
PHYSICAL REVIEW' E VOLUME 52, NUMBER 6 DECEMBER 1995

Multifractals and decoded walks: Applications to protein sequence correlations
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Correlations occur in protein and nucleic acid sequences that have important implications for the evo-
lution and stability of these macromolecules. A number of fractal analyses of sequence data have been
developed that decode sequence information into a random walk. Alternatively, a generalized box-
counting analysis of decoded sequences can be used to establish multifractal properties. In this work,
the connection between these two seemingly disparate approaches is established. This connection is ex-
ploited to investigate correlations in protein sequences. A comparison is made between the hydrophilici-
ty profile, a composition parameter, and the solvent accessibility, a parameter reAecting the final folded
structure. It is seen that the hydrophilicity of proteins sequences are distributed as a multiplicative bino-
mial process. The solvent accessibility, on the other hand, is a more complicated binary process with
one-step memory. The evolutionary benefits of this latter process are seen by calculating the redundancy
as determined from the information dimension.

PACS number(s): 87.10.+e, 87.15.By, 61.43.Hv, 05.90.+m

There has been considerable recent interest in the sta-
tistical properties of nucleic acid and protein sequences
[cf. 1,2]. Information on correlations within these se-
quences has a direct bearing on evolutionary mechanisms
and on the thermodynamic stability of biomacro-
molecules. In addition to conventional statistical ap-
proaches [cf. 3,4], a number of fractal methods have been
developed to investigate sequence correlations [5—10]. In
one of these methods, encoded sequence information is
mapped into a random walk problem. The sequence may
be decoded according to composition, as is done in the
DNA walk problems [5—7] or according to a specific
chemical or physical property of the monomeric unit, as
done in the "bridge analysis" of protein sequences [8].
Drift can occur in the decoded walk as a result of the
overall compositional bias of the sequence. The "bridge
analysis" is an algorithmic device that compensates for
this and allows correlations to be observed. Deviations of
the decoded walk from random behavior provides evi-
dence for long-range correlations.

In a seemingly very different approach, the decoded
data sequence can be analyzed with a generalized box-
counting procedure to obtain a multifractal spectra [10].
In box-counting algorithms, a curve is covered with
boxes of a fixed size and the moment distribution of the
density is determined. The scaling of the moments of the
distribution with box size provides an infinite number of
fractal dimensions. This infinity of dimensions gives a
multifractal spectrum. The breadth of the multifractal
spectrum provides evidence of an underlying hierarchical
structure. The goal of this work is to show the
correspondence between these two methods. Additional-

ly, correlations in the hydrophilicity of a number of pro-
tein sequences are examined and compared with those for
a protein structural property, the solvent accessibility. It
is seen that the hydrophilic residues in 16 different pro-
teins are distributed as a rnultiplicative binomial process.
The solvent accessibility that is dictated by the final fold-
ed structure shows a more complicated correlation and
can be modeled as a 2 X2 P process with one-step
memory [11]. The implications of these difFerences are
discussed.

In the "bridge analysis, " a protein sequence is decoded
by a numerical correspondence between each amino acid
and a physical property associated with it. This
correspondence provides a decoded sequence,
I/i, g2, . . . , $L ], where g; is a numerical value associated
with the amino acid in the ith position along the sequence
and L is the length of the protein sequence. Often g;
takes on values of +1 depending on the chemical compo-
sition of the unit [5,8]. In a previous application, the hy-
drophilic, Coulombic, and hydrogen bonding properties
of amino acid sequences were separately decoded [8]. A
trajectory can be mapped using the decoded sequence,
and for a one-dimensional mapping this is given by

Walks defined in this fashion will show strong drift as a
result of composition. This effect can obscure correla-
tions, and attempts have been made to compensate for
this [cf. 12]. Here we consider a drift correction known
as the "bridge analysis" [8]. In this analysis the reduced
trajectory is considered:

y(l) =x(l) —(l/L)x(L) . (2)
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This trajectory y (l) will start and return to the origin and
form a "Brownian bridge. "

Because trajectories of individual proteins are noisy, it
is more practical to consider ensemble averages. An en-
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semble averaged squared displacement (z (I) ) is defined
as

(3)
1.0—

L/I
Z (I)= g x»(I), (4)

where the brackets represent averages over many pro-
teins and the bars represent an average within a
protein sequence. For example, g=(1/L)g~, g;. The
term L(g g) —eliminates the L dependence and corrects
for different lengths and variances between proteins. The
mean squared trajectory follows a scaling law:

2(x
(z (l))-l ", where the exponent a will equal —,

' for a
random walk. When a is greater than —,', the walk
demonstrates persistence and a less than —,

' indicate an-

tipersistence. Correlations in protein sequences were
seen with a„being 0.520 for walks based on hydrophilic
and on hydrogen bonding, and an a of 0.470 for ~alks
based on static charge distributions.

