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Time-dependent hydrodynamic interactions in a colloidal suspension of hard spheres are studied,
both experimentally and through computer simulation. The focus is on the behavior at small wave
vectors, which directly probes the temporal evolution of hydrodynamic interactions between nearby
particles. The computer simulations show that the time-dependent diffusion coefEcient has the
same functional form for all wave vectors, with a single characteristic scaling time for each length
scale and for each volume fraction. Wave-vector-averaged effective diffusion coefFicients, measured
experimentally using diffusing wave spectroscopy, also scale to the same functional form. In this
case, the scaling time is dependent on both volume fraction and particle size; it decreases sharply
with decreasing particle radius, reQecting the greater contribution from smaller wave vectors that
is contained in the scattering from the smaller particles. For a direct comparison of simulation and
experiment, we simulate the experimentally observed correlation functions, by averaging the wave-
vector-dependent computer-simulation data with the weighting appropriate to the experimental
technique. Although the overall scaling is similar, there are quantitative differences in the simulated
and measured relaxation times. We suggest these differences are due to the compressibility of the
suspension, and that the resultant pressure waves make an unexpectedly significant contribution to
the hydrodynamic interactions.

PACS number(s): 82.70.Kj, 05.40.+j, 47.15.Pn, 82.70.Dd

I. INTRODUCTION

In this paper we report experimental and numerical
studies of the spatial and temporal evolution of hydro-
dynamic interactions in colloidal suspensions of micron-
sized spheres. When a sphere is set in motion by an
external force or by a thermal Quctuation, it sets the sur-
rounding Quid in motion by transferring momentum to
it. Part of this momentum is carried ofF as sound waves,
and spreads out in time over a spherical volume of ra-
dius c,t (c, is the velocity of sound). The majority of the
momentum transferred to the Quid diKuses throughout
the system at a rate controlled by the kinematic shear
viscosity of the Quid v. Thus momentum that is initially
localized near the particle spreads out over a spherical
volume of radius ~vt. This leads to a slow decay of the
velocities of both the sphere and the surrounding Quid,
which asymptotically vary as (vt) s~ in three dimen-
sions and as (vt) ~ in two dimensions. In concentrated
suspensions, the hydrodynamic Bow fields interact with
the solid particles giving rise to a complex, many-body
scattering problem. These hydrodynamic interactions
are ubiquitous to all particle-Quid suspensions. The aim

of this work is to study the development of these hy-
drodynamic interactions, both in time and in space. We
do this by investigating time-dependent correlations in
particle motion, in dilute to concentrated suspensions,
using a combination of light-scattering experiments and
numerical simulation.

Since the colloidal particles are much larger than Quid
molecules, there is a very large time scale separation be-
tween the diffusion of fluid momentum and the diffusion
of particles; the ratio D/v is of the order of 10 s. There-
fore there is a substantial time regime (typically between
10 s and 10 s s) during which the hydrodynamic flow
fields and the particle velocities are evolving to a qua-
sistationary state, whereas the particle coordinates are
essentially fixed. Within this time range, we can study
the temporal evolution of the hydrodynamic interactions
without the added complications of changes in particle
configuration. However, the experimental measurements
must then probe particle motion over distances of or-
der tens of angstroms. This can only be accomplished
by using difFusing-wave spectroscopy (DWS), which is an
extension of traditional dynamic light scattering into the
multiple-scattering regime.

Dynamic light-scattering experiments measure the
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phase shift between light scattered by different particles,
via Huctuations in intensity of the scattered light; by
time correlation, relative motion between particles can
be detected [1]. However, single-scattering experiments
can only observe motion on length scales of order 1000
A. , a significant fraction of a particle radius. By the
time the particles have moved such distances (i.e., times
of the order of milliseconds), the hydrodynamic interac-
tions have long since reached the quasistatic or "creeping-
Qow" limit. Recently, a multiple-scattering technique,
DWS, has been used to dramatically increase the spa-
tial and temporal resolution of light-scattering experi-
ments [2—4]. Diffusing-wave spectroscopy works because
the phase shifts &om each scattering event accumulate
in a stochastic fashion, thereby increasing the resolution
by the square root of the number of scattering events. In
the strong-scattering limit, the photon path is purely dif-
fusive and the experimental data can be deconvolved to
obtain information about particle motions at very short
length scales (10 s cm in these experiinents), and there-
fore, at very short times (10 s). However, each of the
many scattering events along a particular photon path
has a different scattering angle, between 0 and 180;
hence DWS probes an average over many different wave
vectors [5], rather than a specific (and variable) wave vec-
tor as measured in a single-scattering experiment. Thus,
while very short time scales can be resolved with DWS,
the full spatial dependence of the hydrodynamic interac-
tions cannot be determined.

