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Dynamical simulation of fiuidized beds:
Hydrodynamically interacting granular particles
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A numerical simulation of a gas-Buidized bed is performed without introduction of any empir-
ical parameters. Realistic bubbles and slugs are observed in our simulation. It is found that the
convective motion of particles is important for the bubbling phase and there is no convection in the
slugging phase. From the simulation results, non-Gaussian distributions are found in the particle
velocities and the relation between the deviation from Gaussian and the local density of particles is
suggested. It is also shown that the power spectra of particle velocities obey power laws. A brief
explanation of the relationship between the simulation results and the Kolmogorov scaling argument
is discussed.

PACS number(s): 47.55.Kf, 47.27.—i, 82.70.—y, 05.40.+j

I. INTRODUCTION

Recently dynamics of granular systems has attracted
much attention among physicists [1—5] as a typical object
of nonequilibrium statistical physics. For example, in
vibrating beds [6—10], collisions among particles produce
convection and turbulence. However, the fluidization of
granular particles immersed in a Quid stream, where the
hydrodynamic interactions are relevant, exhibits richer
phenomena, illustrative of dynamical phase transitions
[11-13].

In an experiment on fluidized beds, we prepare a vessel
containing granular particles and impose a gas Qow &om
the bottom of the vessel. When the flow rate is small
enough, particles do not move. This state is known as a
fixed bed. Above a critical value of flow rate, the axed
bed is destabilized and then fluidized uniformly. At a
larger How rate, the uniformly fluidized bed becomes un-
stable and bubbles appear. Increasing the Qow rate fur-
ther, the bubbles become larger and then become slugs,
which are horizontally spread bubbles. For a further in-
crease of flow rate the state becomes disordered and fi-

nally reaches a dilute state of particles in which spatial
homogeneity is recovered. These phenomena are simi-
lar to boiling water. The phase transitions in Huidized
beds, however, are not thermal phase transitions. Thus
the mechanism of the phase transitions in fluidized beds
must difkr &om that of the boiling of water.

These dynamical phase transitions have not been ob-
served in the systems of smaller particles in flows such
as colloid particles, which are much smaller than granu-
lar particles [14]. The reason such interesting phenom-

*Electron address: ichikicmpt01. phys. tohoku. ac.jp
t Electronic address: hisaoengels. physics. uiuc. edu
~ Present address.

ena are observed in granular systems may be the ab-
sence of Brownian motion. Namely, granular systems
cannot reach any equilibrium states, while colloid parti-
cles can. Thus granular particles are an interesting sub-
ject in nonequilibrium statistical physics.

We do not have an established model that is suit-
able to describe Quidized beds. A modern and successful
approach is simulation by the distinct element method
(DEM) [15—17]. The DEM is also a powerful tool to
describe vibrating beds [9,10]. In this approach, the in-
teractions among particles are replaced by a mechani-
cal model that consists of springs, dashpots, and sliders.
The fluid motion is assumed to obey a phenomenological
model where the hydrodynamic interactions are replaced
by the coarse-grained &iction between the particles and
the fluid. In this way, hundreds of thousands of particles
have been successfully simulated and a realistic motion
of particles is reproduced. However, we stress that the
DEM is not independent of the experiments because ex-
perimental results are used to choose parameters.

Two-Quid models are often used to describe Huidized
beds [12,13]. These models allow one to understand
macroscopic pattern formation, using bifurcation analy-
sis and hydrodynamic stability analysis. In addition, sim-
ulations based on the two-fluid models reproduce realistic
motions [13,18,19] and some authors indicate that soli-
tons play an important role near the onset of the instabil-
ity of uniformly fluidized beds [20—24]. In spite of these
successful results, the two-fluid model contains some dif-
hculties. For example, it is dificult to choose a suitable
two-fluid model [25]. The role of particle motion is not
clear because particles are described as a fluid. Further-
more, the two-fluid model is supplemented by empirical
laws for the choice of parameters. Although two-fluid
models contain a continuous approximation, the simula-
tion of two-Quid models is not easier than the DEM.

In this paper, we perforxn a simulation based on the
model that does not contain any empirical parameters
except for the particle radius, the mass densities of the
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fluid and the particles, and the shear viscosity of the fluid.
For this purpose, we neglect the complexities of granu-
lar systems, which are polydispersity, direct interactions
among the particles such as the Coulomb interaction and
intermolecular forces, and chemical reactions induced by
mixing. We treat only systems that contain monodis-
perse spheres with hard-core interactions among the par-
ticles and with hydrodynamic interactions described by
the Stokes approximation [26].

In the next section we show how to construct the model
and discuss its relevance in detail. In Sec. III it is shown
that bubbles and slugs are observed in the simulation.
In Sec. IV we analyze the data obtained from the simu-
lation. For example, we show the distribution functions
and the power spectra of particle velocities. In Sec. V we
briefly explain how power laws in power spectra appear.
In Sec. VI we conclude and summarize our results. We
will present the details of our calculational method for
hydrodynamic interactions among particles in Appendix
A and the treatment of fixed particles in Appendix B.

