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The important role played by noise in retrieving memories in a network is discussed. Two-stage an-

nealing is proposed to retrieve memories stored in a neural network. The network, undergoing two-stage
annealing, behaves like a nonergodic system, and the noise helps the network to select memory inside a
local region in which the initial stimuli drop. Theoretical and numerical results of two-stage annealing
are presented, and some further possible applications are pointed out.

PACS number(s): 87.10.+e, 05.40.+j

I. INTRODUCTION

The human brain is extremely superior to a digital
computer at many tasks. It is not only much faster than
any artificial intelligence (AI) system, but also very robust
and flexible. During the last two decades, an explosive
growth of experimental and theoretical efforts toward a
better understanding of the behavior of such a complex
system as the human brain has been made. One of the
major impulses was the recent conception of the
memory-content addressable (or associative) memory
proposed by Hopfield and others, which accounted for
the collective behavior of large interconnected neural net-
works. In these models, the information is stored in a
system by changing the interaction between neurons such
that the system has local stable points or attractors which
represent the information stored. The retrieving process
starts from a point of the state space of the system, which
represents a partial information of the memory; then the
time evolution of the system brings it to the attractor
representing the complete information. This totally
different idea from types of memories such as notebooks,
disks, etc., which can only be retrieved under the super-
vision of a list, index, or by specific instructions, seems
much closer to human brains, and provides a general
model for pattern recognitions, control problems, and op-
timizations. Many authors have studied, analyzed, and
generalized this model, and for more details the reader is
referred to [1—6] and the references given therein.

As many authors have pointed out, noise is inevitable
and even necessary as a random driving force [2—3,5 —8].

'On leave from the Department of Probability and Statistics,
Peking University.

However, as a general result in mathematics we know
that under the perturbation of any slightly time invariant
noise, the system goes to states with the same distribu-
tion, no matter where it started from; i.e., the system is
ergodic. Therefore, it seems that the model is very unro-
bust under random perturbations, and this is just oppo-
site to the way the brain works. A natural question, then,
is how the ergodicity breaks down. Amit [2] considered a
system with infinitely many neurons, and took different
phases instead of stable attractors. Therefore, the infinite
system could be nonergodic under the assumption of the
symmetry of interaction between neurons. However, in
this way, the memory capacity of the system seems rela-
tively too small with respect to the size of the system, and
the assumption above seems to be too restrictive.

Since noise provides a chance for the system to be able
to "jump out" of local minima traps, decreasing of noise
is used in the optimization program, i.e., by simulated an-
nealing techniques. A more striking innovation by
Lewenstein and Nowak [9,10]—that for allowing the
model neural networks systematically to adjust their own
precision and noise level controlling —is successfully used
during the dynamical evolution of the system.

In this paper, we aim to account for the role of noises
in general network systems. In fact, the noise is not only
a perturbation but also a controllable driver for the sys-
tem breaking down the ergodicity and evolving at a
diferent precision.

We are naturally curious about why and how this
mechanism works so well. Is there any basic general rule
behind these phenomena? What parameters of the sys-
tern would determine its different limit behavior? Let us
consider two models.

(I) A system of N two-state neurons, the state of the ith
neuron being denoted by a variable x (i) which takes the
value 1 when i is firing and —1 when it is inhibited. A
state x of the system is a variable, taking values in the set
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of vertices of an N-dimensional hypercube X= [
—1, 1]

In the deterministic, noiseless case, the evolution of the
system starting in a state x=(x(1), . . . , x(N))HX is
governed by a parallel discrete time threshold dyna-
mics P on X, which is generated by neuronal
interactions through a given firing function
H(x)=(h(x)(i);i=1, . . . , N), in accordance with the
threshold conditions

h(x)(i)= —,
' g w, x(j) 8(—i),

J
(1.2)

where w;~ , 8(i.) are given real values i,j =1, . . . , N, cf.,
e.g. , [1—3, 9, 11].

The stochastic dynamics of the above system is defined
by the following transition probability for a Hip of the ith
neuron from x (i ) to y (i):

P[y(i) =1]= 1

1+exp[ —2Ph (x)(i ) ]

fromprobabilityand the transition
y =(y(1), . . . , y(N)) is

N
P (P) = g {1+exp[ —2Py(i)h (x)(i) ] ]

(1 3)

x to

(1.4)

where P & 0 is the inverse temperature which can be
thought of as a quantity related to the concentrating level
of thinking or attention [12].

(II) For the case of a continuous model, we consider an
ordinally differential equation (ODE)

dx, ldt=f(x, ), x, =(x,(1), . . . , x, (N)),
or a difference equation

x„+,=x„+F(x„),

(1.5)

(1.6)

as, e.g., in [13,14,8], where f and F are two given E-
valued measurable functions.

The random perturbation of (1.5) by a white noise can
be the stochastic differential equation (SDE) (called the
Langevin dynamics in physics)

dx, =f(x, )dt+edw, ,

(more generally in the case of a colored noise)

dx, =f(x, )dt +eo (x, )dw, , (1.8)

or

x„+,=x„+E(x„)+eg(g„), (1.9)

where w, is a Brownian motion on E, g„ is a E -valued
noise, e is a non-negative constant, and o. and g are two
real-valued measurable functions on R .