To overcome this limitation of DWS, and to better
understand the complex behavior of the hydrodynamic
interactions, we use numerical simulations [6,7] as an im-
portant complement to the experimental data. These
simulations provide the essential wave-vector-dependent
resolution of the time-dependent hydrodynamic interac-
tions. Our most important finding is that all the data,
at any solid volume fraction, P, and at any wave vec-
tor, q, can be scaled onto a single master curve [8]. The
functional form of this curve corresponds to the time-
dependent motion of a single suspended sphere, and can
be calculated analytically. The data suggest that at a
particular wavelength and volume &action, the temporal
evolution of hydrodynamic interactions is governed by a
single relaxation time.

In order to directly compare the results of the numer-
ical simulations with experimental DWS data, we have
averaged the q-dependent simulation data over a range of
wave vectors. We use a theoretically determined weight-
ing factor that depends on the particle radius we wish
to compare with, and the wavelength of the laser light.
We find that the wave vector-averaged data also scale to
the single-sphere curve; the relaxation time now depends
on particle radius a (instead of wave vector) and vol-
ume &action. Similar scaling is also seen experimentally.
However, a significant discrepancy between the simulated
and measured relaxation times persists; we suggest that
this discrepancy actually reQects an important role that is
played by sound waves, which carry a significantly larger
&action of the momentum in the experiment than in the
simulations.

This paper is organized as follows. In the next section
(II) the basic concepts of time- and space-dependent hy-
drodynamic interactions are introduced; we also discuss
earlier results for both single-particle and collective dif-
fusion. In Sec. III we present a theoretical description
of the use of DWS to probe these highly concentrated,
and therefore strongly scattering suspensions; this pre-
sentation emphasizes the physical concepts rather than
the formal description. The experimental setup and the
experimental results are described in the two subsequent
sections (IV and V). In Sec. VI the simulation tech-
niques are described and the key results are presented in
Sec. VII. Section VII also includes a direct comparison
between the simulation results and the experimental re-
sults; the observed discrepancies motivate a discussion of
the effects of sound waves. The paper ends with a brief
concluding section.

II. PREVIOUS RESULTS

A. Self-difFusion

It has been established, both experiinentally [9,10] and
by simulation [11], that the time evolution of the rnean-
square displacement of a tagged sphere, (b.R (t)), in a
multiparticle suspension, can be characterized by a sin-
gle relaxation time w(P), at all solid volume f'ractions,
P. This scaling law is expressed in terms of the hydrody
namic interaction unction

H(t) = ) AB2(t)
0 i=1

Dp ——k~T/6vrqpa is the difFusion coefficient of an isolated
sphere of radius a in a solvent of viscosity qo. All the
experimental and numerical data for H(t, P) can be fitted
to a single master curve Hp(t*), which is a function of a
reduced time t' = t/r, and a volume-fraction dependent
scaling time 7.(P):

H(t ~) = H (~)Ho(t/ (~)) (2)

where H (P) is the long-time limit of H(t, P). To avoid
confusion, we point out that our long-time limit refers
to the development of hydrodynamic interactions, rather
than to the motion of the solid particles themselves. Thus
H (P) is related to short-time self-diffusion coefficient
Dg(P) = DpH (P). If the scaling relations described by
Eq. (2) are to be valid at low concentrations, it follows
that 'r(0) = 7p = pa /rip and that Hp(t') is the normal-
ized mean-square displacement of an isolated sphere. If
the fluid is assumed to be incompressible, then Hp(t*) is
a known function of the reduced time and the ratio of
the mass density of the solid particle to that of the Quid

pR [12]: its asymptotic expansions are
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the scaling relation described by Eq. (2), then we would
expect that the velocity autocorrelation function,

1
J(t) = ) U;(t) U;(0) = „[DtH(t)], (5)

i=3.

the parameter tr = (2pR + 1)/9 includes the added-mass
correction.

