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Random-walk model of homologous recombination
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Interaction between two homologous (i.e., identical or nearly identical) DNA sequences leads to their
homologous recombination in the cell. We present the following stochastic model to explain the depen-
dence of the frequency of homologous recombination on the length of the homologous region. The
branch point connecting the two DNAs in a reaction intermediate follows the random-walk process
along the homology (N base-pairs). If the branch point reaches either of the homology ends, it bounds
back to the homologous region at a probability of y (reAection coefficient) and is destroyed at a probabil-
ity of 1 —y. When y is small, the frequency of homologous recombination is found to be proportional to
N for smaller N and a linear function of N for larger N. The exponent of the nonlinear dependence for
smaller N decreases from three as y increases. When y=1, only the linear dependence is left. These
theoretical results can explain many experimental data in various systems.

PACS number(s): 87.10.+e, 87.15.Kg, 82.20.Fd, 82.20.Hf

I. INTRODUCTION

Homologous recombination is recombination between
two DNA segments with homologous, i.e., the same or
almost the same, sequences, sometimes resulting in a new
combination of genetic information [1—4]. This reaction
represents a fundamental metabolic activity in life. It can
repair damages on DNA (recombination repair), increase
and decrease diversity of genetic information, and pro-
vide molecular basis of meiosis and sexual reproduction
in the eukaryotes. This reaction can be used for designed
alteration of the genetic information (gene targeting).

Earlier experimental works suggested that frequency of
homologous recombination is a linear function of the
homology length [5,6]. Its positive intercept on the
length axis was interpreted as a threshold length, called
minimal effective processing segment, below which some
structural constraint on the recombination machinery is
effective. The homologous recombination between in-
coming DNA and endogenous DNA in mammalian cells,
however, turned out to show a length dependence much
steeper than linear [7].

Our simplified picture of the steps of homologous
recombination is illustrated as follows. First, a recombi-
nogenic event, such as a single-strand break, occurs on
one of the two recombining DNAs [Fig. 1(b)] to form a
reaction intermediate with a branch point connecting the
two DNAs [Fig. 1(c)]. The branch point then migrates in

'Correspondence after December, 1995, should be addressed
to: c/o Professor Dick Bedeaux, Gorlaeus Laboratories, Leiden
University, Einsteinweg 55, P.O. Box 9502, 2300 RA Leiden,
The Netherlands.

the homologous region [Fig. 1(d)]. The intermediate is
resolved to form a homologous recombinant [Fig. 1(e)] or
destroyed during this branch migration. Here and in the
following, "being resolved" is used when the intermediate
or the branch point is lost because of a successful homo-
logous recombination, while "being destroyed" is used
when it is lost without homologous recombination. "Be-
ing processed" includes both. We use terms of the Holli-
day model [1] (e.g., a branch point) for convenience al-
though the molecular nature of the intermediate need not
be specified.

Some researchers assumed that the branch point of a
Holliday structure follows a random-walk process along
the homologous region [8,9]. Adopting this assumption
and a simple boundary condition that the branch point is
always destroyed if it reaches either end of the homology,
we and our colleague calculated length dependence of fre-
quency of the homologous recombination [10]. The re-
sults successfully explained the contrasting patterns of
length dependence in wild-type systems mentioned above,
while it failed to explain well two sets of data in mutant
systems.

The simple boundary condition might be inappropriate
for aberrant intermediate structures in the mutant sys-
tems. In this paper, we calculate the length dependence,
taking into account the probability that the branch point
rebounds to the homologous region when it reaches ei-
ther end of the homology. As we shall see, our results
can explain well experimental data not only in the wild-

type systems but also in the mutant systems.

II. MODEL

We assume the following: (1) The branch migration fol-
lows the symmetrical random walk over the discrete sites
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FIG. 2. A schematic representation of the random walk. The
branch point "walks randomly" over the discrete sites, each of
which intervenes two adjacent base-pairs. See text for the tran-
sition probabilities per unit time g, gh (1—k), and ghk. The site
1,2, . . . , N —1 are real sites on the homologous region with the
length of N bp. If the branch point migrates outside the homo-
logous region over either of the sites 1 and N —1, it bounds back
to this site, 1 or N —1, at a probability y and is destroyed at a
probability 1 —y. The states where the branch point is thus des-
troyed are represented by the imaginary sites 0 and N, respec-
tively. Site X is imaginary, representing the state where the
branch point is destroyed at one of the sites from 1 to N —1.
Site + is imaginary, representing the state where the homolo-
gous recombinant is formed successfully.

FICx. 1. Plausible steps of homologous recombination. (a)
Two double-strand DNA segments with the homologous region.
(b) A recombinogenic event occurs in one of them. (c) A branch
point connects these two DNAs in a reaction intermediate. (d)
The branch point moves along the homologous region {branch

migration}, which enlarges the heteroduplex regions. The
branch point may be destroyed within the homologous region.
(e) Proper resolution of the branch point completes homologous
recombination. (f) When the branch point reaches either of the
homology ends, it bounds back to the homologous region or is
destroyed.

For simplicity, we assume that the homology length in
bp is almost the same as the number of the random-walk
sites (N —1). The following treatments, however, remain
valid as long as the homology length in bp is assumed to
increase in proportion to -N, i.e., the number of sites,
except for the calculation of the estimates listed in Table
I.

III. FORMULATION

(1,2, . . . , N —1) in the homologous region with the
length of N())1) base-pairs (bp). (2) The intermediate
can be formed (a) only when the reaction is initiated, i.e.,

only at the time t =0, and (b) at such a low probability a
per site that cases where more than one branch points are
formed are negligible (i.e., Na « 1). (3) When the
branch point reaches either of the homology ends, the in-
termediate is destroyed at a probability 1 —y and sur-
vives with rebound of the branch point to the homolo-
gous region at a probability y (refiection coefficient)
[Figs. 1(f) and 2].

We consider the general boundary condition of
0~ y ~ 1. This type of boundary condition was studied
systematically by van Kampen and Oppenheim [11],
where "rejecting boundary" and "absorbing boundary"
were defined. In our problem, the ends are reflecting
when y=1, and absorbing when O~y &1. The simple
boundary condition we discussed previously [10] is the
purely absorbing boundary condition, i.e., y =0.

What follows the destruction at the ends is not
specified in the model. It may be run off [8,9] or return to
the parental configuration or the homology-driven
nonhomologous recombination [12].