II. SIMULATION METHOD

d
m —U = Ff +F~+F;+F~,

dt

where the velocity U, the position x, and the forces F~
(t = f, g, i, b) represent vectors containing K particle el-
ements as

x(i) F(i)

x =

In this section we summarize the algorithm of our sim-
ulation for granular particles immersed in a Quid stream.
This section consists of two parts. The first part is de-
voted to the general perspective of the motion of particles
in a fluid. In the following part we discuss the validity of
our approximations. The hydrodynamic interactions are
calculated by the Stokesian dynamics method [27—29],
which is briefly described in Appendix A.

In general, classical particles with mass m in a fluid
obey the Langevin equation

pgasV pgaV
2V )

St = mV2 2 p„aV
6~pa2V 9 p

where Pe, Re, and St are, respectively, the Peclet num-

ber, the Reynolds number, and the Stokes number. In
Eqs. (3)—(5), a, p„, py, and p are the particle radius, the
mass densities of the particle and the fluid, and the shear
viscosity of the fluid, respectively, and k~ is the Boltz-
mann constant. V is the characteristic velocity, where we
choose the sedimentation rate of one particle

mg
6'pa

2a ppg
9p

(6)

with the efFective gravitational acceleration g = g(pz-
p~)/p„. These dimensionless numbers actually have def-
inite meanings. The Peclet number is the ratio of work
done by the drag force over the size of a particle (67rpa V)
to thermal energy (A:~T). The Reynolds number is well
known as the ratio of inertia to drag. The Stokes number
represents the relative importance of the kinetic energy
of particles (mV ) to work done by the drag force. It is
also recognized as the ratio of the time scales

St = —,T-
Tp' (7)

where T, = m/6+pa is the relaxation time of particle
velocity due to the drag force and T„=a/V is the passing
time of the particle scale a with the velocity V.

The Froude number, which has been widely used on
this problem, is given by

V
Fr = (8)

gL

with I being the linear size of system. The meaning of
the Froude number is the ratio of the kinetic energy to
the gravitational potential and Fr is proportional to St if
we adopt V = Uo defined in (6). For later convenience, we

also introduce the e8'ective Reynolds number of particles
as

U(w) F(N)

(2)

VL
Re(p) =

Vp

9L
St,

2a

where the superscript (i) represents the index of the par-
ticle. In Eq. (1) there are four kinds of forces: Fy is the
drag force from the fluid, Fg is the gravitational force
exerted on the particles, F; is the force due to direct in-
teractions among particles, and Fg is the Brownian force
coming &om the thermal motion of the fluid. Although
the size distribution and the shape of particles are im-
portant factors in technology, we restrict ourselves to the
motion of monodisperse spherical suspensions.

We define the dimensionless quantities Fg ———mgE, (10)

where vz ——p/p~. The Stokes number is related to the
particle size, while the Froude number and the efFective
Reynolds number Re(„) are related to the system size.
The role of Re(„) will be discussed in Sec. V. Thus Pe,
Re, and St are fundamental and independent parameters
to determine the motion of particles.

I et us consider the explicit form of forces in (1) and
discuss their relevance. The gravitational force F~ acting
in the z direction is simply given by

6vrpa V

k~T
where E, is the generalization of unit vector e, as in (2).
The direct interaction among particles F; is assumed to
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be due to hard-core interactions. Therefore it can be
treated as exchanging velocities during elastic collisions
among particles. We neglect the random force Fb, be-
cause in this paper we treat the system where the Peclet
number is large enough. The validity of Pe )) 1 will be
discussed later.

The most relevant and complicated force is Fy, which
is determined by the Navier-Stokes equation

o = —B(x) UD —ix )
—E*. (18)

It is obvious that Uo is the same solution as that for
St (( l. Although Ui(t) is determined by

St=U, (t) = —R(x)U, (t),
dt

we adopt the simplest form for computational eKciency,
pf (B,u+ (u V)u) = pV u —Vp,

with the incompressible condition
A ~ A ( t't
Ui(i) = Ui(0) exp ]

——~,Sty
' (20)

V u=0. (12)

—pV u+ V'p = 0.

In this case the particle velocity U is connected with the
force induced by the particles on the fluid F„in the linear
relation [30]

Fp ——B (x) (U —u ), (14)

where u is the fluid velocity in the absence of particles
and R is the 3N x 3N resistance matrix, which depends
only on the particle configuration x. The details of the
construction of Bare described in Appendix A. The force
F„ induced by the particle is related to Fy by

F — Ff
In later discussions, we assume Re (( 1. As we will show,
this approximation is valid for the motion of relatively
small particles.

