 (+ 1.6)
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TABLE III. Growth characteristics for 800 cell mono-
clones with interactions of longer range with ¢ = —20 and
6 = 0.5Rmin generated by model A. For the definition of 7,
T¢, and X (see Table I), g is the mean generation number.

rg | Ty | ™| A g (£Ag)
0.2 3.24 - 2.20 14.9 (£ 4.3)
0.1 2.72 - 2.60 13.3 (+ 3.3)
0.01 1.86 — 3.50 10.5 (i 1.7)
0.001 1.62 2.00 — 10.1 (i 1.1)
0.0002 1.60 1.88 - 10.1 (£ 1.2)
250 r r T v T . T
Ty = 0.2
Nk 200 4
150 4

100 | ]
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FIG. 17. Number of offspring N of cell number k (cells are
numbered in chronological order). The dotted line shows the
result for a simple exponential growth law (e = 0).
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TABLE IV. Growth characteristics of 800 cell monoclones
for € = —20 and model B. For the definition of 7, T¢, and A
(see Table I), g is the mean generation number.

s | Ty | | A g (£29)
0.2 3.34 - 2.3 14.5 (£ 4.0)
0.1 2.65 - 2.5 13.0 (£ 3.2)
0.01 1.60 - 4.2 10.0 (£ 1.1)
0.001 1.33 1.49 -~ 9.8 (£ 0.7)
0.0002 1.38 1.49 - 9.8 (£ 0.66)

play pictures of the morphologies. For fixed growth rate,
the variants produce less compact clusters than the basic
model as should be expected from the lack of adhesion
during the M phase. For the same reason I cells appear
more clustered than M cells. For low growth rates, the
cluster statistics of I and M cells are completely differ-
ent. More and more single M cells appear which dissoci-
ate from the boundaries of small or medium sized I cell
clusters. Figure 22 shows the average number of clus-
ters versus ry for models A,B,C. For growth rates larger
than = 0.01 the differences between models A, B, and C

ry =0.2 ry = 0.0002
k=4
k=6
k=38

FIG. 18. Subclone morphologies. The offspring of one cell
is marked in black.
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FIG. 19. Subclone morphology of cell number £ = 6 for
€ =0 and ry = 0.0002.

population gradually become less significant.

Table VI shows the characteristics of cell growth after
the inclusion of cell death (model D). Figure 23 displays
some typical morphologies. Note that the total number of
clusters remains quite small and decreases with decreas-
ing ry (in contrast with models B and C). Nevertheless,
the density fluctuations are very large due to the fractal
structure of cell clusters. As one approaches pp = 1,
fluctuations on all length and time scales start to grow
(see Fig. 24 and Fig. 25). We would like to stress that
the effects of cell death cannot be taken into account by
a simple rescaling of the basic replication rate. In an
interaction free cell assembly, cell death will lead to a
prolongation of 7o,

TO(PD) :Toln( In2 (13)

2—pp)’

In Table VI the times Ty and 7(pp) are given in units of
the rescaled times, i.e.,

tinteract (8007 pD) 1n(2 — pD)
t0(800) In 2 ’
T(PD) ‘= Tinteract (PD)/TO(PD)-

Ty (pp) := (14)

For interacting populations, our cell death mechanism
also affects the density regulation by creating free volume
at a rate proportional to the number of replicating cells.

TABLE V. Growth characteristics of 800 cell monoclones
for € = —20 and model C. For the definition of ¢, Tf, and A
see Table I.