A shown in Fig. 2, g denotes the transition probability
per unit time from a site to one of the two neighboring
sites, h the ratio to g of the probability that the branch
point is processed per site per unit time, and k the condi-
tional probability that the intermediate is resolved to
form a homologous recombinant on the condition that
the intermediate is processed.

Thus ghk is the probability per site per unit time that
the branch point is resolved to form a homologous
recombinant, and gh (1—k) is the probability per unit
time that the branch point is destroyed at one of the sites
from 1 through X —1. We assume that g, h, and k are
constant over the homologous region and satisfy 0&g,
0 & h, and 0 & k ~ 1. The key parameter h was named rel-
ative probability of intermediate processing [10].

Let us formulate the branch migration. Let p„(t) be
the probability distribution, i.e., the probability that the
branch point is located at a site n at time t, and we have

dp~
=g(p +t+p —1) g(2+")p

dt

for 2&n &N —2, (1)

(2)
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PN —1

dt
=gpN 2 g(2+8 1 )pN

which can be written as

dp
dt

=gM(y)p,

where

(3)

0

—2 —h

0

y —2 —h

P&

P2

The sites 0, N, asterisk, and cross (Fig. 2) are imaginary
"limbo" states [13]. Each of the sites 0 and N corre-
sponds to the state where the branch point has reached
each end without rebound to be destroyed; we have

PN —2

PN —1

dpp

dt
=g (1—1')p 1

PN
Y )PN —1dt

TABLE I. Analysis of experimental results. Five wild-type systems and two mutant systems, which were analyzed on the assumption of y =0 in
Ref. [10], are listed. The estimates are obtained under the model in this work; the number of the random-walk sites is assumed to be N —1 for the
homology of N bp, in particular (see Sec. II).

System

(Measure of
recombination

frequency') Ref.

Condition

(Figure in

this work")

Length range
(Number

of points)

Regression equation
in logarithmic plot'

(Correlation coefficient)

[Confidence interval

(95%) of the slope]

Estimates
ka

Mouse cells,

gene targeting
(Recombinant
cells/surviving

cells)

[7] Isogenic DNA

Nonisogenic DNA

2800—14 600(7) Y= —16+3.0X(1.00)[2.7 —3.3]

3000—14300(13) Y= —17+3.1X (0.99) [2.8 —3.4]

&10 & 10 &0.99995

&10 &10 ' &0.99995

T4 phage
XT4 phage
(Recombinant

phage frequency)

[5] Wild type

61 mutant [8(a)]

65-137 (14)

55-204 (21)

Y= —9.2+3.1X (0.98) [2.7 —3.5] &10 2

Y= —5.6+2.0X (0.97) [1.7 —2.2] & 10

&10 6 & 0.998

&07

A, phage
Xplasmid

by E.coli

(Recombinant

phage frequency)

[6]
rec+ (wild type)

recBC mutant [8(b)]

27-90 (5)

. 90-405 (7)
90-405 (7)

Y= —7.8+3.1X (0.97) [1.8 —4.5] &10

Y= —4.2+ l.3X (0.95) [0.8 —l.8] ( —10
Y= —6.6+ l.7X (0.99) [ l. 5 —2.0] & 10

~10 4

& 0.994)'
&0.8d

Monkey cells,
transferred
viral DNA
with terminal

direct repeats
(Frequency of
cells produc-

ing recom-
binant virus)

[151 56-214 (5)

214-5243 (4)

Y= —9.4+2.8X (0.95) [1.1 —4.6]

Y= —5.5 + l.3X ( 0.99 ) [0.8 —1.8 ]

~10 ' (&10 &0.997)'

'Each of the points reported in these works may represent some representative value of two or more measurements.
Data except for the mutant systems are plotted in logarithmic form in Ref. [10].

'Least-squares linear-regression equation. Y=log&o (recombination frequency), X=log&o (homology length). Also shown in Ref. [10] except for the
mutant systems.

Apart from these numerical estimates, y is estimated to be larger in each mutant system than in the corresponding wild-type system.
'These estimates suppose the N dependence within the N range of 27 —90 bp in spite of the wide confidence interval.
These estimates suppose the N dependence within the N range of 56—214 bp in spite of the wide confidence interval.
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The site denoted by an asterisk corresponds to the state
that a homologous recombinant has been formed success-
fully, and the site denoted by a cross to the state that the
branch point has been destroyed at one of the sites from 1

to X —1. We have

by these methods on the assumption of y =0 [10].
In the next section, we calculate to obtain an expres-

sion of II(N, y) for N))1 and 0&y& 1, partly after
Chap. XI of Ref. [13].

dpi'

dt

N —1

n=1

dp x
dt

N —1

=gh(1 —k) g p„. (7)
n=1

IV. SOLUTION

The solution of (4) is expressed as

Let II(N, y) designate the probability that a branch
point is formed at one of the sites at t=0 and a homolo-
gous recombinant is formed after a long enough time.
We assume that II(N, y) corresponds to the frequency of
the homologous recombination measured in the experi-
ments.

Approximate expressions of II(N, O) for N))1 were
obtained previously [10]. When &h « 1, we have

r

II(N, O) =ka N —tanh—
2 Nv'h

h

which gives the X -dependence portion and the linear-
dependence portion:

p(t)=exp[gM(y)t]p(0} .

Note that we have

(13)

exp[gM(y)t]~0 as t~ ~ (14)

(15)

because a branch point formed at t =0 must be lost from
the homologous region after a long enough time, i.e.,
p(t)~0 as t ~ co.

Now we consider a solution of (4) under the initial con-
dition that a branch point is formed at a site m at t =0.
Let this solution be indicated by a superscript (m), and
then we have p™(0)=5„~,where 5„~ denotes
Kronecker's delta. From (13), we have

II(N, O) = N when 1 «N « 1/V'h
12

(9) Noting that no recombinant is present at t =0, i.e.,
p ~~ '(0) =0, we obtain from (7), (14), and (15)

II(N, O) =ka N— 2

h
when 1/&h «N . (10) N —1

p'„'(t)=ghk g J dt'p„' '(t')
n ——1

When &h ) 1, we have

II(N, O) =kaN .

A biological system would have &h « 1 because the pri-
mary products of homologous recombination usually car-
ry a long region of heteroduplex DNA [14],which should
result from extensive branch migration. Thus, the fre-
quency is proportional to the third power of the homolo-
gy length in the smaller length range [see (9)] while it is a
linear function of the homology length in the larger
length range [see (10)] on the assumption that a, h, and k
are independent of N.