In Sec. II, examples of form (I) are discussed. By a
suitable n-dependent choice of P the detailed limit

Px(i)=8(h(x)(i)), i =1, . . . , N,
where 8(u) is the step function (taking the value 1 if
u & 0, and —1 otherwise).

For example, when the interaction acts pairwise be-
tween neurons, we have

behavior of the system is analyzed.
In Sec. III, a two-stage annealing model is discussed.

It is shown that by a suitable n-dependent choice of the
temperature, P(n) =y ln(n+no), with y the cooling rate,
P(0}=y ln(no), no & 1 the initial inverse temperature:
there exist a series of critical positive values

'V&&/z« ' ' '
Tq

and the asymptotes of the system are described by
different attractors. In fact, the y s characterize the
costs for transitions among configurations and attractors
if the system is reversible. In general, they are deter-
mined by the action functional (i.e., the Lagrangian)
among configurations of the system, and essentially by
the firing function and the interactions. In fact, attrac-
tors associate with each other differently at different in-
creasing rate y's of the inverse temperature. When
y) y, all basins of attractors become separate (distin-
guishable}; i.e., they are not reachable from each other
with nearly probability 1 as the initial inverse tempera-
ture P(0) is large enough (see examples in Sec. II). This
behavior is very close to that in the deterministic dynam-
ics. When y becomes smaller and the initial inverse tem-
perature is large enough, some of the transitions become
active in the sense that starting in the basin of the ith at-
tractor the process will almost surely reach the jth attrac-
tor at some later time. Finally, when y is small enough,
all transitions are active and the system becomes an er-
godic one; that is, the limit behavior of the system is in-
dependent of its initial condition. This corresponds to
the case of simulated annealing. Hence we can put at-
tractors and their basins on a net tree: y&y& corre-
sponds to its root and y & yq to its top.
0 & y i & yz « y are its branching nodes (see also
examples in Sec. II). The precision of memory retrieving
or pattern recognition can be controlled by y. This pro-
vides a model and an explanation of the association of a
content addressable memory. In fact, the interaction of
the network contains not only the simple association of at
tractors and their basins, but also the association among
diferent attractors in different y levels

In Sec. IV data of computer simulations are presented
as a support to our theory. In Sec. V, we will give some
discussions on this theory. Some possible applications
are discussed.

II. EXAMPLES

The dynamical system perturbed by a noise can be
represented as a finite state Markov chain. For simplici-
ty, let us consider only attractors and neglect their basin
in the simple examples of this section (see remark 1 of
Sec. III for how to obtain examples in this section from
the general models defined in Sec. I). Assume the transi-
tion matrix at time n is

P(P(n))=P'" "+"(P(n))

=[p;,(P(n))]; J=,
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where S is the number of states (attractors). We assume
that the noise level decreases as time goes to inanity, i.e.,
P(n)=y ln(n+no) for the nth step transition, where
no) 1.
Example 1. Assume that the transition probability ma-
trix at time n is of the form

e 1 l j,
—f, P(n)

p, .(P(n) }=,e ' if j=S,
—f, p(n)

e
j~S—1

1 ~i, j +5—1

iAj
—F,.P( n)—e ' ifi=j,

where f; and F, are positive numbers such that Fs, » F, &0. For f1 suSciently large with respect to Fz, (for
alii,j =1, . . . , S—1), we have

P(P(n) }=

—F
1 p(n )

1 —e ' +e
—F,P(n) +Q

)fC
~ ~ ~

)fC ~ ~ ~

1

—F P(n)

2
—F P(n)

+4 e
p(n) —F P(n)

—P(n)F
1 e + g e ~ ~

—P( n)F
1 —e ' '+e

where e represents 0(exp[ 13(n)F&—, ]), and and

1 1 0 . 0
1 0 1 . 0

0 . . 0 1

~ ~ s 0

1 0 0 . 1

1 0 0 . 0

0 e ~ ~

Therefore, the m-step transition matrix is

/ F(P(n))=U
n=1

—P(n)F,
(1—e ')+e

n=1

m

1=1, . . . , S 1~ and

1
y g 1

1 n=1

(1) When y(y, =1/Fz „we have yF; ~yFs, (1, Then the I-step transition matrix has the limit
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m 0
lim g P(P(n)}=U

m —+ oo

Q ~ ~ ~

Q ~ ~ ~

Q . . 4

(2) When yk..=Fs I —&'7&'Yk+t:=Fs I——I }'s
and k =1, . . . , S —1 we see that

1&yFs—

&yF, , (Vi &S—k) - g (1—e ' )=0,
4

0 4 ~ 4 Q

0 4 ~ ~ Q
1&XFs —k

n=1

0 4 ~ ~ 0 ] &yF„(Vi &S—k)

and this means the system always goes to the last attrac-
tor no matter where it starts from. The system is ergodic.
This is actually the case of simulated annealing for the
optimization procedure.