The experimental results [9] show that at higher vol-
ume fractions the time-dependent mean-square displace-
ment has the same functional form as at low density, but
with a relaxation time governed by the high-&equency
viscosity of the suspension rf(p), rather than that of the
pure fluid; i.e., w(P) = pa /g(P). Thus in this picture,
the suspension behaves as an effective Quid medium with
a viscosity rI(P). However, additional experiments [10],
probing an even shorter time regime, suggested that the
scaling may extend to very short times t/r ( 1. This is
somewhat puzzling, in that these times are too short for
hydrodynamic interactions to propagate over typical in-
terparticle separations by viscous di6'usion. Numerical
simulations [11], incorporating accurate hydrodynamic
interactions and thermal Quctuations, also found a scal-
ing of the mean-square displacement over a very wide
time regime, from reduced times t/w = 0.1 and. up.

The simulations reproduced the experimentally ob-
served scaling with acceptable accuracy; our earlier anal-
ysis [11] is reproduced in Fig. 1(a). However, the sim-
ulation data can actually be 6tted more accurately by a
slightly different time scaling v(P) = H (P)vo, as shown
in Fig. 1(b); thus the scaling time is proportional here to
the self-difFusion coefBcient, rather than the inverse of the
viscosity. If the time dependence of the hydrodynamic in-
teractions is a single relaxation process, as suggested by

will also scale with the same volume-fraction-dependent
relaxation time [13]. According to Eq. (2),

(6)

where M is the particle mass and Jo(t') is the velocity
correlation function for an isolated sphere,

Jo(t') =
i

n —— [t'Ho(t')].(
9) dt'2

The asymptotic expansions of Jo(t') are

(I —
g ) (I —~ t*~~~) + O(I )'

( 1) 1 tI —3/2 + g(tI —5/2)

t*)P 1.

It can be seen that at short times Jo(t') does not asymp-
tote to unity but to a smaller quantity (1 + 1/2pR)
This is a consequence of the incompressible Quid model,
used to derive the expression for Ho(t); it neglects the
part of the initial momentum that is carried oK by sound
waves. It is assumed that this initial relaxation is so
rapid that it makes a negligible contribution to the mean-
square displacement. While this is clearly true for an
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isolated sphere, the situation in a dense many-body sus-
pension is more complex. We will return to this point in
Sec. VIID.

It is clear from Eq. (6) that the velocity correlation
functions will not scale to a single curve unless the re-
laxation time is proportional to H (P); i.e., v(P)
H (P)70. Thus it is interesting that precisely this scaling
produces the best Gt to the simulation data; the scaled
velocity correlation functions are shown in Figs. 1(c) and
l(d). The simulation data [scaled as in Figs. 1(b) and
1(d) by H (P)~0] imply that there is a single relaxation
process, so that a scaled velocity correlation function can
be integrated to give a mean-square displacement with
similar scaling. This is not true of the experimentally
measured H(t) data [9]; they clearly scale better using
the inverse of q(P) rather than Ds(P). Thus, it would
not be possible to generate a scaled set of velocity corre-
lation functions by just difFerentiating the scaled experi-
mental H(t) data with respect to time [Eqs. (6) and (7)].
This suggests that there may be an additional relaxation
process in the experiments that is absent &om the simu-
lations. One possible cause is the different mass density
ratios of solid particles and fIuid. Experimentally pR 1,
whereas in the simulations (for computational reasons,
discussed in Sec. VI) p~ is usually around 10 and in all
cases at least 5. If sound waves do make a signiGcant
contribution to the mean-square displacements in dense
suspensions of neutrally buoyant particles, then we might
expect a noticeable difference in relaxation times when
compared with more massive particles used in the sim-
ulations, for which the sound-wave contributions would
be much smaller. This is discussed in more detail later
in the paper (Sec. VIID).

B. Collective diffusion

We investigate the spatial dependence of hydrody-
namic interactions by probing a wave-vector-dependent
analogue of the mean-square displacement, H(q, t):

1 1
H(q, t) = —) q. [R,(t) —R;(0)]

2Dpt N . .
47g 1

x [R;(t) —R,.(0)] .q e'~ ~"

of interparticle hydrodynamic interactions; it shows how
the trajectory of one particle is afFected by the motion
of its neighbors. By examining how the time evolution
of Hl(q, t) varies with q, we can begin to understand the
spatial dependence of hydrodynamic interactions as well
as the time dependence.