In this model of y =0, the slope of the linear-
depende~ce portion is given by kn, and its % intercept is
given by 2/&h [see (10)]. Thus, one can estimate ka and
h from the linear-dependence portion in the linear plot of
the frequency against the homology length. On the other
hand, the homology length (N„) around which the shift
from the X dependence to the linear dependence takes
place is easy to see in the logarithmic plot; we may have
from (9) and (10)

1 1 1

h
—X 10 &2V„& —X 10,

&h

N —1

=hk g [[M(y} 'exp[gM(y)t']]„] 0
n=1

N —1~—hk g [M(y) ']„as t~~,
n=1

(16)

where M(y) ' is the inverse of M(y). Hence we have
N —1 N —1N —1

II(N, y)=a g p'„'(00)= —ahk g g [M(y) ']„
m=1

N —1N —1

=ahk g g x'
n=l m=1

n=l m=1

(17)

N —1

II(N, y)=ak g [1+(y—1)(x', '+x~ ', )] . (19)
m=1

where x„' ' is a component of the column vector x'
satisfying

[M(y)x'-']„= —S„

After some calculations shown in Appendix A, we obtain

i.e. , %,, 'X10 '&h &%,, 'X10'. (12) We define g and g as

In the logarithmic plot, the % -dependence portion is
given by the logarithm of (9). Thus, one can also estimate
ko, and h from the logarithmic plot. This logarithmic
plot method gives estimates more rough than the linear-
plot method above. Estimates of ka and h were obtained
from the experimental data in various wild-type systems

h++h +4h
2

h —&h'+4h
2

(20)

(21)
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and

g=l .

Furthermore, g„ is defined as

(22)

As shown in Appendix 8, we have

~N —m +km Y(4N —m —1+0m —1)

kN 2YCN —1+3 0N —2

(24)

(23) Thus, defining F as follows, we have from (19)

II(N, Y) 2( 1 —Y) 01 0N 0N —1 Y 01 0N —1 0N —2FNY =
0N 23 0N —1+ Y 0N —2

where (21), (22), and the sum formula of a geometrical series were used. In particular,

(25)

F(N, O) =N 1+ — (g, —gN+gN 1),
N

and hence we obtain

[F(N, O) N+ 1—]—Y [IF(N —1,0)—N+2] QN
F(N, Y)=(N —1)+(1—Y)

21 QN+ Y QNQN —1

(26)

where QN is defined as

N —1

Note that the dependence of F(N, O) on N is known [see
(&)—(11)].

When Y= 1, (27) gives

F(N, 1 )=N 1=N . — (29)

(30)

Hence, (7) gives

This result can be easily obtained in another way. When

Y
= 1, summing up (1), (2), and (3), we obtain

shown in Appendix C, we can derive

II(N, Y ) =kaN =II(N, O) .

Thus, when Vh ~ 1, the direct proportion is obtained not
only for Y=O [see (11)] but also for any other Y value.
The branch point is unlikely to reach either of the homol-
ogy ends because processing of the intermediate is
efficient (i.e., &h ~ 1}. It can neither "feel" the homolo-
gy length during the branch migration nor "find" wheth-
er the ends are purely absorbing or not. Thus, the direct
proportion is obtained in this case, as in the case of y = l
[see (29)].

We show below that, when &h « 1, the destruction of
the branch point at the ends is so e6'ective that the depen-
dence of H on X deviates from the direct proportion.

p', '(t}=k [1—exp( ght)[ . —

Therefore we obtain [see (17)]
N —1

II(N, 1)=a g p', '(co )=ka(N —1),

(31) B. Case of &h &&1

We consider this case of inefficient processing of the in-
termediate. For simplicity, we write F. for g —1, i.e. ,

which is equivalent to (29). In this refiecting case, the
branch point cannot "feel" the homology length during
branch migration. Thus, only the frequency of the
recombinogenic event within this homologous region de-
pends on X. This frequency is directly proportional to
the number of sites ( =N 1) from the assum—ption 2(b) in
Sec. II. This is why the direct proportion (32) [or (29)]
was derived.

h++h +4h ~~ +0(~)
2

Furthermore, we write 8 for ln g:

8=in/=in(1+@)=&h — +O(h ) .
a+'T

24

QN, defined by (28), is expressed in terms of 8 as

(34)

(3&)

V. APPROXIMATION

A. Case of &h ~1

This case helps in understanding the meaning of h al-
though biologically unusual as discussed in Sec. III. As

QN= . =cosh8 —cothN8sinh8 .sinh(N —1)8
sinhN0

(36)

Below, the larger length range (1/+h «N) and the
smaller length range (1 «N « 1/v'h ) are discussed
separately.



6612 YOUHEI FUJITANI AND ICHIZO KOBAYASHI 52

Qz=coshO —sinhO=g .

Thus, appealing to (10), (27), and (37), we obtain

(37)

II(N, y)= kaF—(N, y)=ka N —I+A, 1— 2
h

where A, is defined as

for 1« —«N,1

h
(38)

1. Larger length range (1/&h «N)
Since we here have NO » 1 from &h « 1 and (35), Eq.

(36) reads

any of the graphs. In Fig. 4(a) (y =0), the N intercept of
the linear-dependence portion, i.e, the intersection of the
tangent line of this portion and the horizontal axis, agrees
with 2/Yh =6.3X10 . The N intercept remains at al-
most this value from Fig. 4(a) to Fig. 4(d)
(y=0.95=1—&h ). These are all expected from (38)

4
and (45). Thus, as far as &h «1, the N intercept is in-
sensitive to y when y & 1 —Vh .

Equation (41) is graphed for h = 1.0X 10 in Fig. 3(b).
This h value satisfies &h «1, but does not satisfy (43)
( V'h =3.2X10 '). In Fig. 3(b) the departure of the X
value from unity is easy to see even when y is smaller,
unlike in Fig. 3(a). However, the A. value, decreasing

1 —yg
(39)

1.25
Thus, the linear-dependence portion appears in the range
of I/v h «N irrespective of the y value. Its slope
remains k a for any y; its N intercept (N~„, ) is given by 1.00

2

h
(40)

0.75
If we set y =0 in (38), it recovers (10); if we set y =1 in
(38), it recovers (29).

Let us consider A, as a function of y. Noting F. =g 1, ——
we have from (22) and (39)

0.50

X=1+ +
y —(1+@)

Since e='1/h « 1 now, (41) reads

(41) 0.25

(42)

(43)

Equations (41)—(43) lead to

A, =1+
y —(1+@)

Thus, since A, = 1 when y « 1, we find from (38) that (10)
holds not only when y =0 but also when y « 1.