— Q (1—e ' )=a;(p(0))&0 .
—F,.P( n)

n=1

Therefore we have

0

m

lim g P(P(n)) = U
m~oo

0
as A(P(0))

0

s-I(p(0))

0
k(p(0)) 0 k(p(0) )

0

0

0
as, (P(0) ) 1 —as, (P(0))

0 1

—F
l p(n)

e ' +~
—F2~ n —F2

1 —e ' +e e ' l+e
p(p(n))=

In this case, only when the system starts from the first and (n —k —1)th attractor will it end up at the last attractor.
With positive probability as «(P(0) ), . . . , as, (P(0) ), the system remains in the same attractor it started from. More-
over, the probability a, (P(0) ),i & S—k will be nearly 1 as P(0) is large enough.

(3) We put the attractors together, according to the limit behavior, as y goes to infinity, and we obtain a net tree as in
Fig. 1. Attractor S is the strongest one; when @1&y & y2, only attractor S—1 is distinguishable from attractor S and
all the others will join attractor S. As y becomes large, more and more attractors are distinguishable. Only when y be-
comes very large, as y & ys 1, does every attractor become distinguishable with positive probability.
Examp/e 2. Assume that, as n —+ ~,

—Fl p(n)
1 —e ' +e )fc ~ 4

—Fs~(n)s

FS —lP(n)
e +e

Fsyn)
1 —e +4

where

0&F1 F2 « ' Fs &

the transition probabilities at e being o(exp[ p(n)Fs ] }. —

Set

1
y k=1, . . . , S—1.

s —k
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S-1 8-1

S-2

FIG. 1. i inside a circle is the ith attractor. FICx. 2. i inside a circle is the ith attractor.

When y &y1,

0 . . 0 1

as m~~ and then p(0)~~; when y)ys ), m~~
and then P(0)—+ ao,

P(P(n) )
n=1 0 0 1

as m ~~ and P(0)~ ao; when pk (p (pk+(,
1 0

m 0
g P(P(n))~
n=1

~ ~ ~ Q

0

0 ~ ~ o 0 1 0 ~ ~ ~ Q Q ~ ~ ~

g P(P(n))~ 0 0
n=1

1 0
1

~ ~ ~ Q

This limit behavior is the same as for deterministic dy-
namics. The net tree is shown in Fig. 2.
Example 3. If F1 =Fp= . . =I'z=.I", and the transition
probability matrix is the same as in example 2,

P(P(n)) =

—e p'n'+ g

e
—FP(n) +

e
—FP(n) +

1 e
—Fp(n)+ + e

—Fp(n)+

—FP(n) +
1 —e FP(n)+ q

e
—FP(n)+i(2m/5) +

~ ~ ~

e
—Fp(n)+ i[2(S—1)~jS]++

where Uis a Vandermonde matrix independent of p(n), and e is o(exp[ p(n)p]).—gn this case, we ha~e
m

hm g P(p(n))= lim
m —+ oo

0 0 ~ ~ ~ 0

XU

0 + (1—e P(lt)+((2w/S)) p
n=1

0

0 0
n=1
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When y ( 1/F, the limit matrix is

n n

n n

and this means that the limit behavior is independent of the initial values.
When y & 1/F, the limit behavior is the same as for the deterministic dynamics, that is, the limit matrix nearly ap-

proaches the identity matrix when P(0) is large enough.
Example 4.

P(P(n)) =( AB ),
where A equals

—F3p(n)
1 —e ' +e

—F3p(n)
e +4

—F2p(n)
e ' +e

—F3p(n)
e ' +e

F3p( n ) F2p( n )
1 —e 3 —e 2 +4

—F,P(n)
e ' +e

—F3p(n) —F3p(n)
1 —e ' +e e ' +e

—F3p(n)
e +4

—p(n)Fl
e '+e

and B is

—p( n)F3
1 —e '+e

—F3p(n)
e +4

—F2p(n)
e ' +e

—Fl p(n)
e ' +e

—p(n)F3
e +4

p( n )F3 p( n )F2
1 —e ' —e '+e —p( n)F2

e '+e
—F3p(n)

1 —e ' +e
—p( n)F3

e '+e

—p(n )F3
e 3+g
F3p( n ) —p( n)F2

1 —e —e +4

—F3P(n) —P(n)F2 —P(n)F )for C=1—e ' —e ' —e ', e being
a[exp( PF&)], and F& &Fz &F3—. Let y;=1/F;, i =1, 2,
and 3.

When y & y3, the limit matrix [in the limit that n ~~
first and then P(0)~ ~] is the identity matrix.

When y2 & y & y3,
A 11 A 12 A 13 A 14

m A 21 A 22 A 23 A 24
lim lim Q P(P(n)) =

p(Q)~ oo m ~ oo A31 A32 A33 A34

A41 A42 A43 A44

with A»=A22=A33 A44 21, 1 being the 2X2 ma-
trix with all elements equal to 1, and 2; and i' being

identical to zero 2 x 2 matrices. when y1& y & y2,

B11 B12
lim lim + P(P(n)) =

p(0)~~ m~oo 21 22

with B11=B22 = 41 1 being the 4X4 matrix with all ele-
ments equal to 1, and B,2 =B2,=0. When y & y „

lim lim Q P(P(n))= —,'1,
p(p) ~ oo m ~ oo

where 1 is the 8X8 matrix with all elements equal to 1.
The net tree is shown in Fig. 3. Only when y &y; does
the transition path under line y; become active.
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5 S 7 8 N
P (P(n) )= Q I 1+exp[ P—(n)F(x, y, i ) ] I (3.1)

at time n, where

F(x,y, i )=2y(i)h(x)(i)%0, Vx,y HX, i =1, . . . , N .