Tg | Ty [ T ' A ‘ g (£Ag)
0.2 511 - 2.0 18.9 (£ 6.2)
0.1 4.10 - 2.2 16.4 (& 4.8)
0.01 1.99 - 3.0 11.2 (£ 2.3)
0.001 1.49 1.55 - 9.9 (+ 1.0)
0.0002 1.33 1.62 - 9.8 (£ 0.7)
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IV. SIMULATING BIOLOGICAL
PROCESSES IN TISSUE

Up to now, we have concentrated on the study of some
basic models for tissue cell growth which by themselves
cannot be considered as realistic in vivo. Nevertheless,
they displayed a variety of salient features which may be
confronted with cell culture experiments. We consider
these studies as necessary prerequisites for investigations
of more specific biological situations. Although it is not
the main point of this work to consider any such situa-
tions in detail, we present some results for two interesting
processes of tissue cell biology: the growth of a sarcoma
across an epithelial boundary and the regeneration of a
skin cut. We will discuss these processes without any
further refinement of our models. Due to our restriction
to quasi-two-dimensional systems, we cannot hope for
much more than an analogy of these processes. Never-
theless we found it a worthwhile exercise because on the
one hand the restriction to two dimensions is easily re-
leased while on the other hand even the two-dimensional
systems display some very illuminating features of the
modeled biological scenarios. Our main motivation for
studing these surely oversimplified descriptions of cells is
to separate collective phenomena in assemblies of cells,

(a)

FIG. 20. Morphologies of model B for ¢ = —20. (a)
74 =0.01, (b) ry = 0.0002.

D. DRASDO, R. KREE, AND J. S. McCASKILL 52

5000 10000 15000 20000 25000 30000 35000
t/At
N 1000

100 ¢ 4
10 ¢ E

10000

t/At
FIG. 21. (a) Morphology of model C for € = —20 and
ry = 0.0002. (b) Growth law N(t) for model C displaying
crossover from exponential to power law (e = —20,7, = 0.01).
The estimated crossover time t.; (see Table I) is t., ~ 13 720.
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FIG. 22. Average number of clusters versus growth rate for
models 4, B, C.

(b)

& (©
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FIG. 23. Morphologies of model D for ¢ = —20. (a)
rg = 0.0002, pp = 0.5; (b) 74 = 0.0002, pp = 0.95; (c)
rg = 0.2, pp = 0.95.
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each with fixed and simple properties, from genetically
regulated phenomena which depend on the intrinsic cell
dynamics in a complicated way. We believe that a better
understanding of the interplay between these two regu-
lation mechanisms is important for the development of
a theory of pattern formation and cell differentiation in
living organisms. A more detailed presentation of this
part of our work can be found in [56,60].

A. Sarcoma growth across epithelial boundaries

A sarcoma is a malignant tumor of the connective tis-
sue. The proliferating tumor cells excrete collagenase
which digests the intercellular contacts in the epithelial
structures (e.g., [61]). We consider a two-dimensional
analogy of this situation by starting out from a single
tumor cell surrounded by a layer of model F cells which
form a stable circular ring. After some time, the grow-
ing tumor will fill up all of the space within the circular
cavity and reach the epithelial boundary. We assume

FIG. 24. Temporal development of morphologies of model
D near criticality (ry = 0.0002, pp = 0.95). Note that cell
clusters disintegrate and recoagulate on large scales. The first
picture displays 300 cells, the last one 800.
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FIG. 25. Average number of clusters versus pp of model D.

that the attractive interaction between epithelial cells is
much stronger than between tumor cells and there is no
attractive interaction between cells of different type (e.g.,
[62-65,53]). (We chose potential minima ¢ = —20 for ep-
ithelial and € = —2 for tumor cells.) Both cell types were
assumed to be of the same size R,,;, and the range of
interactions was taken to be § = 0.2R;n.

For attractive potentials of the square-well type the

TABLE VI. Growth characteristics of 800 cell monoclones
including cell death for € = —20. For the definition of 7(pp)
and Ts(pp) see Eq. (14). pp is the probability for a cell to
be killed (see Sec. IIC, Model D), g is the mean generation
number and A denotes the exponent of power-law growth of
N(2).