In the DWS experiments, it is not possible to measure
H(q, t) directly; instead what is measured is a weighted
average over a range of wave vectors, denoted by [H(t)].
The weighting function that determines [H(t)] depends
on the particle radius a (see Sec. III); thus, by varying
the particle size, different ranges of wave vector can be
probed. Surprisingly, the same scaling of [H(t)] data,
which was previously observed for large particles [9], is
reproduced for small particles as well [8]. The interesting
implication of this result is that the collective hydrody-
namic interactions, H(q, t), must scale in a similar way
to the single-particle interactions. To verify this suppo-
sition we have used computer simulations to calculate
H(q, t) directly, rather than the weighted average over

q determined by DWS. Scaling i8 observed in the nu-
merical simulations at each individual q; H(q, t) can be
scaled onto the single-particle curve, with a scaling time,
w(q, P), that depends on both q and P. The q dependence
of the scaling time is similar to H (q, P).

To compare the simulation results Inore directly with
experiment, we have averaged the simulated H (q, t)
over difFerent q values, using a theoretically determined
weighting function for each particle radius that matches
the expected DWS weighting. We Gnd a rather large
discrepancy between the measured and predicted relax-
ation times, factors of 2 or more [8]. The differences in
the single-particle (large-sphere) scaling times are not as
large, about 35%%uo at P = 0.45, and could even be ex-
plained by the combined uncertainties in the simulations
and experiments. However, the differences in the scaling
times for collective diffusion (small spheres) are too large
to be accounted for by experimental uncertainty; we spec-
ulate that both discrepancies have the same physical ori-
gin, resulting &om the effects of momentum transported
away by the sound waves.

III. DIFFUSING WAVE SPECTROSCOPY OF
OPTICALLY INTERACTING PARTICLES

where q = q/q and R;z ——R; —R, . For large values
of q, terms with i g j average to zero; in this limit
the time-dependent hydrodynamic interaction function
H(q, t) reduces to the one-particle interaction function
H(t), which is independent of q. At longer wavelengths
(smaller q) collective motions make important contribu-
tions to H(q, t). Thus, it is useful to decompose H(q, t)
into the sum of H(t) and an interaction contribution
HI(q, t);

H(q, t) = H(t) + Hz(q, t).

The interaction contribution HI(q, t) consists exclusively
of the terms with i g j and directly measures the effects

The key assumption in interpreting the results of a
DWS experiment is that the propagation of light through
the scattering medium can be described by a diffusion
equation [2,14]. Thus the photon paths through the scat-
tering volume are described by a random walk; the distri-
bution of these paths is determined by a solution of the
diffusion equation for the experimental geometry. Each
photon path is ascribed a phase, which evolves in time
with the motion of the scattering particles that comprise
the path. Moreover, since each path is comprised of a
different set of scattering particles, these paths are statis-
tically uncorrelated. Thus, the Geld correlation function
&om each path can be calculated individually and the
total correlation function is just the sum of the contri-
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butions &om the individual paths, weighted by the prob-
ability that a diffusing photon follows that path. The
correlation function of each path is calculated by sum-
ming the contributions of all the scattering events which
make up the path. Since the light must scatter a large
number of times in traversing the sample, the contribu-
tions of the individual scattering events are averaged over
all scattering angles, with a weighting factor determined
by the angular scattering probability of the light.

The interpretation of DWS data is more complex than
in the case of single-scattering experiments. To show
how the data can be interpreted to extract information
about particle motion, we present a summary of the the-
ory of DWS for optically interacting particles [15,16].
Our derivation is motivated by a physical picture for the
multiple-scattering process, and explicitly demonstrates
how DWS experiments probe an average of H(q, t) as de-
fined in Eq. (10). We obtain the same results as other
less specific derivations [15], as well as more formal dia-
grammatic techniques [17]. Before proceeding with the
more complicated calculation for multiply scattered light,
it is instructive to consider the case of singly scattered
light in order to indicate how H(q, t) [Eq. (10)] can be
determined &om a light-scattering measurement.