We can show, furthermore, that (10) holds for larger y
as far as h is small enough. Suppose that h is so small as
to satisfy not only &h «1 but also

4&a= &h «1, t e. , e«&e.

0.00
0

1.25

1.00

0.75

I I I I I I I I I I I I I I I I I I I

025 05 075 1 125

'('b')
'

I —v'e & g & 1, i.e. , A. = 1 when 0 & y & 1 —1/e . (44)

Equations (38) and (44) inform us that, as far as (43)
holds, the linear-dependence portion located in
I/v'h «N remains almost unchanged as y moves from
0 to 1 —&e, i.e.,

0.50

0.25

II(N, y) =ka when 0 & y & 1 —&h . (45)
0.00

0.25 0.5 0.75 1.25
By computer calculations, Eq. (41) is graphed for
h =1.0X10 in Fig. 3(a), where &e= &h
=5.6X10 2«1. As expected from (44), Fig. 3(a) shows
0.95 & A, & 1 for 0 & y & 0.95= 1 —&e.

With (25), E(N, y) is calculated for various values of N
and y under the same h value as in Fig. 3(a), and plotted
against N in linear form (Fig. 4). In Fig. 4, the slope of
the linear-dependence portion is shown to be the unity in

FIG. 3. Relation between l and y for two h values. The A,

values are calculated by use of (41) and plotted against y. The
dotted lines are asyInptotes: A, = 1+@ and y=1+e [see (34)
for e]. (a) h= 1.OX10 ', v'h =3.2X10, v'h =5.6X10
and 2/Vh =$.3X10 . (b) h =1.0X10 V'h =1.0X10
&h =3.2X10 ', .and 2/&h =2.0X10'
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slowly when y is not very close to the unity, is no less
than -0.5 when y =0.9.

With (25), F (N, y ) is calculated for various values of N
and y under the same h value as in Fig. 3(b}, and plotted
against N in linear form (Fig. 5). In Fig. 5, the slope of
the linear-dependence portion is shown to be unity in any
of the graphs. The X intercept agrees with
2/t/h =2.OX 10 in Fig. 5(a) (y=0). These are expected
from (38}. The gradual change of the N intercept is easy
to see when y changes from 0 to 0.95 [Figs. 5(a) —5(e)],
unlike in Fig. 4. Nevertheless, the N intercept for y =0.9
is no less than -0.5 times as large as that for @=0, as
expected from Fig. 3(b). Thus, even in this case where
t/h ((1 does not hold, we may say that the N intercept

is not very sensitive to y when y is not very close to uni-
ty.

2. Smaller length range (I «W «1/&h )

Equations (35) and (36) give

(N 1—)+ (1 —N) 1 —y+1 —y 2y
N

+3
+h (1—y)

12

(4N —3 }(2N —1)
12N

(47)

where 3 is defined as

~ =—1 2—y Q~+ y'Qrv Q~ r—

2 2(N —1)=(1—y) 1 —y+ —y +by
3

X 1 —y+ —y — +O(h ).2 1 2

2N

Replacing F(N, O) with the right-hand side (RHS) of (8),
the RHS of (27) becomes

Qrv=1 ———h ———+ +O(h ) .
1 N 1 1 2

3 2 6X (46) Suppose that y is less than unity and that h is small
enough to give
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I

r r r r

I

r r r r

I

r «r
I

» r r 2500 I I I I 1 r r r r l I I r I l 1 1 i I l r I r 2500 l rrr
I

rrr r

I

I r I r

I

r r r r

I

'I r r r

2000 2000 2000

1500 1500 1500

1000 1000 1000

500 500 500

0 J L4r4t 1

0 500 1000
homology

I I I I r I I I I r I r r

1500 2000 2500
length N (bp)

t a~a't'r r r r I

0 500 iooo
homology

I r I r I rr I l I I r r I

1eoo 2ooo 25oo
length N (bp)

0
o eoo iooo ieoo 2000 2500

homology length N (bp)

y= 0.95

2500 rrrrIrr 1 I 1

I

I I 1 I

I

I I I I 2500 2500 I r I 1

I
I r 1 I

I

r l I r

2000 2000 2000

1500 15QQ 1500

1000 1000 1000

500 500 500

4

0 500 1000
homology

. . . , I. . . , I. . . ,

1500 2000 2500
length N (bp)

4
~ 'r II I Irr I I I Ir Irrr I Ir rrr

0 500 1000 1500 2000 2500
homology length N (bp)

4, , «l. . . , l

0 500 1000
homology

r I r I I I I I I I r I r I

1500 2000 2500
length N (bp)

FIG. 4. Linear plot of F against N for h =1.0X10 '. The RHS of (25) is calculated when h =1.0X10 ' [the same value as in Fig.
3(a)], and F(N, y) =II(N, y)/k/a is plotted in linear form for y = (a) 0.0, (b) 0.8, (c) 0.9, (d) 0.95, (e) 0.99, and (f) 1.0. The solid line
in (a), being the tangent line of the linear-dependence portion, crosses the Xaxis at -6.3 X 10 bp.
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1 2h y(N —1)[1—y+ (2/N)y —(1/2N) ]
(1—y)[1—y+(2/N)y ] 3(1—y)[1—y+(2/N)y ]

(49)

and (27) and (47) produce

F(N, y ) =h 1+ 2y
1 —y N

~'+ ~
12 1 —y

(4N —3)(2N —1) 2(% —1) (N —2) y (N —1)+ ~ +12' 3N (1—y)'
(50)

&s(y)=h 1+
12 N (1—y )2N2

Ns(y )=h 1+
N

N, (y) N, (y)' 1+ 1+
N (52)
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where N„Nb, and N, are defined as

N, (y )=, Nb(y ) —= 1, N, (y) =-8y = 2y 3

(53)

N. (y) «N, 1«N « 1

h

Here, as shown in Appendix D, we have

N, (y }&N, (y } when 1 «N, (y) .