Ty Ty (pp) 7(pp) A g (+Ag)
pp=0.3
0.2 3.80 - 2.36 20.3 (£ 5.1)
0.1 3.60 - X.XX 20.7 (£ 4.4)
0.01 2.96 - 3.57 16.6 (£ 2.5)
0.001 2.67 - 4.0 15.3 (£ 1.7)
pp=0.5
0.2 3.40 - 2.4 24.6 (£ 5.1)
0.1 3.32 - 3.0 26.7 (£ 4.6)
0.01 2.82 - 3.64 22.1 (£ 3.0)
0.001 2.80 - 5.3 24.1 (£ 1.9)
pp=0.7
0.2 3.10 - 2.9 39.8 (£ 4.3)
0.1 2.87 - 3.7 37.0 (£ 4.2)
0.01 2.78 - 4.2 33.7 (£ 3.0)
0.001 3.00 - 5.9 44.3 (£ 2.0)
pp=0.9
0.2 2.95 - 5 133.9 (£ 5.1)
0.1 2.63 — 5 114.0 (:f: 4.0)
0.01 2.23 3.17 - 94.8 (+ 4.0)
0.001 2.75 4.09 115.2 (+ 4.6)
pp=0.95
0.2 2.33 3.14 - 199.2 (£ 4.8)
0.1 2.31 2.76 - 210.0 (£ 4.2)
0.01 2.42 2.72 - 200.0 (+ 4.9)
0.001 2.84 4.12 - 189.0 (£ 5.5)




6652

FIG. 26. Morphologies of model sarcoma confined by an
epithelial barrier. (a) Square-well potential between epithelia
cells. The tumor remains confined. (b) If the potential is
softened to a harmonic well of the same depth (by secreted
collagenase of tumor cells) the epithelial barrier is overrun
(model parameter as described in the text).

tumor always remained confined within the cavity (Fig.
26). We may model the influence of the secreted colla-
genase by a softening of the potential from a square well
to a harmonic well. In fact, if the potential is smoothed
to a harmonic well (see Fig. 4) of the same depth as the
square well, we observe that the growing tumor overruns
the epithelial barrier. Figure 27 shows the growth law
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FIG. 27. Growth laws N (t) for the two situations depicted
in Fig. 27.
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FIG. 28. Model of a skin cut. The outer layer consists of
model F cells, the interior of model D cells. Cells which are
marked black switch into proliferation metabolism due to a
lack of neighbors.

for these two types of potentials. Note that the epithe-
lial layer is broken only at a few spots but each spot is
the starting point of an exponentially growing cascade.

B. Wound healing of a skin cut

Suppose now that we have a similar situation as indi-
cated in Fig. 26(a) but the cells filling up the spherical
cavity are not tumor cells but differentiated connective
tissue cells (fibroblasts), i.e., they are not proliferating.
We simply consider them as an assembly of model E cells.
Assume now that we cut out a part of the cells in a sec-
tor as indicated in Fig. 28. This situation constitutes
our analog of a skin cut. Due to the lack of neighbors,
the cells at the boundary of the cut switch into the pro-
liferating state (see Sec. IIC) and begin to refill the cut
with tissue material.

Let us discuss the process of wound healing from a
more biological point of view to clarify that our model
does not contain unplausible assumptions although it

M ()

FIG. 29. Steps of the wound healing process. Note that
finally all cells have switched back into nonproliferating tis-
sue cells. We used the regulation criterion (b) of model E,
i.e., cells are switched back into nonproliferating state if their
growth velocity becomes too small.
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FIG. 30. If cells do not switch back into nonproliferating
state properly due to disturbances of the regulation mecha-
nism, the wound develops a macroscopically distorted scar.

strongly simplifies the regeneration process. Histologi-
cally, one may distinguish between four phases which we
roughly characterize as follows.

(a) Ezsudative phase. Macrophages and thrombocytes
enter the wound from hurt blood vessels. They start the
clotting cascade by aggregating at collagen fibers.

(b) Resorptive phase. Cells of the immune sys-
tem (neutriophile granulocytes, monocytes, and lympho-
cytes) migrate into the wound. They kill invading bac-
teria and take up tissue remains and dead cells. The
secreted decomposition products serve as nutrients for
the fibroblasts in the next phase.