In the case of Re (( 1 and Pe )) 1 and with hard-core
interactions, the Langevin equation (1) can be reduced
to

St=U(t) = —B(x(t)) U(i) —u
dt

—E, . (16)

The incompressibility is valid even if the fluid is air, when
the particle motion is much slower than the sound veloc-
ity of fluid. When Re (( 1, the Wavier-Stokes equation is
reduced to the Stokes equation

which is the solution of (19) on the assumption of B I,
where I is the unit tensor. Prom the initial condition
U(0) = Up + Uj (0), we thus obtain

A (
U(t) = Uo + [U(0) —Uo] exp

~

——
~

.
St&

'

This solution shows us that the particle velocities are
damped from the initial value U(0) to the terminal ve-

locity Ue. The simplification in Eq. (20) is crucial. We
expect, however, that the error from this simplification
is small when we choose a small enough time interval for
the numerical integration, because the resistance matrix
is calculated as a function of particle configuration at
each step.

Let us estimate the values of the dimensionless param-
eters. We adopt pp: 2 5 g cm, which is a typical value
of glass beads. Fluids are assumed to be air (pf = 1.2 x
10 s

g cm and p = 1.82 x 10 4 g/cm sec) and water
(py = 1.0 g cm and p = 1.0 x 10 g/cm sec) at room
temperature. Substituting k~ ——1.38 x 10 ergs K
T = 293 K = 20 C, and g = 981 cmsec 2, we obtain
Table I and Fig. 1. We also show the characteristic times
T„and Tz in (7).

The lines in Fig. 1 connect the points where dimen-
sionless parameters are equal to unity for air and water.
Therefore, there is no meaning in the vertical axis. In
the left of the line of Pe=1 in Fig. 1, the random force
is dominant and the particles can be regarded as typical
colloidal suspensions. On the other hand, the particles

Here we scale the velocities by V, the length by the radius
a, and the resistance matrix by the drag factor 6+pa. We
denote the dimensionless value of U as O'. From (16) it
is obvious that the Stokes number St is an important pa-
rameter for our model. The role of St is also pointed out
for dilute monodisperse suspensions with low Reynolds
number [31,32]. For vibrating beds in which the particle
inertia is dominant and the hydrodynamic interaction is
negligible, St should be large, while for liquid-fluidized
beds St is small.

In our simulation, we need to integrate Eq. (16) for a
small time interval numerically. We divide U(t) into two
parts

water

Pe 1

particle radius

2
10 [em]

U(t) = Up + Ui(t).

Uo is determined by

(17) FIG. 1. Relationship between the particle radius and di-
mensionless parameters. The straight lines connect the points
in which dimensionless parameters are 1.
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Quantity
St
Pe
Re

Air
9.1 x 10
2.5 x 10

2.0 x 10

Water
18x10
15x10

3.3 x 10

3.1 x 10
33x10 4

56x10
3.1 x 10

TABLE I. Values of the dimensionless parameters and the
characteristic time T„sec and T„sec when the particle radius
is 10 cm.

rection perpendicular to this plane. Thus, in such cases,
particles are inQuenced by three-dimensional hydrod-ro y-
namic interactions.

At first we show the result of our simulation using rect-
angular cells with periodic boundary conditions in which
the ratio of the height to the width is large compared
with unity. We observe stable slugs that move upward in
this simulation (Fig. 2). This result is also observed in
the three-dimensional (not monolayer) simulation with
slender cells as well (Fig. 3). From these results, parti-
cles in the dilute region relatively fall down, so that in the

to the right of Pe=1 can be regarded as typical granu-
ar particles where the hydrodynamic interaction among

particles dominates the Brownian force. In the left re-
gion of Re=1, the Quid motion can be described by the
Stokes equation. On the other hand, in the right region
of Re=1, the inertia term in the Navier-Stokes equation
is important. In the left region of St=1 where T & Tp)
we can neglect the inertia effect of particles. Thus the
particles move with their terminal velocities. In the right
region of St=1 where T„)Tz, the effect of particle iner-
tia exceeds the drag Rom the Quid. Therefore, collisions
among the particles are important.

We choose the particle radius as 10 pm because we are
interested in the case of Pe )) 1 and Re && l. In this case
the dimensionless parameters have the values presented
in Table I for air and water. As anticipated in Fig. 1,
the difference between air and water appears in the value
of the Stokes number. We are now interested in the phe-
nomena driven by the drag force, which is the behavior
in the time scale T„. Therefore, for gas-Quidized beds,
the collisions among particles are not negligible, while
for liquid-Quidized beds, the collisions are not important.
We focus on gas-Quidized beds in this paper. We will dis-
cuss the properties of liquid-Quidized beds elsewhere.

We notice that the particle radius a 10 cm belongs
to the group C in the classification by Geldart [33,13] in
which all cohesive powders are difFicult to Quidize. This
difhculty in experiments arises because direct interparti-
cle forces dominate the hydrodynamic drag force. If the
interparticle forces, except for the hard-core interactions )

can be removed, a collection of small particles must be
Quidized as will be shown.

Finally, we summarize the adopted assumptions: (i)
the diameters of all particles are identical, (ii) the inter-
action among particles is described by hard-core interac-
tions, (iii) the thermal motion is negligible, and (iv) the
inertia of the Quid is negligible. Assumptions iii and iv
are valid when the particle radius is between 1 and 10
pm in both air and water.