(57)

(58)

II(N, y) =kaF—(N, y)= N
2(1 —y)

when

N «N, (y), 1«N « 1

h

and

(54}

(55)

II(N, y}=kaF(N—,y)= N
12

when

(56)

and we noted N &) 1.
As shown in Appendix D, the following N-

dependence portion and N -dependence portion are de-
rived from (51) and (52}as far as (49) holds:

Thus, the nonlinear-dependence portion can appear
within 1«N«1/v'h. Note that the equation of the
N -dependence portion given by (56) coincides with (9).
Below we write v for the exponent of the dependence; the
N -dependence portion has v=2. 0, for example.

We verify the approximations by computer calcula-
tions. With (25), F(N, y ) is calculated for various values
of N and y under h = 1.0X 10 [the same value as in
Figs. 3(a) and 4], and is plotted against N in logarithmic
form (Fig. 6). In Fig. 6(a) ( =0), the points appear to be
on a line for N «1/ h =3.2X10 . A line passing
through the. points of N=30 and N=60 is calculated to
be log, oF=3.01og,oN —6. 1, which agrees with the loga-
rithm of (56) because logto(h /12) = —6. 1. (Note that the
slope gives the v value). This is expected from (57) be-
cause N, (0) vanishes. Almost the same graph is obtained
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FIG. 6. Logarithmic plot of F against N for h = 1.0X10 ~. The RHS of (25) is calculated when h = 1.0X 10 ' [the same value as
in Figs. 3(a) and 4], and plotted in logarithmic form for y = (a) 0.0, (b) 0.3, (c) 0.6, (d) 0.95, (e) 0.997, and (f) 1.0. The three reference
lines in the bottom right in each graph have slopes of unity, two, and three, respectively.
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for y =0.3 [N, =3; see Fig. 6(b)], as expected from (57).
The N dependence can be also observed when
y=0. 6 [N, =12; see Fig. 6(c)]. When y=0. 997 [N,
=500; see Fig. 6(e)], a line passing through the points
of N =30 and 60 is calculated to be log, oF
=2.01og&ON —2. 8 This equation agrees with the loga-
rithm of (54) because log&oIh/(2 —2y)] = —2. 8. This is
expected from (55).

Thus, we observe the N -dependence portion in Figs.
6(a) —6(c), and the N -dependence portion in Fig. 6(e).
When y =0.95 [Fig. 6(d)], the v value is between two and
three. This intermediate exponent is compatible with (55)
and (57) since N, = 152 and N, =30. In Fig. 6(f) (y = 1),
only the linear-dependence portion is observed, as expect-
ed from (29).

According to (55), (57), and (58), the N -dependence
range should be located below the N -dependence range
when both ranges exist. However, in Fig. 6, the range of
1 «N « I /v'h is too narrow to contain the N
dependence range and the N -dependence range for the
same y value.

Thus, we set h to be small enough (h =1.0X10 '
) in

Fig. 7. From Fig. 7(a) (y=O) to Fig. 7(c) (y=0.999'
N, =3992), the N -dependence is observed below the
linear-dependence range. Deviation from the 2V-
dependence is shown for smaller N values in Fig. 7(b)
(y =0.9; N, =72), and develops to form the N-
dependence portion in Fig. 7(c) (y=0. 999; N, =1500).
In Fig. 7(c), a line passing through the points of N= 30
and N = 140 is calculated to be 1 og, OF

=2.0 1 og, oN
—9.3,

and a line passing through the points of N=1. 1X10 and
N =2.9 X 10 is calculated to be
log, +=3.0 log, oN —1.3 X 10'. These equations agree
with the logarithms of (54) and (56), respectively, because
log, o [ h /( 2 —2y ) ]

= —9.3 and log, o( h /12 ) = —1.3 X 10'.
This N -dependence portion is totally replaced by that
N -dependence portion in Fig. 7(d) (y =0.999 998;
N, =7.5X10 ). Thus, this replacement occurs from the
side of smaller N as expected from (55), (57), and (58). In
Fig. 7(d), a line passing through the points of
N= 1.0X10 and N=8. 0X10 is log, OF=2. 01og, N
—6.6, which agrees with the logarithm of (54) because
log, oIh/(2 —2y)I = —6.6. In Fig. 7(e) (y=0. 9999998),
a line passing through the points of N=1.0X10 and

y= 0.0 y = 0.999

aoao I I I I I I I aoap I I I I I I I

1O5 1O5 1O5

1OO aoo

1O-5 ao—5

. .' I I I I I I I

aoaao@031041o~ao~ao710 ao~

'I I I I I I I

tO 10 10s10 10 10 10710 10~
N

I I

10t10 10 10 1
I I I

oat oat o7t oat os
N

y = 0.999998 7 = 0.9999998 y= 1.0

aoao —I I I I I I I 1010 I I I I ,010 I I I I I I I

105 105 10

100 tO 100

10 1O-5 10-5

I

1011021031
I I I I I

0 10 10 10 10 10~
N

I I

10110210~1
I I I I I

0 10510 10 10 10
N

I I I I I !

10110 10 10 10 10 10 10 10~
N

FIG. 7. Logarithmic plot of F against iV for h =1.0X 10 ' . The RHS of (25) is calculated when h =1.0X 10 ', and plotted in
logarithmic form for y = (a) 0.0, (b) 0.9, (c) 0.999, (d) 0.999998, (e) 0.9999998, and (f) 1.0. The three reference lines in the bottom
right have slopes of unity, two, and three, respectively. &h = 1.0 X 10, &h = 1.0 X 10
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3. Summary

(A) As described at (38), the linear-dependence portion
is obtained if

1 « —«N .
1

h
(60)

We find that N, (y)&1/Vh leads to N&(y)) 1/&h
and that N, (y)) 1/&h leads to Nz(y) & 1/V'h. Thus,
taking into account the condition in which (49) holds, we
can write as follows, with the aid of the results of the cal-
culations by computer, the condition in which each of
(54) and (56) holds. (B) The N -dependence portion ex-
pressed by (54) is obtained if

1«N «N, (y) &
h

(61)

or

1 «N «Nd(7 ) &
h

(62)

In the case of (62), the N -dependence portion is in direct
contact with the linear-dependence portion; i.e., v tends
from two to unity monotonically as N increases, and the
N -dependence portion exists nowhere. On the contrary,
in the case of (61), the v value can increase for
N, -N —I /&h . (C) The N -dependence portion ex-
pressed by (56) is obtained if