For P(n) = ~, n & 1, we define

1 ify=Px
0 otherwise,

FIG. 3. i inside a circle is the ith attractor.

III. TWO-STAGE ANNEALING

Let I g„j be the Markov chain with the transition prob-
ability from configuration x-y defined as in Sec. I,

where P is given by (1.1). Therefore the Markov chain g„
is a random perturbation of the deterministic dynamical
system P.
Definition l. A set A = [x„.. . , x~] CX is called an at-
tractor of g„ if

Px;=x;+), i —1, . . . ,p

where xz+&..=x&. The attractive basin of an attractor A

of g„ is dered by

B( A ) = Iy EX,2np, yp =y,y, EX, . . . ,y„EXy„EA satisfying Py; =y, +„i=0, . . . , n p
—1] .

The definition of the attractor and attractive basin is
coincident with the usual definition of the attractor and
attractive basin for a deterministic system [6,3]. Let
A „.. . , As be the set of all attractors of g„.

Let y be the cooling rate such that P(n) =y ln(n+np)
for np & 1, and set

F= min F(x y),
x,y EX,x@y

F(x,y )%0

F= max F(x,y ),
x,y EX,x/y
F(x,y)40

(3.2)

for i = 1, . . . , S. We call the limit procedure

lim lim
p(p)~~ n~~

a two-stage annealing, similar to the concept that first ap-

where F(x,y)=g;[ F(x,y, i )] V—O. For y & 1/F,
P(0}~ ao, and n ~ ao, it follows easily from the definition
that the system behaves nearly as in the deterministic
case:

1 if x HB(A, )

hm hm P(g„EA;~gp —x)—
0 'f gB(A )

peared in the paper by van Hemmen et al. [15]. For
y & 1/F, there exists a subset A p of U P, A; such that

lirn lim P(g„E- Ap~gp=x)=1
p(p) ~ oo pg ~ oo

for all x HX. The limit behavior in this latter case is thus
independent of the initial states and we have ergodicity.
This property has been successfully used in the simulated
annealing. More interesting is what happens when
1/F & y & 1/F, as we discussed in Sec. II.

Let r( A ) be the first hitting time of a set A. We have
the following bifurcation phenomena; see [7,16—18] for
proofs and discussions.
Theorem 1. There exists a sequence ofpositive numbers

y0=0&F y1&yp« ' '
yq =y

such that for any y„,&y &yk, k =1, . . . , q+1 all at
tractors are divided into groups:

+1k~ . . ~ s kk~

R& k. . .R, k. are finer than R, k, . . . , R, k if k'&k.
Furthermore, for x EX,

(i) lim lim P[r(A ) & ~~gp=x]=1 if A ER;k and x EB(A'},A'FR, k,
p(Q) —+ oo yg~ oo
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(ii) lim lim P[r(A")= ~ ~go=x]=1 if A" ER,. z and x EB(A'), A'ER;z,
P(0)~ oo n ~ oo

1 if xEB(A), A ER, i,
(iii) lim lim P(g„ES"R,. & ~$0=x )= '0

P(0)~~ n~~ 0 otherwise,

where 4 R; is a subset of R; & and defined in theorem 2
below, and A, A ' and A" are attractors.

Theorem 1 shows that the system is not ergodic as a
whole [(ii) of theorem 1], but that there is a kind of local-
ly ergodic phenomena: inside each R; & the system is er-
godic [(i) of theorem 1]. Although it will finally stop in a
subset of R, z, i.e. , 4"R; &, the process visits each attrac-
tor in R; & [(i) of theorem 1]. When the process is reversi-
ble, the subset S R; & is just the set of all attractors which
attains the global minimum of the energy inside
U „~z B(A). Therefore, theorem 1 describes the phe-

i, k

nomena of local annealing.
Since R, I,.. .R, I,. are finer than R l I„.. . , R,

k' & k, each R,. & is a union of some R. &.. . . . .R. I... and

we can think of R; I, has having j,. branches. We can put
these branches on a tree such that
R, I„i=1,. . . , s&, k=1, . . . , q are its branching ~odes
and the root is X, and its top leaves are all basins of at-
traction, the kth layer of nodes being Rl &, . . . , R,
This tree shows that at different levels of cooling rate y
the system cooperates with different scales. As the cool-
ing rate y changes, the noise drives the dynamics to visit
different groups of attractors.

I'=0, . . . , n —1 .

Assume that all attractors of g„are A i, . . . , Az,

(i) (z)Ai {xi ~ ' ' ~xkiii j) i —1, . . . , S

Define

(3.3)

In examples 1, 2, and 3 of Sec. II we showed that
4 R; & is a unique attractor of the process for all k. So
we are able to take the attractor to represent R; & [see (iii)
of theorem 1]. Also, trees among R; z are trees among
the attractors which are given in Figs. 1 and 2. In exam-
ple 4, 4 R; i, =R,. &, Vk. The tree of example 4 (Fig. 3) is
among R; I„which is different from that of examples 1, 2,
and 3.