III. SIMULATION RESULTS

In this section we collect three typical results of sim-
ulations. In many of our simulations, the configuration
of particles is restricted to lie in a plane parallel to the
direction of gravity for ef6ciency of calculation, although
periodic boundary conditions are also applied in the di-

FIG. 2. Snapshots of the slug. The number of particles in
the unit cell is 72 and the volume fraction is 0.348. The ratio
of the height to the width is 6. Time interval is 2.0 x 10
sec.
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denser region the sedimentation velocity is smaller. This
tendency agrees with the standard theory [34—36] and
the experiments of sedimentation [14,37]. In our sim-
ulation for slugs the configuration of particles is nearly
close packed and particles are immobile in concentrated
regions. On the other hand, in the dilute region, par-
ticles monotonically fall down. We cannot observe any
convection of particles in this simulation. Thus slugs can
be produced by a pseudo-one-dimensional motion of par-
ticles, after the uniform state has become unstable.

Next we show the result of our simulation using square
unit cells with periodic boundary conditions. Figure 4 is
a typical snapshot. In contrast to the previous result,
we see that particles in the dilute region Goat up, while
particles in the dense region fall down. Thus particle
convection exists around the dilute region, which may
be regarded as a bubble. This kind of convection inside
bubbles has been observed in experiments [38]. Thus we
infer that convection is important to create bubbles. This
bubble, however, is not stable and it will disappear soon
afterwards. We can also see periodic birth and death
processes of bubbles.

We have also performed simulations introducing fixed
particles in our system. The treatment of fixed particles
is described in Appendix B. In real systems, particles
are settled in a vessel. For this purpose, we introduce
particles fixed at the bottom of the unit cell. In our sim-
ulation, the Axed particles are placed horizontally, spaced

FIG. 4. Snapshot of the simulation with square cells with
the periodic boundary condition. It is shown with four pe-
riodic images. The number of particles in the unit cell is 90
and the volume fraction is 0.327.

3.5 in units of the particle radius apart. We perform this
simulation as follows. At first we randomly position &ee
particles and allow them to drift to the bottom under
the in6uence of gravity. Thus the Bee particles fall down
and produce a Gxed bed. Next we inject the Bow upward
with the velocity u . The result of our simulation after
the injection of How is shown in Fig. 5. We notice that
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FIG. 3. Snapshots of the slug in three-dimensional simula-
tion. The number of particles is 50 in the unit cell and the
volume fraction is 0.45. The ratio of the height to the width
is 4 and time interval between them is 2.0 x 10 sec.

FIG. 5. Sequence of the simulation with fixed particles.
The numbers of free particles and 6xed particles in the unit
cell are 128 and 10, respectively. The velocity of the induced
fluid is u = 0.3Uo, where Uo = my/67rlja is the one-particle
sedimentation velocity. The time interval from the upper left
to the lower right is 0.112 sec. We can see three bubbles fiow-
ing up through the bed (except for the initial instabilities).
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Boat up in dilute regions and fall down in concentrated re-
gions. This tendency can be understood as follows. The
concentrated regions can be regarded as clusters, where
Bow cannot penetrate inside clusters. Thus clusters may
have fast sedimentation velocity as in the definition of
V oc a2 with the radius a. On the other hand, slugging
motion is understood &om the standard theory of sedi-
mentation of homogeneous suspensions, where dilute re-
gions have larger sedimentation rate than dense regions.
In Fig. 2 we see no isolated clusters and particle dis-
tribution for horizontal direction is almost uniform. If

0.1
300 400 500 600 700 800 900 1000 1100 1200

step

FIG. 6. Time evolution of the standard deviation of parti-
cle velocities in the simulation of Fig. 5. Velocities are nor-
malized by the one-particle sedimentation velocity Uo. One
step means l.o sec.

particles are dispersed uniformly, Buid Bow experiences
greater drag &om many particles than that from small
particles. In other word, the difference between the bub-
bling phase and the slugging phase is whether or not the
convection of particles exists. To produce convections, we
need both characteritics of clusterings and sedimentation.
Thus the particle motions in real systems are determined
by complex combinations of two difFerent characteristics.
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FIG. 7. Time evolution of the volume fraction of particles
in the area that is the horizontal region at 8/25 of the cell
height above the bottom in the simulation of Fig. 5. One
step means 10 sec.

the unit cell drawn in Fig. 5 is connected with its mirrors
in all directions as in the previous figures.

From Fig. 5, we observe that at first the fixed bed
floats like a single cluster, but the cluster becomes unsta-
ble. Then the fixed bed. becomes a fIuidized bed. In this
Buidized bed, we observe the formation of bubbles peri-
odically at the bottom, which Boat up and travel through
the bed. We also observe particle convection around bub-
bles. This kind of bubble formation from fixed beds is
similar to that in the real experiments [38] and large size
simulation [11,15—17].

Figure 6 shows the standard deviation of the particle
velocities and Fig. 7 shows the number of particles in the
region at 8/25 of the cell height above the bottom. These
figures show that bubble formation occurs periodically at
the peaks of the standard deviation.