N= 8.0X 10 is calculated to be log, cF=2.0 log, ~N —5.6,
which also agrees with the logarithm of (54) because
log, ~ j h /( 2 —2y ) J

= —5.6.
As shown in Figs. 7(c)—7(e), the N -dependence por-

tion is raised (i.e., the F value for the same N value in-
creases in this portion) as y increases. This is explained
by an accompanying increase of the constant term of the
logarithm of (54), i.e., log, c[h /(2 —2y)]. As this portion
is raised, this portion comes into direct contact with the
linear-dependence portion with the disappearance of the
intervening N -dependence portion [Fig. 7(d)]. As for
this direct contact, the N value around which the shift
from the N dependence to the linear dependence takes
place decreases as y increases [compare Fig. 7(d) with
7(e)]. This N value (N& ) is given approximately by the in-

tersection between the 1V -dependence portion and the
linear-dependence portion:

h
21oglPd+iog10 ioglcNd2(1—y)

i.e. ,

2(1 —y)d=
h

where we noted (38), (54), and N &)1. We find that,
when 1«X«N&, the first term is larger than the
second term in the RHS of (48) (note that both terms are
non-negative). Then, (49) may hold.

We drew Fig. 7 to verify (54)—(57). In usual biological
systems, the assumption 2(b) in Sec. II may not hold for
such large X values.

1«N and N. (y) «N « 1

h
(63)

which is the same as (57). Note that we have N, & N,
when 1 «N, .

The converse of each of the propositions (A) —(C) does
not always hold; for example, even when (63) does not
hold, we may have the X -dependence portion as far as
none of (60)—(62) holds, as shown in Fig. 6(c).

VI. COMPARISON WITH PREVIOUS WORKS

In Sec. VI B, we compare the results of the present
model with experimental data of various systems. For
convenience, we first compare the present model with the
model under y =0, which was discussed in detail in Ref.

A. Comparison with the model under y =0

1 0. 15
N (y)X &N&, i.e. , y &1—10- (64)

When the N dependence is not observed below N„, we

may have from (63)

N„&N, (y) X10, i.e. , &y .80+X„
(65)

The model under y =0 predicts the X dependence and
the linear dependence, as shown by (9) and (10), on the as-
sumption of the independence of the parameters cz, h, and
k from X. This model can explain well many sets of ex-
perimental data of various wild-type systems.

For example, logarithmic plots [10] revealed that the
data in the mammalian gene targeting [7] appear to be on
a line, of which the slope is around three (see Table I for
the confidence interval). Thus, we found that the non-
linearity reported in this system can be explained well by
the X dependence. On the other hand, two sets of data
in the microbial systems [5,6], also listed in Table I, were
originally reported to show linear dependence above a
"threshold length, " below which the frequency drastical-
ly decreases (probably because the parameter indepen-
dence mentioned above becomes invalid [10]). Their log-
arithmic plots [10] revealed that the N dependence
and/or the linear dependence can explain well these data
above the threshold length.

The present work has revealed that we can explain the
data of the wild-type systems not only when y=0 but
also as far as y is small enough. Suppose that y is less
than -0.1, for example. Noting N, ~1 then, we find
from (38), (56), (60), and (63) that the N dependence ap-
pears for 1 «N « 1/&h and the linear dependence ap-
pears for I/&h «N. These results are the same as ob-
tained under y =0 [see (9) and (10)].

In practice, we can estimate y frown the experimental
data by the following inequalities. When not the X
dependence but the X dependence is observed above the
length N&, we may have from (61)
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B. Comparison w ith experiments

Assuming that o, , h, and k are independent of N above
the threshold length, we compare our present model with
some of the experimental observations that were analyzed
earlier on the assumption of y=0 [10]. For each of the
experimental systems, assuming that the frequency is pro-
portional to a power of the homology length within a
length range, we calculate the least-squares linear-
regression equation in the logarithmic representation, as
in Ref. [10]. The confidence interval of the slope of the
equation, i.e., the confidence interval of the v value, is
also calculated with 95%%uo confidence. The relevant values
are listed in Table I.

1. $Vild-type systems

—X 10, i.e. , h ~ NU X 10
h

(66)

For the system now considered, we have 2VU =90, which
leads to h 510 (Table I). The linear-dependence por-
tion should be expressed in the logarithmic plot by

log&oH = log&oN+ log&oker (67)

where we used (38) and N ))I/+h. This leads to a ka
estimate of —10 (Table I). Assuming that the v value
of the nonlinear-dependence portion is —3.0, which is
near the center of the confidence interval, we can use (12)
to estimate h because of (60) and (63). N,„=90 leads to

a. Mammalian gene targeting. Let us examine the sys-
tems of Ref. [7] (Fig. 5 of Ref. [10]). Because the narrow
confidence intervals of v contain three (Table I), the N
dependence explains well these data. Thus, considering
(60) and (63), we can use (12} here to estimate
h (N„) 1.5X10 ). Comparing the logarithm of (56)
with each regression equation, we can estimate k n.
Thus, the estimates of h and km obtained by the
logarithmic-plot method (see Sec. III) in Ref. [10] need
not be altered.

The X dependence is not observed beyond 2800
( =N& ) in the isogenic system. Thus, (64) leads to
y &0.99995. A similar y estimate can be obtained for
the nonisogenic system (N& =3000; Table I).

b. Bacteriophage recombination. For the system with
wild-type strain of bacteriophage T4 of Ref. [5] (Fig. 6 of
Ref. [10]), the narrow confidence interval of v contains
three (Table I). Thus, as in the mammalian gene target-
ing systems, the estimates of h and ka obtained by the
logarithmic-plot method in Ref. [10] need not be altered.
Substituting Nt =65 into (64) yields a y estimate (Table
I).

c. Plasmid-bacteriophage recombi natron by bacterial
function. In the rec system of Ref. [6], both the non-
linear dependence and the linear dependence appear to be
shown above the threshold length (Fig. 7 of Ref. [10]).
The v value of the nonlinear-dependence portion is rather
unclear judging from the wide confidence interval (Table
I).

When the linear dependence is not observed below the
length NU, we may have from (60)

where the variables y and h of the function A, were explic-
itly described [see (34) and (41)]. Since A, moves from uni-

ty to zero as y moves from zero to the unity (Fig. 3), (68)
gives an estimated lower limit of h:

(69)

where the equality holds only when y=0. Let us write
ho for the RHS above, i.e., the h estimate obtained by the
linear-plot method under y=0 (see Sec. III). The regres-
sion equation of the supposed linear-dependence portion
(90 N ~405) in the linear plot of this rec+ system is
found to be 3.5 X 10 (N —24} (correlation coefficient:
0.93), which leads to ho =7 X 10 [10].