A very different analysis has been used to demonstrate
correlations in amino acid solvent accessibilities in indivi-
dual protein structures [10]. In this analysis, one starts
with a decoded sequence as before. A function Z ( I ) is
defined to examine the qth moments of the sequence:
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FIG. 1. Multifractal spectra of concanavalin A:, spectrum
determined from the hydrophilicity profile; o, theoretical curve
for a multiplicative binomial process used to fit hydrophilicity
curve; K, spectrum determined from the solvent accessibility
profile.

where j labels individual sequences of length 1 within the
complete protein sequence. There will be a total of L/l
of these sequences for a given protein of length I.. Using
a scaling ansatz, Z (l)-l ~»', where r(q) is a general-
ized exponent and is related to a generalized fractal di-
mension, D» by r(q) =(q —1)D». Using the box-counting
method described previously [10], r(q) can be calculated
for an individual decoded protein sequence. Frequently,
the Legendre transformation properties of r(q) are em-
ployed to represent the multifractal spectrum. These
properties define two functions, f (q) and a(q), that are
related to r(q) by»(q) =f(q) —qa(q). Multifractal spec-
tra, f (q) versus a(q), for the protein concanavalin A are
shown in Fig. 1. The spectrum for the decoded solvent
accessibilities is seen to be much broader than for the hy-
drophilicity. Both the these spectra are broader than one
obtained from a random sequence of numbers of the same
length. These results show that both the solvent accessi-
bility data and the hydrophilicity show nonrandom corre-
lations. However, these two parameters are correlated in
a different manner.

The difference between the Brownian bridge and the
multifractal approach is that multifractals are concern. ed
with the moment distribution of many short trajectories
that make up a protein sequence. The Brownian bridge
focuses on the root mean displacement of a single protein
trajectory. Because such a trajectory is too short to gen-
erate good statistics, an average over many proteins must
be considered. However, given a protein of a long
enough sequence there is no reason to anticipate a scaling
law that would differ from those for the ensemble aver-
age. In the multifractal approach, the sum of trajectories
generated from a given sequence can be used as our en-

semble. If protein sequences are ergodic in the informa-
tion theory sense, then a correspondence between the two
approaches can be made. Because of the finite length of a
protein sequence, the number of trajectories decreases
with trajectory size as L/I and the multifractal sum must
be normalized accordingly. The scaling of (y ) is related
to the second moment of Z ( I ) by
(y ) -Z2(l)/(L/1) -1 ~ ', where a fractal dimension
of 1 for the support, i.e., the linear sequence, is implicitly
assumed. This provides a relationship between the walk
exponent a and one of the multifractal exponents:

r(2)
cx =1

W

Thus, persistence is seen for r(2) & 1 and antipersistence
occurs when r(2) &1. Multifractal spectra (f versus a)
obtained to date from decoded protein sequence can be
accurately fit using three parameters, f,„, a;„, a,„.
For linear sequence problems, f,„ is fixed at unity.
Consequently, the multifractal approach provides one
more parameter than the Brownian bridge. Of course,
Brownian bridges could be constructed from higher order
mean displacements to generate different scaling ex-
ponents. These exponents can then be related to the mul-
tifractal spectra by equations similar to Eq. (5).