At the end of this section, we summarize important
characteristics in Buidized beds. When we compare the
results in Figs. 2 and 4 or 5, we observe that the particle
motion has difFerent characteristics. In Fig. 4, particles

IV. ANALYSIS

In this section we analyze the data obtained Rom our
simulation. At first we discuss the velocity distribution
functions (VDFs), where not only Gaussian-like but non-
Gaussian distributions are observed and the close rela-
tionship between the deviation &om Gaussian and the
local density of particles is indicated. Next we discuss
the power spectra obtained from the data, which suggest
the existence of tails obeying power laws. These power
law tails may correspond to those reported by Taguchi
[39], and taken as an evidence for powder turbulence [40].

We display VDFs in our simulation for systems with
the square periodic cells in Fig. 8. Prom this figure, it is
obvious that the VDFs are near Gaussian but anisotropic.
In this case, the vertical VDF has two branches, each
obeying a difFerent Gaussian distribution. This transmis-
sion in the VDF has also been observed. in the simulation
of the two-fluid model [19]. The anistropic poperty of
VDF indicates that the system does not have any local
equilibrium.

For the systems with fixed particles, the form of VDFs
is similar to an exponential one (Fig. 9). It is interest-
ing that the introduction of fixed particles produces an
exponential VDF. In this system, as shown in Fig. 6,
active states that have a large standard deviation of par-
ticle velocities and inactive states of motion of particles
emerge in turn. Prom Figs. 6 and. 7, we indicate that the
active state corresponds to the appearance of a bubble
and in the inactive state contains is no bubble. To see
the quantitative difFerence between two states, we inves-
tigate VDF in each state separately. Here we define the
active state as the time region where the standard de-
viation of particle velocities is more than 0.4UO and the
inactive state as the period where the standard deviation
is less than 0.3UO. Figure 10 shows the VDFs for the ac-
tive and the inactive state. Prom this figure, the VDF in
the inactive state is close to an exponential distribution,
while that in the active state is a Gaussian distribution.

For the systems with slugs, VDFs are far Rom Gaus-
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0

U

sian and also different &om simple exponential distribu-
tion (Fig. 11). We attempt to fit VDF, f(U) with the
velocity U to the t distribution
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where a and b are parameters. This t distribution is
observed by Taguchi and Takayasu [41] for VDFs in vi-
brating beds and by Sinai and Yakhot [42] for passive
scalars in turbulence. Prom Fig. 11, although the hori-
zontail VDF can be fitted by the t distribution, the verti-
cal VDF is far &om any t distribution. However, the tail
for negative U& can be understood by the following sim-
ple picture. In the slugging state, most of the particles
are included in the dense region and only a few parti-
cles are falling in the slug. Here we assume that falling
particles start &om zero relative velocity to the dense re-
gion. The particles are accelerated by gravity and then
collide with the top of the dense region and join in it.
If these assumptions are valid, the VDF of falling parti-
cles is uniform in the range between the initial and the

U0
lt) 0.001
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-rl

U

FIG. 8. Velocity distribution functions (VDFs) of (a) the
horizontal direction and (b) the vertical direction in the sim-
ulation of Fig. 4 (with square unit cells). The velocities
are normalized by the one-particle sedimentation velocity Uo.
The vertical component of velocity is plotted in the coor-
dinate system in which the average velocity of the fiuid is
zero and the direction of gravity is negative. The hori-
zontal VDF can be approximated by exp( —20.0U ), where
U = U/Uo. The left-hand side and the right-hand side of the
vertical VDF can be approximated by exp[ —10.0(U + 0.2) ]
and exp[ —4.5(U+ 0.2) ], respectively. The VDF f(U) is nor-
malized by f dU f (U) = 1.
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vertical direction can be approximated by exp( —5.0~U~) and
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velocity becomes zero. The Gaussian-fitted function is also
plotted.
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terminal falling velocities, which may correspond to the
tail for U„observed in Fig. 11. To investigate the VDF
in the dense region, we substract the uniform distribu-
tion &om the original VDF Fig. 11 (b)] in the range of
—0.4 ( U & —0.115. Here the probability of the uni-
form distribution is approximated by the original VDP
in the range of —0.7 ( U ( —0.4 and U = —0.115 is the
location of the peak of the original VDF. The resultant
VDF is shown in Fig. 12 in the range of —0.4 & U ( 0.3.
We can fit this well by (22) for each side of the peak,
although there is still anisotopy in the figure. Thus the
t distribution seems to be applicable to our system.