R; i„4"R;i„yi„ i = 1, . . . , si„and k = 1, . . . , q in
theorem 1 are determined by F(x,y, i) as follows: Sup-
pose that a function H(, ) is defined on a finite set
A X A. For a, b E A we say that b is reachable from a at

h

height h [with respect to H(, )], writing a~b, if there
exists a sequence ao=a, al H A, . . . , a„,E. A, a„=b
such that

H(a;, a;+, ) =H, =min H(a;, c ) ~ h,
cE A
cuba, .

T'"(i,j )= min min
1 ~m ~k(i) x& EB Ai ' ' ' ' ' n —l&B( Ai

n-lxl
n J

n —l

F(x",x, )+ g F(x„x,+i)
t=1

if i Aj and T' "(i,j ) =0, and if i =jwhere i,j H {1, . . . , S j, ~
~

is the cardinality of a set.
Let

R, i=A;, i E{1,. . . , Sj,
T'"= min T'"=yi=1, . . . , S

Si(U,.~&R; i)= U,.~&S,R;,= U,.~&A; for any set JC: {1,. . . , Sj .

(3.4)

Note that where T;"' and T "', k =2, . . . , Sbelow are defined according to (3.3) with h = ~.
Assume that we have defined R; z, y~ &+i=(T'"') ', T'"'(i,j ), i,j =I, . . . , s„; then we define R;„+„y~

T'" "(i,j ), ij = 1, . . . , sz+, by induction as follows:

T(k)

R, „+,={R,„,T,' '& T'"'j U {R,„,j~i j,
and Sz+, is a mapping term from R, z+„i = 1, . . . , sz+, to a subset of {R, z, . . . , R,

(3.5)

Si + i ( U ~gR i i + i ) = U,.~. qadi, + iRi i +

{R,i, j if 3T~" &T"',R;i, &R;i, +i
"+' ' "+' U {RJi, j =R, &+i otherwise,

(3.6)
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where 2 is a subset of [ 1, . . . , sk+ i I.
Without loss of generality, we can assume that all e6'ectively distinct sets defined above are R1 k+1 . . . R

Define

max T +J
RJ k CRi, k+1T(k+1)(i. j)—
0 if i=j

min
R., k CR,. k+)
R. , k CRJ k+1

[T'"'(j ',j ")—T''"'] if i'
(3.7)

where i,j= 1, . . . , sk+, . The physical meaning of
T' +"(i,j ) is that it measures the lowest cost for the
process g'„ to go from attractor 3; to A . When the pro-
cess g'„ is reversible, T'"+"(i,j ) is the lowest energy bar-
rier for the process g„ to overcome to go from the attrac-
tor i to the attractor j. Set

—1 T(k+1)
Fq —k

(3.8)

The following theorem is proved in [7,16—18] using the
large deviation results of Freidlin and Wentzell [19]. An
essential idea is contained in examples 1 —4 of See. II.
Theorem 2. R; k, O'"R; q =/i 4'kR, k, i =1, . . . , sk,
k = 1, . . . , q, and yk, k = 1, . . . , q are determined by the
firing function in terms of formulas (3.4)—(3.8), respec-
tively.

Aiming at a clearer understanding of theorems 1 and 2,
we turn to example 1 of Sec. II. Under the circumstances
of example 1 of Sec. II, by the definition of T"'(i,j ), we
have

if j=S, i&S
(1) ~ ~

f 'f 'AS

for i,j =1, . . . , S,i' and

R;1=i, i=1, . . . , S .

F, if j=S, i&S

f~ if jAS
for i,j =2, .. . ,S,i' and

S, [1,SI=S, Z'"=F, = 1

VS —2

So if ys 2 & y & ys „theorem 1 turns out to be

lim lim P(g„=i ~go='i ) =1
P(Q) ~ oo n ~ oo

ifi =2, . . . , S—1 and

lim lim P(g„=S~goE [1,SI )=1 .
P(Q )~ oo n ~ oo

The above conclusions imply that in this case attractor 1

and attractor S merge together; after taking two-stage an-
nealing, process g„will always go to attractor S, indepen-
dent of whether process g„starts from attractor S or at-
tractor l. Also, process g„will remain in the state where
it started when go

= i, i & 1,S
For the general case k =2, . . . , S —1, we have that [see

(2) of example 1]

i if i=k, . . . , S—1
R [S,1, . . . , k —1] if i =S .

For i,j=k, . . . , S, after a simple calculation according
to (3.7), we obtain that

Therefore

T'"= min T'"=
l

1) ~ ~ ~ i S 7S—1

=F1 .

F; if j=S, iWS

f if 'AS
(k) ~ ~

fori,j =k, . . . , S,i&j and
Theorem 1 now tells us that

lim lim P(g„=i ~go=i )=1
P(Q)~oo n —m oo

[see (3) of example 1] provided that

XS—1&/& ~-
This is exactly the same behavior as in the deterministic
case (P= oo ).