Equation (68) also gives
—2

2 =A, ho. (70)

Since (41) gives

de BA, de y(y —1) BA,~0 and &0,
Bh dh Be dh (y —1 —e)~ By

we can obtain an estimated lower limit of A, if we find es-
timated upper limits of h and y. The former is given by
(69). Substituting the lower limit of A, into (70) gives an
estimated lower limit of h.

To proceed with our discussion, suppose again that the
nonlinear dependence of this rec+ system has v=3.0.
We have y (0.994 by substituting Nt =27 into (64). This
y estimate appears useless because y~1 by definition.
However, it helps in estimating A, because of the in-
sensitivity of A, to y discussed in Sec. V B 1; (71)
gives A, (y, h)) A.(0.994, 7X10 )=2X10 '. Therefor,
(69)—(71) give 10 + h 5 10 . The h estimate of —10
from the logarithmic plot is better than this estimate.

d. Gene transferred to mammalian cells. The
nonlinear-dependence portion is observed in the systems
of Ref. [15] (Fig. 8 of Ref. [10]). Taking NU =200, we es-
timate h with (66) (Table I). Strictly speaking, neither the
ka estimate nor the y estimate can be obtained because
the v value of the supposed nonlinear-dependence portion
is unclear (see Table I for the wide confidence interval).
However, if we are permitted to assume that the data of
56 X + 214 show v= 3.0, a value near the center of the

an h estimate of 10 &h &10 . Comparing the loga-
rithm of (56) with the regression equation for 27 ~ N ~ 90,
we obtain a better h estimate of —10

Let us estimate h and ka from the linear plot of the
frequency against the homology length shown in Ref. [6].
The slope of the linear-dependence portion is, irrespective
of the y value, given by ka [see (38)]. Naturally, this
gives the same kn estimate as described above. Since the
N intercept (N,„,), much larger than unity in usual bio-
logical systems, is given by (40), we have

—2

(68)
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confidence interval, we can obtain a ka estimate by com-
paring the logarithm of (56) with the regression equation,
and a y estimate by substituting XI =56 into (64) (Table
I).

2. Mutant systems

In an experiment with a bacteriophage T4 61 mutant,
the threshold length is thought to be 50—55 bp [5] [Fig.
8(a)]. We have v=1.7—2.2 for 55~%~204 (Table I). In
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FIG. 8. Experimental data. (a) Homologous recombination
in 61 mutant of bacteriophage T4. Logarithmic plot of Fig.
3(c) of Ref. [5]. (b) Homologous recombination between bac-
teriophage X and a plasmid in recBC mutant of E. coli (JC5519).
Logarithmic plot of Fig. 6(b) of Ref. [6]. Vertical axis: frequen-

cy of the homologous recombination; horizontal axis: homology
length (bp). The dotted lines indicate the regression lines (Table
I}. Lines edith slopes of unity, two, and three are shown for
reference in the bottom right.

an experiment with a recBC mutant of E. coli (JC5519),
the supposed threshold length is 44—90 bp [6] [Fig. 8(b)].
We have v= l. 5 —2.0 within 90 & N + 405 (Table I).
These two sets of data in mutant systems show approxi-
mately N dependence, i.e., v=2. 0, above the threshold
length.

In the model under y=0, such dependence can only
appear transitionally between the N dependence and the
linear dependence. This transitional dependence does not
seem to explain well the data in the mutant systems for
the following reason. From (8), v should change
significantly as N becomes, say, twice when N=N„be-
cause of the hyperbolic function. Thus, the transition
from the N dependence to the linear dependence is rath-
er sharp, as shown in Figs. 6(a) and 7(a). Such a sharp
transition is hard to see in Fig. 8, however.

For a similar reason, we cannot regard the approxi-
mate N dependence in the mutant systems as depen-
dence appearing transitionally between the N depen-
dence [see (56)] and the linear dependence [see (38)] in the
present model. The departure from the linear depen-
dence should occur because the approximations of
tanh(X+h /2) = 1 and cothXO= 1 in (8) and (36) become
insufhcient as N becomes small. Because of the hyperbol-
ic functions, v should change significantly as N becomes
twice when N =N„, as in the model under y =0. Such a
sharp transition from the N dependence to the linear
dependence is shown in Figs. 6(b) and 6(c), while hard to
see in Fig. 8.

According to the present work, the N dependence
portion can be observed within a wider length range for a
large reliection coeIIicient [see Fig. 6(e)]. Thus, the data
of these mutant systems can be explained better by large
reAection coefficients than by the transitional depen-
dence. As discussed below, it is biologically possible that
the mutant system has an aberrant intermediate structure
less fragile than the wild-type system.

a. Bacteriophage recombination. Let us examine the
T4 61 mutant system in Ref. [5] [Fig. 8(a)]. The 61-gene
product is a primase, an enzyme necessary for the syn-
thesis of primer RNA for the first round of DNA syn-
thesis. Its absence leads to elevation of recombination
[16]. There have been two proposals for this hyper-
recombination. One proposal is that single-stranded re-
gion at the replication fork that persists for a long time in
the absence of lagging strand synthesis pairs with a
homologous duplex DNA [17]. The other proposal is
based on the binding of a 41-gene product, a helicase, to a
61-gene product to form the primosome. The unbound
form of a 41-gene product might generate a single-
stranded DNA with 3' end by helicase action [18]. In ei-
ther case the invasion of the single strand will generate a
branched structure that may reAect well at the ends of
the homology. In contrast, we think that the wild-type
T4 system [5], discussed in Sec. VI B 1 b, has such a fra-
gile branch point as a paranemic joint, which should be
easily destroyed at either end.