From our results of VDFs, we may indicate that non-
Gaussian properties are closely related to the local den-
sity of particles. This is because in relatively dilute cases
such as the system with square unit cells and the active
state in the system with fixed particles, VDFs are close to
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FIG. 11. Velocity distribution function of (a) the hori-
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lation of Fig. 2 (with rectangular unit cells). The veloc-
ities are normalized by the one-particle sedimentation ve-
locity Uo. The VDF in the horizontal direction can be
approximated by exp( —25.0~U~) in the exponential form or
(1.0 + 700.0U )

' in the t-distribution form The VDF in.
the vertical direction for the right-hand side can be approxi-
mated by exp( —50.0]U+0.115~) in the exponential form or by
(1.0+ 800.0(U+ 0.115) )

' in the t-distribution form. Here
U = U/Uo. The normalization is the same as that in Fig. 8.
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FIG. 13. Power spectrum E(u) of (a) the horizontal ve-
locity and (b) the vertical velocity in the simulation of Fig.
4 (with square unit cells). The frequency is normalized by
wo ——2z/2048 step 30.7 sec . The straight lines are
least-square 6ts between the frequency from u„ to cu„with
slopes of —1.597+ 0.009 and —1.626 + 0.009 for U and U„,
respectively.
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a Gaussian, while in the dense case, such as the inactive
state in the system with fixed particles and the system
that has slugs, VDFs are far from Gaussian. These two
characteristics may be understood as follows. In active
states, the density of particles is relatively low. As a re-
sult, particles can move almost freely without influence of
lubrication effects. Then collisions among particles occur
at random and inelastic effects from viscous terms that
are mainly &om the lubrication force may be suppressed.
On the other hand, in inactive states, the density of par-
ticles is extremely high and the lubrication effect also
becomes important. Therefore, the inelastic effects dom-
inate the randomness to produce Gaussian distributions.

It is interesting that we observe non-Gaussian,
exponential-like VDFs in our systems. Non-Gaussian
probability distributions are observed in various systems.
In Quid turbulence non-Gaussian distributions are found
in the probability distribution functions of velocity differ-
ences [43] and passive scalars [44,45]. In simulations of vi-
brating beds, VDFs of particles are found to be described
by a non-Gaussian VDFs [41]. For the simple models con-
sisting of hard spheres, VDFs also show non-Gaussian

N

E(~) =
& ) (U (~) . U

where

U(~) = f dt e ' 'U(t). (24)

The results shown in Figs. 13—15 are obtained by a stan-
dard fast Fourier transform routine with the Parzen win-

distribution [46,47]. In astronomy non-Gaussian VDFs
are also reported [48].

We also indicate that in the region obeying non-
Gaussian VDFs, the kinetic temperature that is defined
through the deviation of the Gaussian VDF cannot be
used. Although it is possible to introduce the granular
temperature from the different context, we need to be
aware of the difference between this granular tempera-
ture and the usual kinetic temperature.

Next we investigate the power spectra in &equency
E(ur) defined through
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FIG. 14. Power spectrum E(u) of (a) the horizontal veloc-
ity and (b) the vertical velocity in the simulation of Fig. 2
(with rectangular unit cells). The frequency is normalized by
~0 ——2vr/2048 step 30.7 sec . The straight lines are
least-square fits between the frequency from ~„ to ~„with
slopes of —1.494 + 0.01 and —1.513 + 0.009 for U~ and U»
respectively.

FIG. 15. Power spectrum E(&u) of (a) the horizontal ve-
locity and (b) the vertical velocity in the simulation of Fig.
5 (with fixed particles). The frequency is normalized by

2' j2048 step 30.7 sec . The straight lines are
least-square fits between the frequency from ~„ to ~„with
slopes of —1.514 + 0.007 and —1.490 + 0.007 for U and U„,
respectively.
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U= 27K' I' (25)

2K
Mp —

)
Tp

(26)

2K
ld )T. (27)

dow [49]. All of these figures indicate that there are three
regions: the spectra seems to be white in low u, there
are some peaks in the middle, and the spectrum obeys a
power law in high w. To understand the mechanism to
make three regions, we consider the three characteristic
frequencies

might expect to have a cascade process, as assumed by
Kolmogorov and proposed by Richardson, where the en-
ergy dissipation rate e determines the statistical proper-
ties of small particle motion. For this purpose, we as-
sume that the motion of particles is determined by only
the energy dissipation rate ~ and the viscousity p. As dis-
cussed in Sec. II, the particle motion is described by only
one relevant dimensionless parameter, the Stokes num-
ber St = 2p„oV/9p in the case of Pe )) 1 and R.o « 1.
Although the Stokes number may be regarded as the ef-
fective Reynolds number for the particle fluid, it contains
only the energy dissipation length scale. Instead of St it is
convenient to use the effective Reynolds number for par-
ticle fluid Rei„) = VL/v„= 9LSt/2a defined in Eq. (8).
Prom dimensional analysis, we obtain the following scal-
ing for the energy spectrum:

where we adopt the average particle velocity relative to
the Quid for the systems without fixed particles and the
induced Qow rate for the system with fixed particles as U.
T„and T„ introduced in (7) are the passing time of the
particle scale and the relaxation time respectively. These
frequencies are also shown in Figs. 13—15. Prom these
6gures, uL, and ~„seem to correspond to boundaries of
three regions: the white spectrum region, the region with
some peaks, and the region obeying power law. The peak
near ~/~o 13 in Fig. 15 corresponds to the frequency
of bubble formations, where coo ——(2vr/2048) x 10 sec
is the smallest frequency produced from our entire simu-
lation. In the higher frequency range, all of these figures
show the existence of a power law E(~) u~ between w„
and up whose exponent is fluctuated between —1.49 and
—1.63. This is not far from the Kolmogorov spectrum
E(u) cu ~ in fluid turbulence. We will discuss power
laws further in the next section.