Now we are going to define T' '(i,j), R; z, and T' '.
From (3.4) we see that

i ifi=2, . . . , S—1
R. [S,1I if i =S .

Fori,j =2, . . . , S, (3.7) now reads

S [1, . . . , k —1,S]=Si. . .Sk[1, . . . , SI =S,
T( ) —F 1

k
XS—k

Hence from theorem 1, we deduce that when

ys k & y & ys k+1, yQ=O, and k =1, . . . , S, theorem 1

turns out to be

lim lim P(g„=i ~g'o=i) =1
P(Q)~oo n~ oo

ifi =k, . . . , S—1 and

lim lim P(g„=S~go& I 1, . . . , k —1,S] )=1 .
P(Q)~oo n~oo

The above results tell that in this case the attractor S and
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y '= lim
e'(t )ln(t, +t )

attractors 1, . . . , k —1 merge together. Whenever the
process g„starts from the attractor i,i = 1, . . . , k —1, S,
it will finally go to the attractor S (see Fig. 1).

For the continuous model (II) in Sec. I, we have similar
results concerning its limit behavior and the tree struc-
ture of its attractor: taking the cooling rate such that

0
6.0
6.0
0.5
0.5

17.6
0
9.1

5.7
8.0

19.5
7.9
0

11.3
7.5

19.5
7.5

11.3
0
4.9

TABLE I. T"'(i,j),i,j=1, . . . , 5.

17.6
8.0
7.0
1.1
0

we have a bifurcation as in theorem 1.
Remark 1. It is easy to see that the bifurcation in
theorem 1 can be related to the bifurcations for the fol-
lowing singularly nonautonomous ordinally differential
equations and system of difference equations:

dP(t, t, )—=Q(P(t) )P(t, t, ),
dt

P(n + 1,no ) =P(n, no )P(P(n )),
where P(t, to) [P(n, no)] is the probability matrix at time
t [n] starting from time to or no, and Q(p(n)) and
P(p(n)) are the Q matrix [4] at time t and transition
probability at time n, respectively. The bifurcation hap-
pens for the limit of these equations.
Remark 2. The bifurcation parameters y&, . . . , y can
also be de6ned by the large deviation rate of the corre-
sponding Markov chain or stochastic differential equa-
tion for the stochastic dynamics of the system. This is in
accord with the fact that, as already mentioned, the
proofs for the theorems in this section are mostly based
on the large deviation theory of Freidlin and Wentzell
(see [19,7, 16,17]).
Remark 3. Models of form (I) are usually called synchro-
nous dynamics (Little-type model). Although we stated
our results only for synchronous dynamics, theorems 1

and 2 are true for asynchronous dynamics (Hopfield mod-
els) [17,18].

IV. NUMERICAL EXAMPLES

In this section, we follow the notation of Sec. I and
take P(n)=yln(n+no), and 8; =0, i =1, . . . , ~X~; here

~ ~
represents the number of elements of a set. First, we

TABLE II. M =N22, Nzi +N22 =500, P=M/500, and
no= 1500.

4.5
0
0.0
6.0

233
46.6

6.2
299

59.8
8.0

481
96.2

5.0
18
3.6
6.05

262
52.4
6.3

329
65.8
9.0

495
99.0

5.2
45
9.0
6.1

263
52.6
6.4

345
69.0
10.0

500
100

5.8
172
34.4

7.0
432

86.4

p
r

p

p
r

p

4.5
1

0.2
5.8

193
38.6
6.1

266
53.2
7.0

417
83.4

5.0
17
3.4
5.9

232
46.4
6.2

289
57.8

8.0
478
95.6

5.2
57
11.4
6.0

246
49.2

6.3
299

59.8
10.0

500
100

5.5
108
21.6

6.4
316
65.2

TABLE III. M =N33 N33+N3, =500, 8=M/500, and
no=2000.

TABLE IV M =N44 N44. +N4i =500 P=M/500, and
no =2000.

FIG. 4. The tree structure among five attractors in examp1e 1

of Sec. IV.

y
M
p
r
M
p

0.4
0
0.0
0.52

322
64.6

0.45
48
9.6
0.54

373
74.6

0.48
172
34.4
0.6

452
90.4

0.49
217
43.3
0.7

496
99.2

0.5
253

50.6
0.8

500
100
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TABLE V. M =Nzz, Nz& +IV» =500, P=M/500, and
no =2000. 100

y

p
y

p

0.3
0
0.0
0.52

304
60.8

0.4
3
0.6
0.54

363
72.6

0.46
92
18.4
0.6

455
91

0.48
164
32.8
0.7

496
99.2

0.5
231
46.2
0.8

500
100

60-

40-

TABLE VI. Energies of the eight attractors.

20-

Att.
Energy
Att.
Energy

1

0.5091
5
0.4952

2
0.4989
6
0.5033

3
0.5130
7
0.3875

4
0.502 24
8
0.5134

4 4.5 5.0 5.2 5.8 6.0 6.05 6.1 6.2 6.3 6.4 7.0 8.0 9.0 10.0

FIG. 5. Y=Pin Table II. X=y.