Because the N dependence is observed for
6S +N ~ 137 in the wild-type system and the N depen-
dence is observed for SS ~ N ~ 204 in the mutant system,
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we can estimate from (58) that y is larger in the latter
system than in the former system. As a numerical es-
timation for the mutant system, we obtain 0.7 & y by sub-
stituting N„=204 into (65). Substituting NU =204 into
(66).yields h 510 . Considering v=2. 0, the constant
term of the regression equation ( —5.6; see Table I)
should coincide with the constant term of the logarithm
of (54), i.e.,

hka
glo 2(1 )y

(72)

for
2&n &m —1, m+1&n &N —2;
x2 —xi =(1+h —y)xi,
xm+) xm xm xm )+Axm 1

0—xN, —xN ~+(1+h —y)XN

Summing up the above equations, we obtain
N —2

0=(1+h —y)(xi+XN i)—1+h g x„,

(Al)

(A2)
Though this gives information about values of the param-
eters, neither an upper nor a lower limit of a ka estimate
can be derived because no estimated range of h /( I —y ) is
available.

b Pla.smid bacte-riophage recombination by bacterial
function Le.t us examine a recBC mutant system
(JC5519) in Ref. [6] [Fig. 8(b)]. Efficient refiection of the
intermediate at the ends of the homology is in harmony
with the present biochemical picture of homologous
recombination in recBC mutant of E. coli [4]. In the ab-
sence of exonuclease V, the recBCD gene product, homo-
logous recombination is dependent on recA, recF, and
other proteins. Recombination is initiated by pairing of a
single-stranded region of DNA with a homologous du-
plex DNA by recA protein with stimulation by recF and
other proteins [19]. This reaction does not need DNA
degradation and generate a branched structure. RecA
protein can form a Holliday junction from suitable sub-
strates [20,21]. The branch points of these intermediate
forms should be able to be rejected at the ends of the
homology. In contrast, in the wild-type E. coli [6], dis-
cussed in Sec. VIB1c, recombination is mediated by
recBCD exonuclease and recA protein. It is possible that
coupling of exonuclease action and homology search is
sensitive to the presence of heterology [4].

If we are allowed to assume the 1V dependence for
27 & E & 90 in the wild-type system in spite of the wide
confidence interval, we can estimate from (58) that y is
larger in the mutant system than in the wild-type system.
As a numerical estimation for the mutant system, we can
estimate h and y by substituting NU =405 into (66) and
by substituting N„=405 into (65), respectively (Table I).

which is combined with (17) to yield (19) in the text.

APPENDIX B

x„+i
—gx„=ri(x„—gx„, )

for
2&n &m —1, m+1&n &N —2;
x2 —/xi =(g —y)x, ,

x +i —gx =g(x —gx, ) —1,
XN —i AN —2 P Y k)XN —1

which yield

x„—gx„,=g(x„,—gx„2)=

(x~ —gx, )

(g —y)xi for 2~n ~m,
1

X„+i gx„— (X„+2 gx + i )—
7l

N —n —2

(XN —1 AN —2)

(B1)

(B2)

N —n —2

Here we omit the superscript (m) of x„' ' for simplici-
ty. Using g and g, defined by (20) in the text, we can
write (18) as
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APPENDIX A

Xn (g —y)x,

g —1

xn —i

n —1

(g —y)x,

g —1

'n —1
X)

which leads to

for 2&n &m, (B4)

First, with the aid of (22) in the text, we obtain from (B2)

Here we omit the superscript (m) of x™for simplici-
ty. We can write (18) in the text as

Xn+) Xn =~n ~n —i+ "~n Second, we obtain from (B3)

for 1&n &m . (B5)
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1 (y k}xN —1 +n+1 1
n+1

N —n —1 'N —1

1 for m ~n ~N —2, (86)

which leads to T—S=(1 r—)(g N 1
—

ygN p+g1) &0 . (C6)

9pN —n N —n gN
—n —1 N —n —1

7l
+N —1 y '9

+N —1

When i/h &1, (C4) yields S&0 because N »1. With
the help of (C4) —(C6), (C2) yields (33) in the text.

Equations (85}and (87) give

for m «n & N 1. —(87) APPENDIX D

When 3/16 & y & 1, we have
gm m

pm
—1 m —1

I
gN —m N —m gN

—m —1 N —m —1
rl

XN —1 XN 1 ~

(88)

Nb(y) «N, (y) .12y
1 —y

In this y range, suppose N «Nb(y). Then, (52) in the
text gives

On the other hand, substituting (82) and (83) for n =m
into the third equation of (81) yields

N —m —1

1

'9 .
(y —g)xN 1=i) '(i) —y)x, —1 . (89)

Combining (88) and (89) produces (24) in the text.

APPENDIX C

With the help of (21) and (22) in the text, we find

g„+,—(2+h)g„+(„,=0 .

Using this equation, we can write (25) as

F(N, y ) =(N —1)—2(1 —y) S
h T '

where S and T are defined as

S—:hgN 1+(1—y)( —gi+gN, —
gN ~),

T= AgN =h gN 1+—(1—y ) I 2$N, —(1+y )gN

(C 1)

(C2)

where A is defined by (48) in the text. Since h & 0, gi) = 1,
7)&1&( and 0&(, &gz& . [see (20) —(23) in the text],
we find

S & h 0N —1 gl+( 1 r )(SN —1 SN —2)

&(g—i1)Ih(gN 2+gN 3i)+ +pi) +i) ) —1]

2yN' N, (r }

Nb(y) 3(1—y) N

3

N, (y)1+

+3
F(N, y)=h =F(N, O} .

12

On the other hand, when 0 «y «3/16, we have

Nb(y) «N, (y) & &1.85 .
&12y
1 —y

(D4)

Thus, (51) in the text and the condition of Sec. V 8 2, i.e.,
1 «N «1/Vh, yield

+2
=h when N «N, (y) . (D3)

2(1—y)
The conditions in which (D3) holds are 1 «N «1/i/h
(the condition of Sec. V 8 2), 3/16& y & 1, N «Nb(y),
and N «N, (y ). In order that N satisfies the first and the
fourth, y must be larger than 17/20 [note
N, (17/20)=10], and then Nb(y)&N, (y). Thus, the
conditions are reduced to the first and the fourth, and
(54) and (55) in the text are derived. Note that we do not
have to consider an approximate expression of (D2) for
N, (y) «N «Nb(y). This N range never exists because
Nb(y )/N, (y )=4y/3 &4/3.

Next, in the range of 3/16 & y & 1, suppose
N, (y ) «N. Then we deduce from (51) in the text

&(g—i)) h —1
2

(C4)
~3

F(N, y)=h =F(N, O) .
12

(D6)

T & h(N, +2(1—y)(gN 1
—

gN 2) &0, (C5) From (D4) and (D6), we obtain (56) and (57) in the text.
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