(c) Proliferating phase. Macrophages and thrombo-
cytes release growth factors which stimulate the prolifer-
ation of fibroblasts and epithelial cells at the edge of the
cut. The growing and proliferating cells fill the cut with
granulation tissue.

(d) Repair phase. The granulation tissue is replaced by
denser scar tissue and epithelial cells form a new epithe-
lial boundary which finally stops proliferating by contact
inhibition.

Note that although the switching of fibroblasts and
epithelial cells into the proliferating state is accomplished
by a mechanism which is different from that in model E,
the result is the same: cells at the boundary of the cut
begin to proliferate. Our model thus seems adequate for
the description of the last two phases of wound healing.

In Fig. 29 we show a sequence of morphologies dur-
ing the regeneration process which correctly restores the
original macroscopic pattern. Both regulation criteria of
model E which were introduced to switch back from pro-
liferation to tissue function lead to a satisfying restora-
tion of the original macroscopic structure. Figure 30 dis-
plays what happens if cells do not stop proliferating due
to disturbances of the regulation mechanism. The re-
sulting form of the epithelial layer is reminiscent of a
macroscopically distorted scar.

V. DISCUSSION AND OUTLOOK

In the present work we have developed a stochastic
model for growing populations of tissue cells with spe-
cial emphasis on epithelial cells and cells of the connec-
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tive tissue. We studied applications of the basic model
and several biologically motivated variants by perform-
ing Monte Carlo simulations of monoclonal growth in
culture. Figure 31 summarizes the explored regions of

EC PC
o o [e] o (e} o o -+ -20
(o] o o [e] o -+ -100
€
6=01xd

FIG. 31. Two-dimensional projection (log,o(rg),€) of the
three-dimensional parameter space (log,,(7g),€,d) for simu-
lations up to 800 cells with fixed § = 0.2Rmin = 0.1d (d is the
cell diameter). The small circles denote the parameter com-
binations used in the computer simulations. Four different
regions with qualitatively different behavior have been found
(for each of the regions, a pointer is drawn to the correspond-
ing morphology of the population). For weak attraction and
a small growth rate, exponential growth has been found (EF);
for weak attraction and a high growth rate, we find a power
law for the population growth (PF); for strong attraction and
high growth rate, the population growth is again due to a
power law, but here, all cells belong to the same cluster (PC);
and for strong attraction and low growth law we find an expo-
nential growth law where, again, all cells belong to the same
cluster (EC). The dashed line shows the border between popu-
lations, which all belong to the same cluster (EC and PC) and
populations, which do not (EF and PF); the dashed-dotted
line marks the border between exponential growth (EC and
EF) and growth due to a power law (PC and PF).
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growth rate and cell interaction strength and depicts the
corresponding growth laws. Furthermore we considered
two-dimensional analogies of more complex processes:
the growth of a sarcoma across an epithelial boundary
and the wound healing of a skin cut.

Although we only performed simulations for two di-
mensional systems (which seems adequate for cell culture
experiments) the models and the developed algorithms
can be used for three-dimensional tissues as well. The
state space for rotation for a cell in three dimensions has
to be increased by a further angle variable and the MC
step for rotation effects both azimuthal and polar angle.

Once the basic time scale At and the ratio fIM of the
average durations of I and M phase have been fitted to
the migration of a single cell, our results can in principle
be confronted with quantitative experiments. We con-
clude from our simulations that in order to produce the
observed value of the interphase-mitosis time ratio of cell
cycles in tissue (=~ 12-25), f’™ must be ~ 4-8. We did
not succeed in finding reliable data for single cells in the
literature. This, however, is not the only reason for us to
refrain for postponing detailed comparisons of the present
work with experimental data. Before we do this, we must
be aware that tissue cells do not live in free space (as we
have assumed in our models) and that the structure of
the extra-cellular medium may have profound influences
on growth and pattern formation. To overcome this in-
completeness of our description, we are currently adding
a cell-substrate interaction to our basic model. Such in-
teractions result from substrate-adhesion molecules [44]
and lead to haptotaxis, i.e., a dependence of cell mobility
on the properties of the extra-cellular medium [48,26].
Nevertheless, we believe that even the simplest version
of our model without cell-substrate interactions already
captures a lot of salient features of tissue cell growth.