The multifractal spectrum of the hydrophilicity profile
of 16 different proteins were obtained. The hydrophilici-
ty is an empirical index that describes the amenity for wa-
ter of an amino acid sidechain [13]. It takes on dimen-
sionless values from —S to 5 and has commonly been
used in protein structure prediction programs. Figure 2
shows the hydrophilicity profile (or decoded sequence) for
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FIG. 2. Hydrophilicity profile of the protein myoglobin (in, 153
amino acid residues). The empirical hydrophilicity index for
each amino acid residue is plotted versus the position along the
protein sequence.

ln(1 —p)
mm 12

lnp
m»

(7a)

(7b)

The value of p is obtained using the a~;„and am, „values
determined from the intercepts of the multifractal spec-

If th rocess is truly a random multiplicative one,
the values of p determined separately from Eqs. ( a an
(7b) should agree. Table I shows the experimental values
f and a and the corresponding pm;„and p~».

Il hAs can be seen, these values are very close, althoug
often p;„has slightly higher values then p,„. From a
comparison of data analyzed in forward and reverse se-
quences, it is estimated that there is a 10—20 % error ina,„and a significantly lower error in a;„. Given these
considerations, the multifractal spectrum is well
represented by a binomial multiplicative model. Figure 1

shows a representative example of such a fit, where p„, is
used to generate the curve for the model.

Using Eqs. (5) and (6), the walk exponent a for indivi-
dual proteins is determined, and these are shown in Table
I. As is seen in the table, these values center aroun d 0.52.
The average is 0.517+0.005 for all 16 proteins. This is in

determined previously from the bridge analysis of hydro-

the protein myoglobin. Figure 1 shows the multifractal
spectrum determined from such profiles. For the 16 pro-
teins investigated, the multifractal spectra could be accu-
rately fit (see Fig. 1) using a multiplicative binomial pro-
cess. This model provides a relationship for r(q) (cf.
[14]),

pq+(1 p)q —2
—6q)

where p is the probability of finding a hydrophilic residue
and the factor of 2 results from treating the problem as a
binary process. Using Eq. (6) a multifractal spectrum can
be determined with the following relationships for a;„
and amax.

philicity of an ensemble of proteins [8]. Thus, the
correspondence between the average of walks within a

rotein to ensemble average walks is justified in this in-pro ein
stance. The ergodicity of protein sequences have impim or-
t t '

lications for information theory approaches to
allmolecular evolution. It is also interesting to note that a

multiplicative binomial processes will show persistence,
as r(q) can only vary from 0 to 1 in these cases.

These results differ substantially from those obtained
when profiles of the solvent accessibility are analyzed.
Using a "ball rolling" algorithm, it is possible to deter-
mine from x-ray structures the exposed surface area of
each amino acid residue in the protein sequence. Typi-
call, a probe of the radius of a water molecule is used.
The fractional solvent accessibility is the exposed surface
area divided by the area of a fully exposed amino acid as
it would appear in the middle of a tripeptide. The se-
quence of solvent accessibilities is a reAection of the
geometry of the final, folded state of the protein. Thus, it
is a very different parameter from hydrophilicity that is
b d on composition. The multifractal analysis of thisase on c

ultsdata has been presented previously [10],and these resu s
are summarized in Table I. For this decoded parameter,
the multifractal spectra are considerably wider than the
hydrophilicity spectra and cannot be accurately
represented by a multiplicative binomial process. To ac-
curately fit the experimental spectra, a 2 X 2 P model [11]

'th -step memory was used. This model employs
cr 11)Feigenbaum scaling factors cr (00), o (10), cr (

cr (01) defined as

o~(00)+cr~(10)=1,
o~(01)+a~(11)=1 .

The generalized exponent is given by

—ink, (q)r(q) =
ln2

(9a)

(10)

where

cr~(00)+cr~(11)
A(q)= +

o.~(00)—o ~(11)
2

+o ~(01)o~(10)

1/2

Using the above results, the scaling functions can be
extracted from the multifractal spectrum. At the extre-
ma of the spectra (f =0), one can assign

P(ij)o. (ij)=
J

where P(ij) is the probability of an i unit following a j
unit and P (j) is the probability of a j unit existing. The
product of the scaling factors for all the units gives the

robability for a specific configuration or sequence. For
our present case, 0 could be associated with a y rop i ic
reside and 1 is associated with a hydrophobic residue.
These scaling factors are governed by two conservation
equations,
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TABLE I. Multifractal and walk parameters of protein sequences.