TABLE VII. Overlap of the eight attractors with patterns.

Pat. 1

Pat. 2
Pat. 3
Pat. 4
Pat. 5

Pat. 1

Pat. 2
Pat. 3
Pat. 4
Pat. 5

att. 1

1.000
—0.013
—0.120
—0.026

0.026
att. 5

—0.013
0.066
0.040
0.053

—0.986

att. 2
0.000
0.986
0.800
0.040

—0.066
att. 6

0.026
—0.053
—0.026

0.040
1.000

att. 3
—0.133

0.080
0.986
0.040

—0.040
att. 7

0.466
0.570
0.040
0.000

—0.506

att. 4
—0.026

0.026
0.026
1.000

—0.000
att. 8

0.120
—0.066
—1.000
—0.026

0.026

80-

60-

40-

20-

4 4.5 5.0 5.2 5.5 5.8 5.9 6.0 6.1 6.2 6.3 6.4 7.0 8.0 9.0 10.0

TABLE VIII. Numerical results
n(i)= ( In, :g„E2, ; ~go&B(A„)I ~, i, k= 1, . . . , 8.

for
FIG. 6. Y=P in Table III. X=y.

(0,1)
(o,2)
(0,3)
(o,4)
(0,'5)

(o,6)
(0,'7)

(0,8)

n(1)

1033
0
0
0
0
0

1040
0

n(2)

0
1012

15
0
0
0
10
0

n(3)

0
0

1023
0
0
0
0
0

n(4)

0
0
0

1046
0
0 80-
0
0 60

(o,1)
(0,2)
(0',3)
(o,4)
(0',5)
(0,6)
(0',7)
(0,8)

n(5)

0
0
0
0

1008
0
0
2

n(6)

0
0
0
0
0

1027
0
0

n (7)

0
0
0
0
0
0
20
0

n(8)

2
0
2
0
0
0
0

1019

40

20

0
0.4 0.45 0.48 0.49 0.5 0.52 0.54 0.6 0.7

FIG. 7. Y=P in Table IV. X=y.

0.8
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80-

Similarly, as y&(T' ') '=y, =0.5, after performing
the two-stage annealing, we have

N4i =1[n i.g„C A i lgoEB( A4) } I

60— &N44= I [n i.g„C AglgpEB(A~) j I

40-

20—

and

Ns, =l[ni:g' &Ailgp'EB(As)jl

&Nss =
I [ni4, & As I4'o&B( As) } I

0 i I I I

0.3 0.4 0.46 0.48 0.5 0.52 0.54 0.6 0.7

FIG. 8. Y =P in Table V. X=y.

X

0.8 where n
&
=5000. Tables IV and V and Figs. 7 and 8 are

numerical results after simulation 500 times.
Example 2. N = 150, X=

[
—1, 1 j ', and F(x,y, i ) is the

same as in example 1 but with asynchronous dynamics
(Hopfield model; see remark 4) [2,3]. T, is given. by

consider a toy model, in which the number of neurons is
10. The reason for considering this model first is that in
this extremely simple case, we can calculate y; explicitly.
Example 1. Set N=10, then X= [

—1, 1}' . We assume
that F(x,y, i ) has the form

F(x,y, i ) =y(i) QT~x(j )

The connection matrix (T, =TJ, , T,;=0,i,j=1, . . . , 10)
is randomly generated. As a dynamics we take the syn-
chronous dynamics defined by (1.4) (Little network) [2].
There are five attractors and the tree structure among
them is shown in Fig. 4. T' "(i,j ),i,j = 1, . . . , 5 are
displayed in Table I (see Sec. III). Here we have y &

=0.5
and @2=6.0. As y &(T"')' "=y2=6.0, after perform-
ing the two-stage annealing we have

N2) =
I [n i:g„,e A i lgoeB( A2) } I

I [ni.g. ,
& AzlhoEB( Az)j I

5—g g'"'(i)g'"'(j) if i'
T —.X

0 if i=j,
where g'"'= [g~"I(i),i =1, . . . , N j, p= 1, . . . , 5 are ran-
domly generated patterns, no = 1500. In our simulation,
eight attractors are involved. The seventh attractor is a
spurious state [2]. The energy of the eight attractors and
their overlap with the patterns are given in Tables VI and
VII, respectively. As in example 1, we also let n, =5000.
Figure 9 is the tree structure among the eight attractors.
As (1.3) ' & y & 1.0, after performing the two-stage an-
nealing we have

l[ni g. &Ailgo&B(A7)j I

&
I [ni.g. & A71(oEB(A7) } I

.

In Table VIII, we present the numerical results for
n(0=

I [n, :g„EA; lgp&B( Ak ) j I, i, k =1, . . . , 8, and

(0,i ) representing gp HB ( A; ), i = 1, . . . , 8 for y = 1.

Nsi =
I [ni: g, E A

& lgp &B( A s ) } I

& N» =
I [ n, :g., & A s I go eB ( A s ) }I,

where n
&

=5000. Numerical results are given in Tables II
and III and Figs. 5 and 6 after simulation 500 times.

