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The aim of this paper is twofold. First, we derive a statistical-mechanics-based model of unsupervised
learning defined by redundancy reduction between the output components of neural nets and entropy
conservation from inputs to outputs. We obtain an approximate expression for the probability distribu-
tion of the output components for a new data point, which is essentially determined by the probability
distribution given by the best network of neural ensembles and by the square root of the ratio between
the determinants of the Fisher information without and with the new point. Second, we pose the prob-
lem of supervised learning as an unsupervised one. The ensemble theory derived for unsupervised learn-
ing results in one for supervised learning by using the ensemble theory based on the maximum-likelihood
principle. An upper bound for the prediction probability of a new point not included in the training data
is derived. This upper bound is essentially given by the ratio between the Fisher information, deter-
mined for the training sets without and with the inclusion of the new point. This upper bound may be
used as a mechanism to decide actively on the novelty of new data (mechanism of query learning). An il-
lustrative example is given for the case where the training error possesses a Gaussian distribution.

PACS number(s): 87.10.+e, 02.50.Ph, 02.50.Wp, 05.90.+m

I. INTRODUCTION

The problem of learning and generalization from exam-
ples by using neural networks has been treated in the
framework of both statistics [I—3] and statistical physics
[4—8]. In the statistical physics approach an ensemble of
neural networks is used to address the problem of gen-
eralization of learning from a finite number of noisy
training example. The ensemble treatment of neural net-
works [4—8] assumes the final model to be probabilistic,
built by an integration of single models weighted with the
corresponding probability distribution. Gibbs s distribu-
tion is obtained from the maximuin entropy principle [8],
or alternatively by imposing the equivalence of the
minimum error and the maximum-likelihood criteria for
training the network [4—7]. Learning is defined as a max-
imization of the Kullback-Leibler entropy of the network
distribution in parameter space. It reduces the ensemble
volume, with the initial volume being fixed by the a priori
distribution. Unfortunately, the integration in parameter
space needed for deriving the partition function is impos-
sible to perform in the case of standard neural network
models such as multilayer perceptrons. Some approxima-
tions employing the replica method are possible (cf. Ref.
[4]). Tishby and co-workers [5—7] use the annealed ap-
proximated which, though simpler, yields the correct
qualitative behavior in many cases.

Here we focus our attention on the problem of both
unsupervised and supervised learning by neural networks
from given examples.

*FAX: +49 89 636 49767. Electronic address:
Gustavo. Deco zfe.siemens. de

The task in supervised learning consists in approximat-
ing a general continuous input-output relation via a non-
linear parametric model, i.e., a neutral network. The su-
pervised learning process considers a set of training ex-
arnples for finding the relation between input and output.
The ultimate goal is to generalize, i.e., to find a model
that describes the relation between input and output for
all possible examples. The quality of modeling clearly de-
pends on the architecture used and on the complexity of
the task. The classical definition of learning considers a
cost function which is a measure of the error on the train-
ing examples, the aim being to define a procedure that
finds the set of parameters (weights of the network)
minimizing this cost function. Statistical physics relates
this task to the problem of finding the state of the system
(given by the parameters) that minimizes the energy (cost
function). Alternatively, if a multiple hypothesis explains
the given task, i.e., if several possible different networks
model the given relation, the problem of learning is
defined as the decrease of the hypothesis (model) entropy.
In other words, the statistical-mechanics approach basi-
cally models a given relation by using an ensemble of
models combined and weighted in an optimal way. The
combination of the networks in the ensemble may be
defined by using the maximum entropy principle or the
Bayes theorem. Using these methods, it is possible to ar-
rive at the Gibbs distribution which describes the a pos-
teriori probability of each model given the training data.
The only free parameter that can still be adjusted is the
temperature of the ensemble, and it is related to the sto-
chasticity of the input-output relation which in general is
given by the noise. The learning procedure then aims at
finding the right temperature of the ensemble. This tem-
perature regulates the combination of models describing
the final ensemble model. As we will see, the basic prob-

1063-651X/95/52(6)/6580(8)/$06. 00 52 6580 1995 The American Physical Society



52 STATISTICAL-ENSEMBLE THEORY OF REDUNDANCY. . . 6581

lem is to integrate the ensemble of networks. The
statistical-mechanics formulation of supervised learning
by neural networks was proposed by Denker et al. [9].
The general form was given by Tishby, Levin, and Solla
[5] and Levin, Tishby, and Solla [4] and is the one we re-
view in the second section of this paper.