V. DISCUSSION

Now we discuss the origin of the power laws observed in
the power spectra, which are similar to Kolmogorov scal-
ing [50]. Taguchi [39] also observed the Kolmogorov-like
scaling in vibrating beds. We briefly explain the relation-
ship between our observed spectra and the Kolmogorov
scaling [51]. In this sense, we need to clarify whether the
power law observed in our simulations is the same as that
of Taguchi.

Our system contains an energy source on the scale of
the lowest wave number and the energy is dissipated in
the Quid on the scale of the highest wave number. Vi-
brating beds have also common feature. Therefore, we

E(k) = "~'v„'~'Z
~

—,Re(„) ~,qk~' (28)

where F(x, y) is a dimensionless function and kg is the
dissipation scale, which is the maximum of a and the
Kolmogorov scale e / v„. In the region of high wave
numbers we might guess that there is a balance between
energy injection and cascade process, where the dissipa-
tion is not important. Therefore, we obtain

(29)

This result is equivalent to that by Kolmogorov [50].
In order to ensure the scaling ansatz, we need to impose

the condition

Ikg Re(~) p) 1.
(p) (30)

Equation (30) means that the inertia spectrum can be
observed in our system (Table II). Although there is an
ambiguity in choosing I, it is interesting that the values
of Re(

~
correspond to the strength of the non-Gaussain3/4

VDFs. We also expect that the cutoff a is larger than
4 —3/4the dissipation scale e / v„,because we do not observe

any dissipation range (see also [39]). We also comment
on the reason to observe turbulent characteristics in rel-
atively small Re(p~, where in a usual fluid, the value of
Re(p) in Table II is not large enough to show turbulent
characteristics. We guess that inelastic scatterings of par-
ticles in our system enhance chaotic characteristics, while
the molecules in pure Quid only have elastic scatterings.
We can use this argument to vibrating beds, where p is
replaced by the effective viscosity of particle Qow.

We only discuss the spectrum for E(k) and not for
our observed E(w). Although the general relationship

TABLE II. Values of Re(p) in our simulations, where I is measured by the maximum length of
the unit cell.

Quantity
Re(p)

3/4
(p)

Square Cell
(Fig. 4)

9.9 x 10
18x10

Rectangular cell
(Fig. 2)
21x10
31x10

With fixed particles
(Fig. 5)

2.1 x 10
3.1 x 10
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between E(k) and E(u) is unclear, Viecelli [52] demon-
strates that

E(~) - (u

tails of his calculations to the author. This work was
partially supported by the Foundation of Promotion for
Industrial Science and the U.S. National Science Foun-
dation through Grant No. NSF-DMR-93-14938.

for the inertia range in both Euclerian and Lagrangian
coordinate frames can be derived from (29) with the as-
suption of space-time symmetry. His argument is inde-
pendent of the basic equations and assumes that the sys-
tem can be characterized only through the kinetic viscos-
ity and e, as in our argument. Therefore, we may expect
that his argument is applicable to our case.

We also comment on the reason that we observe the
Kolmogorov-like scaling even in two-dimensional sys-
tems. In our case the enstrophy is not a conserved quan-
tity in the two-dimensional case. Therefore it is not sur-
prising that we observe the Kolmogorov-like scaling in
two-dimensional systems because the derivation of (29)
does not contain any information about the spatial di-
mensionality.

VI. CONCLUSION

In this paper, we have succeeded in simulating gran-
ular systems with Huid How without any empirical pa-
rameters. Our simulation reproduces realistic slugs and
bubbles. According to the results of our simulation, we
confirm that particle convection is important for bubble
formation. From our simulation. we observe several veloc-
ity distribution functions, Gaussian and non-Gaussian or
exponential distribution. We also observe power spectra
obeying power laws. We briefly explain the relationship
between our observed spectra and Kolmogorov scaling.
In this sense, our paper has con6rmed the universality of
the powder turbulence proposed by Taguchi [40].

Before closing this paper, we comment on our approx-
imation in using the Stokes equation for Huid How. In
real experiments and simulations by engineers, the par-
ticle radius, typically a 10 cm, is often much larger
than that we assume (o 10 cm). This is because the
direct interaction among particles, except for hard-core
interactions dominates aLL other forces and it is difBcult
to observe fluidized beds in such small particles [13,33].
For the Huidized beds with such large particles, we need
to consider the advection term in the Huid motion and
the drag, which should contain a term in proportion to
the square of the difFerence of velocities between Huid
and particles [13]. To simulate this system without intro-
duction of empirical Laws is almost impossible. We have
shown, however, that these kinds of complexities are irrel-
evant for the formation of bubbles and slugs. The essence
of the physics in fluidization can be understood when we
drop irrelevant complexities such as direct interparticle
forces and the advection term in fluid Hows.