Hydro philicity Solvent Accessibility

Protein (length)

Ferrodoxin{54)
Ferrodoxin(98)
Cytochrome C(103)
Par valbumin(107)
Myoglobin(153)
Plastocyanin(99)
a-lytic protease(198)
Concanavalin A(237)
Acid Proteinase{330)
Flavodoxin(138)
Adenylate kinase(194)
Carboxypeptidase A(307)
Papain D(212)
Actinidin(218)
Carbonic anhydrase 8(261)
Thermolysin(316)

+min

0.88
0.80
0.82
0.85
0.80
0.85
0.86
0.84
0.90
0.81
0.79
0.79
0.81
0.84
0.81
0.82

&max

1.30
1.33
1.28
1.33
1.24
1.19
1.26
1.26
1.18
1.36
1.32
1.29
1.35
1.31
1.34
1.34

dmin (Pmax )

0.46(0.41)
0.43(0.40)
0.43(0.41)
0.45(0.40)
0.42(0.42)
0.45(0.44)
0.45(0.42)
0.44(0.42)
0.46(0.44)
0.43(0.39)
0.42(0.40)
0.42(0.41)
0.43(0.39)
0.44(0.40)
0.43(0.40)
0.43(0.39)

CXw

0.51
0.52
0.52
0.52
0.52
0.51
0.51
0.51
0.51
0.52
0.52
0.52
0.52
0.52
0.52
0.52

+min

0.88
0.76
0.79
0.87
0.73
0.82
0.75
0.73
0.71
0.75
0.71
0.70
0.70
0.70
0.75
0.70

&max

1.12
1.53
1.47
1.36
1.52
1.51
1.73
2.12
2.13
2.49
2.04
2.88
2.46
2.40
2.53
2.93

CXw

0.51
0.53
0.53
0.52
0.54
0.53
0.55
0.57
0.57
0.59
0.57
0.60
0.59
0.59
0.59
0.60

ln[cr (00)]
min (12a)

ln[o (11)]
—ln(2)

(12b)

R=1- S
So

(13)

where So=lnQ, with Q equal to 2 for the binomial pro-

Again, the third independent parameter f,„ is fixed at
unity as a result of having a binary process on a linear se-
quence. With Eqs. (9) and (12), the scaling factors are
determined from the intercepts of experimental mul-
tifractal spectra. Using Eqs. (5), (10), and (11), the walk
exponent is determined. For the 16 proteins studied, a
had an average value of 0.56+0.03. While the walk ex-
ponents for the solvent accessibility and the hydrophilici-
ty are very similar, the corresponding multifractal spec-
tra are quite different. This is because the walk dimen-
sion is determined from a single point on the spectra. A
minimal representation of the hydrophilicity data re-
quires a multiplicative binomial process while the solvent
accessibility is not as simple. In this latter case, a binary
multiplicative process with one-step memory must be em-
ployed.

It is interesting to calculate the Shannon or informa-
tion entropy. For the binomial process, one has
S=—gp;1np;, while the one-step memory process gives
S= g; cr; incr—;1 The redun. dancy R of the sequence is
defined as

cess (singlet code) and 4 for the one-step memory process
(doublet code). For the protein concanavalin A the
redundancy of the hydrophilicity sequence is 0.014, while
the solvent accessibility has a redundancy of 0.216. In
general, doublet code gives larger redundancies than a
single code [2], yet this case shows much larger
differences than those observed in linguistic texts. A
similar large difference in redundancy can also be ob-
served by considering the information dimension of the
two processes. The Shannon entropy can be defined us-
ing the information fractal dimension [14,15] and allows
a comparison of different multiplicative processes. The
Shannon entropy is given by S= —a(1)ln2, where
a(1)= —[dr(q) idq] ~,. The redundancy associated
with the solvent accessibility data of concanavalin A as
determined from the 2X2 P model [Eqs. (10) and (11)] is
0.98, while that determined for the hydrophilicity from
Eq. (6) is identical to that determined above 0.014. Thus,
the solvent accessibility shows a much higher redundancy
than it would have if it were generated by a simple multi-
plicative binomial process. In general, high redundancy
of a code makes it more resistant to errors. These results
suggests that a structural parameter, the solvent accessi-
bility, is more resistant to error than a composition pa-
rameter, the hydrophilicity. There may be an evolution-
ary advantage to having a high redundancy associated
with the folding process.
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