In the weak-scattering limit, the scattered electric field
&om a suspension of identical particles is given by the
sum of the scattered fields &om each particle:

(16)

We will use this result below.
We can express gi(t) in terms of H(q, t) by making use

of the relation [19]

(A(tj . A*(ojj = —(A(tj . L'( j)o: (17)

substituting the dynamic structure factor into Eq. (17),

added in order to calculate the total scattered intensity.
However, particles outside the correlation volume do not
scatter coherently with those inside it; on average, the
randomness of the phases causes their scattered fields to
cancel, so they make no contribution. Thus the total
scattered intensity is an incoherent summation of con-
tributions &om each correlation volume. The scattering
&om each correlation volume is again proportional to the
dynamic structure factor, but summed over only the Ng
particles within that volume,

E(q, t) = b(q) ) e ' '
(12)

here we neglect q-independent constants that will cancel
in the normalization. The scattering amplitude b(q) is
related to the form factor of a particle,

+(q) = b(q)b'(q).

The interpretation of dynamic light-scattering experi-
ments follows &om the normalized electric-field autocor-
relation function [18]

(@(0)@(t)) S( t)
(~(0)~*(0)) S(q)

'

where the dynamic structure factor is defined by

S( t) aq [R; (t)—R, (0)]
g

4 jj 1

(15)

The static structure factor, S(q) = S(q, 0), reflects the
coherence of light scattered by particles whose positions
are correlated and which lie within a volume of order
q; the dynamic structure factor reHects the temporal
decay of these correlations. A schematic representation
of the contributions to the structure factor is illustrated
in Fig. 2(a). The lines represent the path of light scat-
tered &om each particle at a given q. Light scattered
&om particles within the correlated region is coherent
(or at least has a coherent contribution); thus the fields
scattered from each of the correlated particles must be

PIG. 2. Schematic representation of the scattering paths
that lead to the dynainic structure factor for (a) single light
scattering, and (b) multiple light scattering. These paths
must be added coherently to calculate the correlation func-
tion of the scattered 6eld. In the case of multiple scattering,
the contribution of the paths labeled i and j must be added
coherently; the contribution from each correlation volume, la-
beled as ct and P, is the same as the dynamic structure factor
for single scattering, averaged over all scattering directions.
The scattering angle for a single scattering event 8 is shown
in (a), while the scattering angles for multiple scattering, 8
and 8~, are shown in (b).



52 TEMPORAL AND SPATIAL DEPENDENCE OF HYDRODYNAMIC. . . 6555

we obtain the relation

d2 1V

S(q, t) = —q —) q U;(t)q. U (0)
2=1

~.I&'(~)—&.(o)t (18)

cles have not moved a significant distance compared with
the wavelength of light; thus we can ignore the time de-
pendence of the phase factor, and approximate Eq. (18)
by

2 N

S(q, t) = —q —) q U;(t)q. U, (0)e'
1

where U;(t) is the velocity of the ith particle. In single-
scattering experiments, particle motion can only be de-
tected at relatively long times, when the velocity corre-
lation function has decayed to zero. By contrast, in a
DWS experiment the times are so short that the parti-

Integrating Eq. (19) twice with respect to time, we obtain
an expression for the structure factor that is valid for
small particle displacements,

N N

S(q) 1 ~ ) (&R'. (t)) y —) q AR;(t)q. AR, (t)e'~
2S(q) 3N .

(2o)

S( t) =S() 1—q, t = q 1— (21)

We note that this form is similar to the traditional ex-
pansion of the dynamic structure factor in terms of a
collective, q-dependent diffusion coefficient [19],

'D H
S(q t) =S(q) ' "= S(q) 1 — '

(22)
S(q)

here, the hydrodynamic interaction function, H(q), is q
dependent, but not time dependent, since it describes
light-scattering experiments that are insensitive to the
time evolution of the hydrodynamic interactions. By con-
trast, we have now included an explicit time dependence
to account for the temporal evolution of the hydrody-
namic interactions.