On the other hand, unsupervised learning was formu-
lated [10,11]by a neural implementation of the biological
principle of redundancy reduction (cf. Barlow [12,13]).
The brain performs a statistical decorrelation of the input
environment in order to extract statistically independent
relevant information. The goal of redundancy reduction
is to factorize the output probability distribution without
losing information. In the linear case Barlow's principle
yields a learning rule that performs a principal com-
ponent analysis (PCA). In fact, PCA can be derived as a
linear transformation which conserves transmission of in-
formation and minimizes the mutual information be-
tween the outputs by decorrelating them. Deco and
Schiirmann [10] devised an architecture and a learning
paradigm for the unsupervised extraction of statistical
correlations, performing Barlow's unsupervised learning
in the most general fashion and implementing a nonlinear
independent component analysis.

In this paper we formulate a statistical-mechanics-
based theory for unsupervised learning as modeled in
Ref. [10]. Furthermore, we may at the same time pose
the problem of supervised learning as an unsupervised
learning one, such that we obtain an ensemble theory for
supervised learning based on the maximum-likelihood
principle. We remark that there exists other work in the
literature on the duality between unsupervised and super-
vised learning (e.g. , Ref. [14]),however, with approaches
and aims which differ from ours in an essential way. An
upper bound for the prediction probability of a new point
not included in the training data is found. This upper
bound is determined essentially by the ratio between the
Fisher information for the training set and that for a set
including the training data and the new point. It is possi-
ble to use this upper bound as a mechanism to decide ac-
tively on the novelty of new data and therefore to use it
as a mechanism of query learning. Query learning aims at
improving the generalization ability of a network that
continuously learns by actively selecting optimal non-
redundant data, i.e., data that contain new information
for the model. Several investigations [15—20] in the field
of neural networks address the topical problem of active
data selection, known also under the more typical names
of "query learning" and "on-line learning. " The idea
behind on-line learning is to actively decide whether new
data should be learned or not, depending on the previous-
ly learned examples. This active selection is of fundamen-
tal importance for the generalization capabilities of the
model, since by selecting data that are nonredundant, i.e.,
that carry new information for the model, overtraining of
some region of input space where data are redundantly
arriving in a large amount is avoided. For clarification,
let us suppose that due to the characteristics of the prob-
lem most of the time the data are clustered in a narrow
region of input space, but the model should be valid in a
wider region of input space where from time to time data

are also present. If we train the network with all arriving
data the model will in this case concentrate on the redun-
dant data, trying to use all available resources for model-
ing this region and getting overtrained at the cost of for-
getting those regions which have little data. Another
possible scenario is the case where off-line data are avail-
able, and in order to build a model with good interpola-
tion capability over the whole input space, data should be
chosen ("experiment design" [21—24]) so that they are
nonredundant. Therefore the essential problem is to
define a measure of informativeness of new data for a
given model architecture and a given set of viewed exam-
ple patterns.

In Sec. II we review the ensemble theory for unsuper-
vised learning. Section III is devoted to the formulation
of an ensemble theory for unsupervised factorial learning.
In Sec. IV supervised and unsupervised learning are dual-
ly defined. This is used for a formulation of a statistical
theory for supervised learning based on the maximum-
likelihood principle, which we denote statistieal-
mechanical theory of supervised factorial learning In Se. c.
V the measure of novelty defined in Sec. IV is specified to
the Gaussian case. Numerical experiments are presented
in Sec. VI, and final conclusions are given in Sec. VII.