As it is possible to influence both the intrinsic growth
rate of cells in culture (via the cell metabolism) and the
strength of their attractive interaction (via appropriate
CAM antibodies [48]), it may become possible to observe
the crossover scenarios from high to low growth rates
and from strong adhesion to pure cell repulsion which
we described in Sec. IIIL. If the simulation results could
be appropriately calibrated, it may even become possible
to use Monte Carlo simulations for medical diagnostic
purposes.

In this respect it is of particular interest to try to model
the dedifferentiation and deadaptation effects which are
shown by normal tissue cells in culture. For example,
normal tissue cells often produce clones of immortal cells
in culture [66]. Thus it is not possible to distinguish such
clones from clones of malignant tumor cells on the basis
of cell mortality. Nevertheless the growth characteristics
of normal and tumor cell clones should be different, be-
cause the normal cells have to learn immortality via the
selection pressure within the culture substrate.

Section IV contains our starting point for a theoretical
understanding of tissue in vivo. A necessary refinement
is the inclusion of long-range interactions via secreted
biological transmitters. In living organisms, this type of
interaction is responsible for a variety of subtle regulation
mechanisms which lead to different behavior of cells in
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culture and in differentiated tissue in vivo.

Within our model, we have studied various interaction
ranges leading to results which are at least qualitatively
identical to those obtained with § = 0.2Ru;n. (Quanti-
tative differences may be estimated from Tables II and
II1.) For § < Rmin we have found no significant devia-
tions. For § = R,,;,, however, we already observed qual-
itatively new phenomena. As an example, Fig. 32 shows
the average number of generations necessary to create an
800 cell monoclone versus the growth rate for three differ-
ent interaction ranges. Whereas for short-range interac-
tions g decreases monotonically with r, and approaches
the value for noninteracting cells, it shows a pronounced
minimum and a sharp rise towards lower growth rates
for 6 = Rpyin. In Fig. 33 we show the regions of the in-
teraction range 6 which we have systematically explored
together with the corresponding growth laws.

In conclusion, we have shown that a Monte Carlo ap-
proach to populations of tissue cells is an effective mod-
eling strategy and leads to interesting results which in
principle can be compared with experiments on cell cul-
tures. It is capable of bridging the gap between rate
equation (or more elaborate reaction-diffusion equation)
approaches, which focus on macroscopic pattern forma-
tion, and the histological models of single cells.

In the present work, we have considered only the sim-
plest histological properties. Due to the statistical de-
scription of cell shapes our model cells therefore resemble
spherical and nonspherical molecules with autocatalytic
reactions. In fact, the proposed algorithm provides sam-
ple trajectories of a master equation which can be inter-
preted as an autocatalytical reaction scheme [67]. With
the inclusion of more and more specific biological mech-
anisms and processes (like those indicated in Sec. IV),
however, the analogy to systems of molecules fades away
while at the same time analytical results are increasingly
complicated to obtain. Simulations, on the other hand,
can be refined without much effort. Such further refine-
ments may perhaps even lead to models applicable to the
tissue of living organisms in the future.

S
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FIG. 32. Average number of generations in an 800 cell mon-
oclone for different interaction ranges.
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FIG. 33. Two-dimensional projection (log,,(rg),d) of the
three-dimensional parameter space for simulations up to 800
cells with fixed ¢ = —20. In the regime PC we found a
power law for the growth, with increasing exponent as r, de-
creases. In the regime EC we found exponential growth, the
dashed line denotes approximately the border between the
regimes PC and EC. For small growth rates and high interac-
tion ranges, we again found a power law for the grow (PC),
probably due to interaction between next-nearest neighbors
(here, the average number of interaction partners for cells in
the inner of a cluster becomes larger than six).
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APPENDIX: SIMULATION ALGORITHM