3 4 5 6

T(2&
~

-1 2 3 4 5 6 8

FIG. 9. An explanation of the structure among attractors in
example 2 of Sec. IV.

V. DISCUSSIGN

There are several possible applications for the use of a
controllable cooling rate as discussed in Sec. I.

(1) Breakdown of ergodicity and kick out of spurious
minima. As many authors pointed out, after learning (for
instance, by Hebb's or Peretto's law [20]) there are spuri-
ous minima in addition to the retrieval patterns which we
sought after. Even though their basins are usually small-
er than those of the retrieval ones, a number of them
could be large. The application of a suitable cooling rate
provides a way to avoid the trap by spurious minima,
ending in the expected retrieval patterns depending on in-
itial conditions. The ergodicity is then broken as expect-
ed. In Fig. 10 the energy landscape is visualized for a
system where 1, 2, and 3 are retrieval states, and the oth-
er local minima are spurious. Choosing
P(n)=y ln(n+no) for some y &0, np &0, we can show
that there exist y i & y2 such that if we choose y H (y „y2)
the time-dependent stochastic dynamics will have retriev-



52 ROLE OF NOISES IN NEURAL NETWORKS 6605

FIG. 10. The time-dependent stochastic dynamics will only
stop at states 1, 2, or 3 depending on whether the initial condi-
tion belongs to I, II, or III, respectively.

ing only to retrieval states 1, 2, and 3 depending on
whether the initial condition belongs to I, II, and III, re-
spectively, without being trapped by the spurious local
minima (cf. Fig. 10 and theorem 1 in Sec. III). Many au-
thors worry about spurious minima in systems obtained
by successively following laws such as those of Hebb and
Peretto, and put great efFort into eliminating them. In
the case of the Hopfield network, in [21] it is shown how
spurious states can be avoided by using a noise of fixed,
time-independent strength. Here we describe another
way by which one can get rid of spurious minima, even
though they exist together with expected retrieval
memories. The control is quite robust, since for all y in
the interval [yk, yk+I ] the system has the same behavior.
This also seems to agree with the statement of Skarda
and Freeman [8] that complex behavior seems random
but actually has some hidden order to shift from one
complex pattern to another.

(2) An architecture of associative memory. The previ-
ous net-tree structure for attractors of the neural network
prrovides an architecture of associative memory. is
means that stored patterns are hierarchically dis-
tinguished as strongly and weakly memorized states
[22—29]. The former corresponds to deeper minima of
the energy (or quasipotential in the asymmetric case).

Let us consider a system as in Fig. 11 with ten attrac-
tors. I'(x,y) is given by the number at the right-hand
side of the arrow which starts from x to y; the number at
the left-hand side if the arrow starts from x to y is the ac-
tion functional calculated according to Sec. III, and the
others are negligible.

When y is greater than the number on the left-hand
side of the arrow from x to y given by theorem 2, initiat-
ing at x, eventually it will reach y (we then write by
x ~y) and finally end in the state with lowest energy
among the states it can reach.

For instance, when 6) y )4, with P(0) large enough,
almost surely 9—+3~1—+2~3, 4—+5~4, 6—+7~8 and
the other paths are not possible. This means that attrac-
tors are connected in four groups: starting from basins of
attractors in [9,3, 2, 1], it will finally home onto state 3;

FIG. 11. An example of the architecture of attractors
(memories): 1, . . . , 10 inside a circle represent attractors;
I, . . . , VI inside a circle are their levels.

,R,
IR
I I

I (
I I
I I

I I I
I I

I I

I
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FIG. 12. An explanation for the retrieving of memories.

from basins of attractors 4 and 5 onto 5; from basins of
I 6, 7, 8] onto state 8; and from the basin of attractor 10 it
will always be trapped in this basin and finally home onto
10. When 9&y &8, all paths with arrows can be passed
through but for 1~10 and 10—+5. In this case, attrac-
tors are divided into two groups: state 10 and the group
of all others, which, starting in any state except the basin
of 10, finally end up at state 8; and which, starting in the
basin of 10, always stay in it and finally home onto attrac-
tor 10. When y & 9, it always ends up at attractor 8, the
deepest energy well, and this is exactly the case as in the
simulated annealing for solving hard optimization prob-
lems [30,31].
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Thus states associate with each other in different levels.
The faster the cooling rate required, the stronger control
the network has and more precise recognition (or retriev-
ing) it obtains. For smaller values of the cooling rate y,
the area covered by the process g„ increases, and the
dependence on the initial condition decreases. That is,
the association is hierarchically built up in the network.
If the cooling rate is in suitable control, one can control
the precision of the recognition as desired.

In the pattern recognition network, one can design the
cooling rate differently in different circumstances as in
[9,10]. Moreover, for the complex information, i.e., time
sequence or cycles of patterns (consider example 4 of Sec.
II), our results provide an approach to control the pre-

cision, and therefore one can obtain detail as expected by
raising or lowering the cooling rate even several times un-
der some comparison of the initial information. Figure
12 roughly illustrates this idea. Moreover, the "general
arouse" of Skarda and Freeman plays a role similar to
that of the "attention" [described here by P(n)],
cooperating with the initial condition; see [8].
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