II. PROBABILITY INFERENCE
WITH AN ENSEMBLE OF NEURAL NETWORKS

Let us consider a feedfor ward neural network
parametrized by a weight vector x. As notations,
we use x for the N-dimensional input vector,
y for the M-dimensional teacher output vector,
andf (x,w ) for the I-dimensional actual output vector of
the network. The statistical physics approach models the
input-output relation by considering an ensemble of neur-
al networks instead of only one. The goal of supervised
learning is, given a set of P example patterns

D(+)—[(x (q)
y (q)) 1 &~ &PI

to model the probability p (y /x, D' ') of predicting
a new input-output pair (x,y ). Let us define the condi-
tional probability p (y/x, w ) as the likelihood of the pair
(y, x ) for the network w. In the ensemble approach the
model consists of a combination of all possible networks.
Mathematically we can express the prediction probability
of the ensemble of neural networks by the equation

p(y/x, D' ')= Jp(w/D' ')p(y/x, w)dw, (2)

where p (w/D' ') is called the a posteriori probability of
the ensemble in parameter space. Clearly, knowing this a
posteriori probability, no learning process is necessary for
defining the final model. The a posteriori probability
p (w/D ') in parameter space may be defined by means
of the maximum entropy principle. The essential idea is
that a prescribed constraint should be satisfied on the
training data set (for example, the additive quadratic er-
ror should be minimal). Otherwise, the model should be
combined without assuming extra information, i.e., the
ensemble entropy

J p(w/D' ') ln[p(w/D' ')]dw (3)
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P(w/D' ')=
Z(P) (4)

where the normalization factor Z is the partition function
of the ensemble of networks and is defined by

P
Z(P)= f exp —Pg ~~y'q' f(x—(q), w)(~ dw . (5)

q=1
L

The probability of the new input-output pair (x,y ) for
the network m is modeled by the Gaussian distribution

—PII7—f(», ~ ) I

'
p(y/x, w ) = (6)

( /p)M

Hence the final model is given by

should be maximal (maximum entropy distribution [25]).
The solution to this problem is the Gibbs distribution
which in this case is defined by

P
exp Pg Ily

'"—f«'", w)~~'

the unsupervised architecture of Fig. 1 by g and Y, re-
spectively. The output vector r is defined by

Y;=g;+f;(go, . . . , g, co;), with j (i,
co; being the parameter vector which determines the
parametrical function (for example, a neural network) f;.
Note that independent of the functions f;, the network is
always volume conserving, i.e., the determinant of the
Jacobi matrix of Eq. (8) is equal to unity. In particular,
f; can be calculated by another neutral network, by a sig-
moid neutron, by polynomials (higher order neurons),
etc. The triangular structure of this network not only as-
sures conservation of entropy in the transmission from
the inputs to the outputs but also a transformation that
attempts to decorrelate a component from only the past
components, which is the kind of correlation that we
need in time series modeling.

Let us denote the entropy of a random variable X by
h (X), i.e.,

P
exp —p g ((y

'q' f(x 'q',—w)( (

h (X)=—f dx p(x)ln[p (x)], (9)

p(y/x, D' ')= f q=1
p(x) being the probability distribution of the random
variable X. Unsupervised learning minimizes the redun-
dancy (i.e., the mutual information) at the output com-
ponents given by

The problem is seen to be reduced to the calculation of
the partition function Z, which, due to the nonlinearity in
the parameters of the network, in most cases is noninte-
grable without approximations. It is important to re-
mark that the only remaining free parameter is P, which
in thermodynamics is associated with the inverse of the
ensemble temperature. This parameter is related to the
stochasticity of the data, meaning that the problem is to
have a model which possesses the same stochasticity as
the data. A special case is the error-free learning prob-
lem, i.e., the problem is noise-free and realizable. In this
case, the result of Denker et al. [9] can be recovered in
the limit P—+ ~, i.e., when the ensemble of networks
yields a deterministic model.