This appendix gives a brief description of the Monte
Carlo algorithm of the basic model. A flow chart is
shown in Fig. 34. Every updating step starts with a ran-
dom choice of one of the cells of the assembly which is
switched into an active state (CHOOSECELL). The second
step consists in choosing the special trial (CHOOSETRIAL).
CHOOSETRIAL may be realized in two ways. In the first
case, there are internal counters for each action which
are enhanced by 1 whenever the corresponding action
is performed. Trials of a certain activity are performed
until the counter has reached a maximum value. Then
the updating switches to the next most frequent type of
activity. In this way there are ;o4 rotation trials (on
Viot different randomly chosen cells) before the next mi-
gration trial is performed, etc. In the second algorithm,
a trial is chosen randomly but with unequal probabili-
ties such that the frequencies of rotation, migration, and
growth-deformation are distributed in the proportions
Vrot :Vmig-Vgrowth-

During each of the activities ROTATE, MIGRATE,
GROW, DEFORM a random choice is made among all the
possible trials of one type. Afterwards this trial is ac-
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cepted or rejected on the basis of the change in interac-
tion potential which it implies. To simplify the notation
we will leave out the subscript of the chosen cell below.
RAND denotes a random number drawn from the interval
[0,1].
MIGRATE:
7(n+ 1) = 7(n) + nor. (A1)
o7 is a random shift drawn from all the vectors which are
equally distributed within a circle of radius 67yax. The
binary variable n = 1 (i.e., the trial is accepted) if RAND
< exp(—AFEnig) and n = 0 otherwise. This is the usual
Metropolis prescription. AFE,;, denotes the change in
the potential (which controls migration) due to the trial.
GROWTH:
R(n+1) = R(n) +n §R. (A2)
Again n = 1 if RAND < exp(—AZFEgowtn)- If f?(n +1) <
Rpax = (Rumin, then R(n+1) = f?(n—}—l. Otherwise R(n+
1) = Rmax- The random number SR is drawn from the
equally distributed reals within the interval [0, § Rmax]-
As Egrowtn only consists of the hard-core potential in the
basic model, the Metropolis prescription amounts to a

CHOOSE

CELL

I

CHOOSE

TRIAL

\

ROTATE MIGRATE GROW DEFORM

FIG. 34. Schematic flow chart of basic simulation algo-
rithm.
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rejection of every growth trial which leads to an overlap
of the hard spheres.

DEFORM: This step changes both the distance d be-
tween the centers of the dumbbell shape and the radius
R of each of the circles which make up the cell shape:

R(n+1) = R(n) — f™n $R,
d(n +1) =d(n) + fIMyn 6d(R(n),sR). (A3)

0d(R(n),6R) is determined from the equation area
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[d(n)] =area[d(n+1)]. 4R is again drawn from the inter-
val [0, 6 Rinax| and 7 is defined according to the Metropo-
lis rule.
ROTATE:
B(n+ 1) = d(n) +1 66, (A4)
¢ describes the orientation d of an M cell. In three di-

mensions the Monte Carlo step has to be modified ac-
cordingly.

(1] M. Eigen, J. McCaskill, and P. Schuster, J. Phys. Chem.
92, 6881 (1988).

[2] M. Eigen, J. McCaskill, and P. Schuster, Adv. Chem.
Phys. 75, 142 (1989).

[3] W. Jager, H. Rost, and P. Tautu, Biological Growth
and Spread, Lecture Notes in Biomathematics Vol. 38
(Springer, Heidelberg, 1980).

[4] J. F. Crow, Basic Concepts in Population, Quantitative,
and Evolutionary Genetics (W.H. Freeman and Com-
pany, New York, 1986).

[5] R. Kree, B. Schaub, and B. Schmittmann, Phys. Rev. A
39, 2214 (1989).

(6] A. M. Turing, Philos. Trans. R. Soc. London B 237, 37
(1952).