ACKNO~LEDC MENTS

The authors thank T.S. Kornatsu, Y.-h. Taguchi, S.
Sasa, H. Takayasu, and H. Nishimori for fruitful discus-
sions. We also appreciate the useful comments by H.J.
Herrmann and A.S. Sangani and are grateful to N. Gold. -
enfeld for his critical reading and comments. One of the
authors (K.I.) thanks J.F. Brady for explaining the de-

[ F(~) U(~)=BF (~) —2& U(2)

where u is the Huid velocity without particles. The
lubrication part is separated from the exact solution as

&'2a = &2a —(M2a) (A2)

where M2a is the Rotne-Prager tensor [55], which repre-
sents the long-range interaction. Let A" be the linear
combination of all possible pairs of B&&. Then, an ap-
proximate resistance matrix is represented by

B=(M ) +R'" .

The validity of this method has been confirmed in vari-
ous numerical experiments for colloid systems. This idea
is also valid in the theoretical calculation of the sedimen-
tation rate [36].

For the Long-range interaction, we apply periodic
boundary conditions to describe the system containing an
infinite number of particles. For simplicity, we consider
only the contribution of force. Note that higher-order
corrections from torque have been discussed by Brady
et al. [29]. Beenakker [56] has shown that the mobility
matrix can be written by Ewald's summation as

6vrpa(U, —u; )

+) ) M,'. &(x —x~+r )S'~
P=—1

N

+—) ) cos [k), (x. —x~)] M, (k),)F
A+O P=1

—M,.",. '(r = O)F;, (A4)

where N is the number of particles in the unit cell and
M; . (r), M; . (k), and M, . (r = 0) are, respectively,(~) (2) (2)

given by

APPENDIX A: HYDRODYNAMIC
INTER.ACTION

In this section, we explain how to treat hydrodynamic
interactions. When we adopt the Stokes approximation,
the calculation of the hydrodynamic interactions is equiv-
alent to constructing the resistance matrix. Our aim is to
calculate the resistance matrix with acceptable accuracy,
taking into account computational efBciency. We thus
adopt the Stokesian dynamics developed by Brady and
his co-workers [27—29] to describe colloidal dispersions.
They distinguish hydrodynamic long-range interactions
from the lubrication force, which represents short-range
hydrodynamic repulsive interactions. For the long-range
part, we use the multipole expansions, while for the lu-
brication part, we use the exact solution of two-body
problem [53,54] as
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(i) (3a I a l . (3a 3a'l
M,. (r) = erfc((r) b;, ]" (4r 2rs) * ' (4r 2r')

+ g
]

4 sg7 4 + 3 (3 2 20 3(s 2
g + 14 3(3 + 3(

r )
+r;r

]

—. 4a ( r —3a( r + 16a ( r + —a( —2a $ —3a (—~r2

(A6)

and

vr i 3 (A7)

Here erfc(x) is the complimentary error function given
by

OO

erfc(x) = exp( —z')dz
7r x

(A8)

r~ = (niLi, n2L2 n3L3), (AS)

where Li, L2, I3 denotes the length of unit cell in each
direction. The wave vector kg in the reciprocal cell A =
(mi, m2, ms) is given by

( 2vrm, 27t m2

L2

2~m,
Ls )

(A10)

The summation P M, in Eq. (A4) means that the con-
tribution of the sum in which o. = P at p = 0 is elimi-
nated. The contribution of k = 0 in the lattice sum in
reciprocal space is canceled by that of the average force
acting on the fluid [29].

We have checked the validity of our program to exam-
ine several sedimentation velocities under regular con-
figurations such as simple cubic, body-centered cubic,
and face-centered cubic. We compared our results with

and ( with units of inverse length is an arbitrary param-
eter that we choose to minimize the number of lattice
sums in both real space and A: space. In the simulation,
we use ( = ~vr/L, where I is the average of the length of
the periodic cell. The suffix p = (ni, n2, ns) represents a
periodic cell in the real space and r~ is the lattice vector
given by

I

the Stokesian dynamics by Brady et al. [29] in which
we choose the corresponding model, neglect higher-
order moments of hydrodynamic interactions, and use
the exact solution by Zick and Homsy [57]. From this
test, we recover the corresponding result by Brady et al.
[29], that is, our program seems to work correctly. Fur-
thermore, our result is very close to the exact solution
by Zick and Hornsy [57], except for an extremely con-
centrated region. Thus the simplification of neglecting
higher-order moments does not cause serious problems.

APPENDIX B: FIXED PARTICLES

In this section, we show how to calculate the terminal
velocities when we introduce particles fixed in the space.
If we obtain the terminal velocities, the motions of free
particles are determined by (21).

If we know the resistance matrix that contains both
&ee particles and fixed particles, we obtain the equation

F
Fy

where the subscript m represents &ee particles and the
subscript f represents fixed particles. We already know
the force acting on free particles F, the velocity of fixed
particles Uf ——0 and the velocity of induced Buid u
Equation (Bl) can be solved for U as

U —u =R (F +R t. ut ). (B2)

Therefore the terminal velocities of free particles can be
represented by known variables. This procedure is appli-
cable to systems with periodic boundary conditions. In
fact, from Eq. (A4) the mobility matrix can be composed
of particles in the unit cell.
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