III. STATISTICAL THEORY
OF UNSUPERVISED FACTORIAL LEARNING

In this section, we formulate an ensemble theory for
unsupervised learning by making use of the basic princi-
ples discussed above. We employ a single-layer architec-
ture that attempts to extract correlations. The architec-
ture is always reversible, conserves the volume, and
therefore conserves the transmitted information. In gen-
eral the environment is non-Gaussian distributed and
nonlinearly correlated. The learning rule decorrelates
statistically the elements of the output by minimizing the
mutual information between the output components.

The aim of this section is to derive a statistical-
mechanics-based model of the unsupervised learning
mechanism devised by Deco and Schiirmann [10] and by
Deco and Brauer [11]. We concentrate on the one-layer
volume-conserving triangular architecture of Fig. 1, and
denote the n-dimensional input and output vectors for

R = g h (Y )
—h(Y) . (10)

minimization of the redundancy is reduced to minimizing
the term g"=)h(YJ).

We are now able to formulate an ensemble theory for
unsupervised learning. The training set consists of P ex-
ample patterns,

T(P) {((q) 1 & ~ &P] (12)

The ensemble of networks given by different parameters
w =

I w „.. . , w„] is weighted by again using the max-
imum entropy principle. In this case the macroscopic
constraint is the minimization of redundancy, so that the
Gibbs function now is defined by

~ ~ ~
P'

FIG. 1. Volume-conserving triangular architecture for unsu-
pervised learning.

By using the fact that entropy is conserved
[due to the fact that the transformation Y= U(g) has a
Jacobi determinant equal to unity], i.e.,

h (Y)=h (g) =const,
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p(w/T( ')=

P n

exp Pg g ln[p(Y" jw)]
i =1j=1

Z(P)
with the partition function given by

P n

Z(P)= f exp Pg g ln[p(Y"Iw)] dw .
i =1j=1

(13)

(14)

mial form (apart from terms independent of w ) leads to

H' +"=H' +" —+—'(w —w +b) VVH'
Wp

X(w —wP+b)

'(—VH— ~(- ) (VVH' "i- ) (VH~- ),2 Wp Wp Wp

(23)

VH("i =0 .
W

(16)

Hence the Taylor expansion up to second order is given
by

H( =K~- —+—'(w —wp) VVH (- (w —wp),
Wp Wp

(17)

where VVA denotes the Hessian matrix of A. Inserting
Eq. (17) into Eq. (14), the integrand adopts a Gaussian
form and therefore the integral can be easily calculated,
yielding

Z(P)= e~ ~- (2m)—[det(PF' ')]
Wp

(18)

where D =dim(w ) and the non-negative definite matrix
F' 'is

defined

b
P n

F' '= VVH' '~- = ——g g VVln[p(Y"Iw )] .
Wp Ji=1 j=1

We perform a Taylor expansion of the exponent around
wP defined as that point where the empirical entropy
multiplied by the number of patterns P,

P n

H' '= g g ln[p(Y"/w)], (1&)
i=1 j=1

is minimal. At this point the gradient is equal to zero, i.e.,

g=VH~-
Wp

(26)

Now we are in a position to write the probability distri-
bution p (Y, T' ') of the new point as

p(Y, T' ')= f
P n

exp P g g ln[p (Y"/w )]
i =1j=1

Z(P)
Xp(Y/w, P)dw . (27)

We assume for the probability of each network the escort
distribution

with

b= —(VVH"+"~ )-'VH
Wp Wp

The integrand of Z(P + 1) is again a Gaussian, and after
performing the integration we obtain