[7] A. Gierer, Socioeconomic Inequalities: Adaption and Ap-
plication of a Theory of Biological Pattern Formation,
in Pattern Formation by Dynamic Systems & Pattern
Recognition, edited by H. Haken (Springer, Heidelberg,
1979).

[8] H. Meinhard, Models of Biological Pattern Formations
(Academic, London, 1982).

[9] S. A. Newman and H. L. Frisch, Science 205, 108 (1979).

[10] S. A. Newman, H. L. Frisch, and J. K. Percus, J. Theor.
Biol. 134, 183 (1988).

[11] J. D. Murray, Mathematical Biology (Springer, Heidel-
berg, 1989).

[12] M. Eden, in Proceedings of the 4th Berkeley Symposium
on Mathematics and Probability, edited by. J. Neyman
(University of California Press, Berkeley, 1961), Vol. IV.

[13] T. A. Witten and L. M. Sander, Phys. Rev. Lett. 47,
1400 (1981).

[14] W. Diichting and Th. Vogelsanger, BioSystems 18, 79
(1985); W. Diichting, Comput. Graphics 14, 505 (1990);
W. Diichting, W. Ulmer, R. Lehrig, T. Ginsberg, and E.
Dedeleit, Strahlenther. Onkol. 168, 354 (1992).

[15] P. Meakin, H. E. Stanley, and N. Ostrowski, On Growth
and Form—Fractal and Non-Fractal Patterns in Physics
(Martinus Nijhoff, Dordrecht, 1986).

[16] M. Markus and B. Hess, Nature 347, 111 (1990).

[17] S. R. Hameroff, J. E. Dayhoff, F. Lahoz-Beltra, A
.V. Samsonovich, and S. Rasmussen, Computer 10, 30
(1992).

[18] H. E. Schepers and M. Markus, Physica A 188, 337
(1992).

[19] A. Lindenmayer, J. Theor. Biol. 18, 280 (1968).

[20] G. T. Hermann and G. Rozenberg, Developmental Sys-
tems and Languages (North-Holland, New York, 1975).

[21] G. M. Odell, G. Oster, P. Alberch, and B. Burnside, De-
velop. Biol. 85, 446 (1981).

[22] G. F. Oster, J. Embryol. Exp. Morph. 83, Suppl., 329
(1984).

[23] G. F. Oster and A. S. Perelson, Sci. Suppl. 8, 35 (1987);
G. F. Oster, Cytoskeleton 10, 164 (1988).

[24] M. S. Steinberg, Symp. Soc. Study Dev. Growth 22, 321

(1964).

[25] H. M. Phillips and M. S. Steinberg, J. Cell. Sci. 30, 1
(1978).

[26] R. J. Poole and M. S. Steinberg, Dev. Biol. 92, 144
(1982).

[27] M. S. Steinberg, J. Exp. Zool. 173, 395 (1970).

[28] M. S. Steinberg and T. J. Poole, in Developmental Order:
Its Origin and Regulation (Alan R. Liss, Inc., New York,
1982), pp. 352-378.

[29] N. S. Goel, and R. L. Thompson, Computer Simulations
of Self-Organization in Biological Systems (Biddles Ltd.,
London, 1988).

[30] F. Graner, J. Theor. Biol. 164, 455 (1993).

[31] F. Graner and Y. Sawada, J. Theor. Biol.,, 164, 477
(1993).

[32] K. Binder, Monte Carlo Methods in Statistical Physics
(Springer, Berlin, 1979).

[33] M. P. Allen and D. J. Tildesley, Computer Simulation of
Liquids (Clarendon Press, Oxford, 1987).

[34] J. M. Hammersley and D. C. Handscomb, Monte Carlo
Methods (Methuen & Co. Ltd., London, 1964).

[35] L. L. Carter and E. D. Cashwell, Particle Transport Sim-
ulation with the Monte Carlo Method, ERDA Critical
Review Series TID-26607 (U.S. Department of Energy,
Washington, D.C., 1975).

[36] T. E. Booth and E. D. Cashwell, Nucl. Sci. Eng. 71, 128
(1979).