Z(P+1)=e~ —(2m) [det(13F( +")]
J2

e()/2)P(g (F( +
) g])

where

For P~ we obtain

(19) P ln[P ( f /W ) ]

p(Y/w, P) = (28)

n

H = g ln [p ( Y2 /w p ) ]
j=1

(22)

is defined at the new point. Bringing H' +" into a bino-

F' ' + —fp(e/w—)VV 1 [pn(e/ )w]d e

= fp(elw)Vlnp(elw)V'ln[p(e/w)]d e . (20)

The integrals in (20) are, according to Ref. [26], the Fish-
er information which is a measure of the amount of "in-
formation" about m that is present in the data. We need
to calculate also Z(P+1) because we want to study the
effect of adding a new pattern. To do so we make a Tay-
lor expansion of H' +" around the point wP defined

above. We obtain

H' +"=H' +"~- +(w —wp) VHi-
Wp Wp

+—'(w —wP) VVH' +"i- (w wP)+ . —
P Wp

(21)

where

X detl/2[F (P)(F(P+ i )
)
—i

] (29)

Thus we have derived an approximate expression for the
probability distribution of the output components which
is essentially based on the probability distribution given
by the best network (the one with parameter vector wP)
and by the square root of the ratio between the deter-
minants of the Fisher information without and with in-
clusion of the new point.

In the next section we will use these results for obtain-
ing an ensemble theory of supervised learning based on
the maximum-likelihood principle.

According to Ref. [27], escort distributions have the abil-
ity to scan the structure of the original probability distri-
bution. The reason for using the particular form (28) is to
write the distribution of Y in the compact form

T(p)) Z(P + 1 )

2Z (P)

1 pH+(p/2)-T(I; (p+ &)
)
—T-

Z
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IV. DUALITY BETWEEN UNSUPERVISED
AND SUPERVISED LEARNING

e =y f(x, w—), (30)

where in supervised learning e is the error and m is the
parameter vector which describes the general function f.
The maximum-likelihood principle for supervised learn-
ing requires w to be chosen so that the empirical likeli-
hood

We pose the problem of supervised learning as an un-
supervised one. As we will demonstrate, for unsupervised
learning the ensemble theory derived above then results
in a theory for supervised learning by making use of en-
sembles based on the maximum-likelihood principle. The
input vector g for the unsupervised architecture of Fig. 2
is defined to be composed of two components x and y of
dimensions X and M, respectively, i.e., g= [x,y I. These
two vectors are related through a probability distribution
p(x, y ), so that they can be regarded as input and output
of a relation to be learned by supervised learning. The in-
put vector g is given empirically by the set of the training
data, as defined by Eq. (1). Let us denote the output of
the triangular architecture by Y which is also composed
of two vectors such that Y= Ix,e]. The network output
component e is defined by

minimization of redundancy is reduced to minimization
of the term g~ ih (e~ }.Due to the fact that

I
h(e) ~ g h(e )

i=1
(35)

and taking into account that

h (e)= L— (36)

because of

p(y/x, w)=p(y f(x) =—0/x, w—)

=p(e =0/x, w)=p(e/x, w), (37)

minimization of redundancy of the output components Y
is equivalent to maximization of the likelihood I.. Put
di6'erently, maximum-likelihood supervised learning is
equivalent to minimizing the entropy of the error, which
is the goal of unsupervised reduction of redundancy. This
is the dual formulation of supervised and unsupervised
learning.

We now make use of the results previously obtained for
the ensemble theory of unsupervised learning. Writing
the prediction probability of a new point as

p(y/x, D' ')=p(e/x, D' ')

P
L =—g ln[p(y "/x", w)]

P,.
(31)

P
exp Pgln[p(e"/x", w)]

is maximal. In Eq. (31), the conditional probability
p(y "/x", w) should be regarded as a measure of the
compatibility of the pairs (x",y"). On the other hand,
as discussed above, the goal of unsupervised learning is
redundancy minimization. The architecture of Fig. 2 can
only minimize the redundancy inherent in the relation be-
tween the vectors x and y, i.e., it aims to exact the corre-
lations between these vectors, which is the goal of super-
vised learning. In fact, unsupervised learning minimizes
the redundancy at the output components given by

Z(P)
Xp(e/x, w, P)dw, (38)

Pln[P (e/x, w )]
p (e/x, w, P) = (39)

we obtain for the distribution of y

and again assuming for each network the escort distribu-
tion

R = g h (x )+ g h(e ) —h(Y) .