[37] J. A. McCammon and S. Harvey, Dynamics of Proteins
and Nucleid Acids (Cambridge University Press, Cam-
bridge, 1987).

[38] L. C. Junqueira and J. Carneiro, Histologie (Springer,
Berlin, 1991).

[39] P. F. Kruse and M. K. Patterson, Tissue Culture (Aca-
demic Press, New York, 1973).

[40] J. M. Vasiliev and I. M. Gelfand, Neoplatic and Nor-
mal Cells in Culture (Cambridge University Press, Cam-
bridge, 1981).

[41] A. D. Bershadsky and J. M. Vasiliev,
(Plenum Press, New York, 1988).

[42] G. H. Sato, A. B. Pardee, and D. A. Sirbasku, Growth of
Cells in Hormonally Defined Media (Cold Spring Harbor
Laboratory, Cold Spring Harbor, 1982).

[43] R. I. Freshney, Culture of Animal Cells (Alan R. Liss
Inc., New York, 1983).

Cytoskeleton



52 MONTE CARLO APPROACH TO TISSUE-CELL POPULATIONS 6657

[44] G. M. Edelman and J. P. Thiery, The Cell in Con-
tact: Adhesions and Junctions as Morphogenetic Deter-
minants (Wiley, New York, 1985).

[45] G. M. Edelman, Exp. Cell Res. 161, 1 (1985).

[46] G. Edelman, Annu. Rev. Cell Biol. 2, 81 (1986).

[47] G. Edelman, Topobiology-(Basic Books Inc., New York,
1988).

[48] G. Edelman, Spekt. d. Wissenschaft 251, 5 (1989).

[49] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.
H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

50] L. J. Singer and G. L. Nicolson, Science 175, 720 (1972).

] G. Yagil (private comunications).

] K. Burridge, Cancer Rev. 4, 18 (1986).

] C. O’Neil, P. Jordan, and G. Ireland, Cell 44, 489 (1986).

54] A. Ben-Ze’ev, J. L. R. Fernandez, G. Baum, and B.

Gorodecki, in Mechanisms of Differentiation, edited by
P. B. Fisher (CRC Press, New York, 1990).

[55] B. Geiger, T. Volk, T. Volberg, and R. Bendori, J. Cell
Sci. Suppl. 8, 251 (1987).

[56] D. Drasdo, Ph.D. thesis, University of Gottingen, 1993
(unpublished).

[57] R. F. Brooks, in Temporal Order, edited by L. Rensing
and N. I. Jaeger (Springer, Berlin, 1985).

[58] B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and

[
[51
(52
(53
[

J. D. Watson, Molecular Biology of the Cell (Garland,
New York, 1989).

[59] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz,
and A. M. Weiner, Molecular Biology of the Gene, 4th ed.
(Benjamin Cummings, New York, 1987).

[60] D. Drasdo and R. Kree (unpublished).

[61] U. N. Riede, H. E. Schifer, and H. Wehner, Allge-
meine und Spezielle Pathologie (Thieme Verlag, New
York, 1989).

[62] M. Abercombie and J. E. M. Heaysman, Exp. Cell Res.
6, 292 (1954).

[63] B. Westermark, Int. J. Cancer 12, 438 (1974).

[64] J. Folkman and A. Moscona, Nature 260, 345 (1979).

[65] R. O. Heynes, Surfaces of Normal and Malignant Cells
(Wiley, New York, 1979).

[66] S. A. Aaronson and G. J. Todaro, Science, 162, 1024
(1968).

[67] R. Kree (unpublished).

[68] N. Brunet, D. Gourdji, A. Tixier-Vidal, and A. Rizzino,
Role of Attachment and Spreading Factors: Effect of Fe-
tuin on Proliferation and Prolactin Secretion by GH3
Cells and Primary Cultures of Normal Rat Pituitary
Cells, in Ref. [42].

[69] J. M. Vasiliev, Biochim. Biophys. Acta 780, 21 (1985).