By using the fact that entropy is conserved, i.e.,

(32)
p(y/x, D )

-=—e(P) PH'+ (PI2)g (+' ) g
Z

t 1 /2
[F~ (P )

(FI (P + 1 )
)
—i

] (40)

h (Y ) =h (g) =const, (33)

g h (x ) =const,
j=1

and assuming that the distribution of x is stationary, i.e.,

and therefore the probabilities

detF'P'
p(y/x, D' ') ~p(y/x, wp, P)

,
detF'

In the last two equations,

PF' '= —g VVln[p(e "/x",wP)],

1/2

(41)

(42}

H'=ln[p(e/x, wP)], (43)

and

g'=VH'~-
Wp

(44)

FIG. 2. Unsupervised architecture for supervised learning.

Hence we have obtained an upper bound for the predic-
tion probability of new data given P training data. The
upper bound is essentially determined by the square root
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of the ratio between the determinants of the Fisher infor-
mation without and with inclusion of the new point. The
factor p (y/x, wP, p) is the probability of observing the
new pair given by the best network (the one with parame-
ter vector wP). The square root of the ratio between the
determinants of the Fisher information provides us with a
measure of how much the reliability of the best network
should be reduced. We call the negative logarithm of this
quantity the novelty measure JV(P), i.e.,

iV(P) = ——ln
1

2

detF'P'
detF'

(45)

This information is a consequence of the use of the en-
semble approach.

In summary, the statistical-mechanics-based theory of
unsupervised learning by redundancy reduction with a
volume-conserving network has been formulated and
used for the improv ernent of the standard ensemble
theory of supervised learning by exploiting the duality be-
tween the two learning paradigms.

yields

M M
h(e}& g lnC„. ~ g C;;, (49)

P M
H~~(P) — y y [ (q) f ( (q) }]2

q=li =1
(50}

It is important to remark that in general the constraint
introduced by the unsupervised view of supervised learn-
ing based on the maximum-likelihood principle is much
tougher than that based on the quadratic error. In fact,
the entropy calculated assuming a Gaussian distribution
h (e') with a covariance matrix C identical to that of the
real distribution is an upper bound of the real entropy
[26], i.e.,

and therefore the constraint now is to minimize the sum
of the variances so that

V. NOVELTY DETECTION —THE GAUSSIAN CASE
h (e ) ~ h(e '),

which means that

(51)

h (e )=—,
' ln(2~e ) det(C) = —E' ', (47)

where C is the covariance matrix of the error com-
ponents. Applying Hadamard's inequality [26]

In this section, we focus on the modeling by an ensem-
ble of feedforward neural networks. In this case the net-
works may be defined as multilayer perceptrons, e.g. ,

f, (x'q', w;)=.o(w .o(w;".x'q')),

with w; = [ ;w, wj, (46)

where o is a sigmoidal function. In general (x 'q', w; ) may
be arbitrary nonlinear functions of the inputs and of the
parameters. We specialize to a Gaussian distribution so
that

P P

g ln[p(e "/x",w }] g ~~y" —f(x",w )~~ . (52)

gq~rs(P+ 1) MPH&&(P)+2g g
T

g
—g f (53}

The right-hand-side of Eq. (52) is the constraint used in
the ensemble theory of supervised learning. In other
words, the formulation obtained by the unsupervised en-
semble theory permits us to describe the supervised one
in a more precise way.

MacKay [1] made an additional approximation which
consists in neglecting those terms which contain the
second order in the derivative of the network function,
1.e.,

det(C) Q C,, (48) With this approximation we obtain for the prediction
likelihood

—
P[~gy f(x, w&)~i /det[I+F—"(F"( )) ]]—(l/2)ln[det[I+F"(F"( )) ]]

p(y/x, D' ')= —e—
Z

(54)

where D (P+1)
JV(P)= 1p(w/D' +")ln dw

p(w/D' ')
(57)

P M
Ftl P —g pp g [ q f (

(q) )]2
q=1 i=1

M

g [y; f;(x wp, }]'— .
i=1

(55)

(56)
JV(P)= ,' lnjdet[l+F"(F"' —') ']j . (58)

can in Mac Kay's approximation also be calculated
analytically yielding

and wP are the best parameters, i.e., where VH"' '=0.
The novelty measure defined by the Kullback-Leibler en-
tropy in parameter space,

This is identical to the second term of the exponent of
(54) and is a special case of Eq. (45). In Eq. (54) we have
used the fact that
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output. The temperature of the ensemble is chosen ac-
cording to the noise as P=0. 1. The training data are
selected in the regions

—0.9 &x —0.3 0.3 x 0.9 (62)

and the novelty of the data is tested in the region—1&x &1. Figure 3 displays the results of the simula-
tions. The original data, the prediction of the ensemble
model, and the novelty measures JV(P) of Eq. (58) are
plotted. In the regions not included in the training set, a
large value of the novelty measure is observed, indicating
the information content of the new data for the ensemble
model.

, 1Vp)
I

O.50
I

0.50

FIG. 3. Novelty detection with an ensemble of multilayer
perceptrons.

det[I+F"(F" ') ']=
[ I 2g T(F/&(P+ 1)

)
—

Tg~]
(59)

which can. be verified by using the relation of Fedorov
[21],

det(A+ac c )=det(A)(1+ac A 'c) . (60)

The unity matrix is denoted by I. Equation (54) yields
the essential probability of the problem, namely, the pre-
diction probability of a new point given I' examples, in an
analytic form. In the next section we apply the results
obtained to the problem of query learning.

Vj. NUMERICAL EXPERIMENTS

y(x)= —1 —3x+18x +4x —48x +32x +v (61)

by using only data in some regions and then checking the
novelty of the data in all possible regions. In Eq. (61), v
stands for Gaussian noise with variance 0.05. The archi-
tecture used contains one input, ten hidden units, and one

We apply the approximate model developed in the
preceding section to the case of an ensemble of multilayer
perceptrons with a single hidden layer and sigmoidal
functions. The problem consists in modeling the function

VII. CONCLUSIONS

A statistical-mechanics-based model of unsupervised
learning defined by redundancy reduction at the output
components and entropy conservation from inputs to
outputs has been derived. We have obtained an approxi-
mate expression for the probability distribution of the
output components which is essentially determined by
the probability distribution given by the best network and
by the square root of the ratio between the determinants
of the Fisher information without and with inclusion of
the new point.

Furthermore, the problem of supervised learning has
been posed as an unsupervised one. The ensemble theory
derived for unsupervised learning then results in one for
supervised learning by using ensemble theory based on
the maximum-likelihood principle. An upper bound for
the prediction probability of a new point not included in
the training data is given. This upper bound is essentially
determined by the ratio between the Fisher information
given the training set and the one given a set which in-
cludes both the training data and the new point. This
upper bound can be used as a rnechanisrn to actively de-
cide on the novelty of new data, and therefore it is a
mechanism of query learning. Query learning aims to im-
prove the generalization ability of a network that con-
tinuously learns by actively selecting optimal nonredun-
dant data, i.e., data that contain new information for the
model. An illustrative example has been given for the
case where the training error possesses a Gaussian distri-
bution. Needless to say, the key quantities of Sec. IV
may be evaluated for non-Gaussian distributions as well,
though with a larger numerical effort.
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