To extend this treatment to the case of multiple scat-
tering, we must calculate the correlation function for a
typical diffusive light path. The scattered Geld &om a
single path with n scattering events is the product of the
scattered fields ft..om each event,

I 4 h

ex=1
b(q )

g 'R (i). '

q is the scattering vector for the event o., and R is
the particle involved in this scattering event. However,
each of these o. scattering events is coherently correlated
with scattering events from some neighboring particles;
this results in a correlation between adjacent diffusive
paths. Thus, we must coherently add the scattered fields
&om correlated paths, and the total scattered field of this
nth-order scattering sequence is [16]

where QR;(t) = R;(t) —R;(0). The two terms in
braces are proportional to the self and interaction parts
of H(q, t), respectively [Eq. (11)]. Using the definition
of the q-dependent hydrodynamic interaction function
H(q, t) [Eq. (10)], Eq. (20) can be rewritten as

N( N(
E"(t) = ) 8"(t) = ) b(q. )

' ' '

i=1 a=i
(24)

Ng

i,j=1n,P=1
b( ~)b( p) .~''n. . (~)—.+,. n, (o) . (25)

To simplify this expression, we consider the many scat-
tering paths within the o.th scattering event. To remain
fully correlated, these individual paths must follow very
nearly the same route; thus we approximate the scatter-
ing wave vectors within the event, but for different paths,
as being equal, so that q; = q . In addition, we make
the further assumption that only one scattering event can
occur in each correlation volume; this requires that the
scattering mean &ee path l is greater than the correlation
length (, which is of the order of a few particle diameters.
This places a limit on the degree of multiple scattering;
there should not be more than one scattering event in
each correlated volume. With these assumptions, parti-
cles from different scattering events are not correlated in
time, and terms with n g P average to zero; thus

Gi(t) =
n=l

N(
y ( ) ) q [R; (!)—H., (0)])

i,j=1
(26)

here the subscript i refers to one of the Ng correlated
scattering paths. We schematically illustrate these co-
herent scattering paths in Fig. 2(b), where we show the
contributions ft. om two adjacent correlation volumes, o.
and P. The paths labeled i and j scatter &om particles
within each of the correlation volumes and must, there-
fore, be added coherently. The other scattering paths
shown do not follow a path that retains their coherence,
and therefore need not be added coherently. Thus, the
time-dependent Geld correlation function for nth-order
scattering sequences that maintain their coherence is

( (t) = (@ (t)& (o))
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Here the summation extends over each correlation vol-
ume that contains zVg particles. We can identify this
summation as the dynamic structure factor for the o.th
scattering event, Eq. (16). Thus we can simplify Eq. (26)
to

G", (t) =
n=1

F(q )NgS(q, t)

N( j '
qF(q)S(q, t)dq

The integral extends over all possible scattering angles
&om 0 to 180, corresponding to the limits q = 0 and
q = 2k0, k0 is the wave vector of the incoming light.
The form factor E(q) determines the relative weighting
at each value of q; in addition, averaging over all possible
scattering angles 0 (see Fig. 2) introduces a further factor
of q (q = 2kp sin 0). In terms of the average scattering,

Equation (27) relates the contribution of the correlation
function &om a diffusive light path to the dynamic struc-
ture factor that is measured in a single-scattering exper-
iment. The essential approximation is that only a single
scattering event occurs within a correlation volume; the
multiple scattering results &om the transport of the light
through many independent correlation volumes. We as-
sume that the scattering events Rom the different cor-
relation volumes are statistically independent, and that
there are a suKcient number of them that we can neglect
the details of the momentum conservation between each
scattering event in any path.

The ensemble average in Eq. (27) ensures that each
scattering event includes contributions &om many dif-
ferent paths. Thus each of the n scattering events in
Eq. (27) can be replaced by an average over all possible
scattering vectors,

of the path length of the scattered light s = n/, where
l is the mean free path between scattering events [15].
However, the direction of a photon is not completely ran-
domized by a single scattering event; instead there is a
persistence in direction over a longer distance, the trans-
port mean free path, l' [20]. In terms of the scattering
angle 0 (see Fig. 2),

l* 2kp2, j '
qE(q)S(q)dq

f. ' q'F(q)S(q)dq
(32)

Thus the correlation function for an nth-order scattering
sequence, gP(t), can be expressed in terms of the contour
length s of the scattering path and the transport mean
free path l* [22],

g", (t) = exp —2Dptkp- [H(t)]

The average of H(q, t) measured by DWS, [H(t)], is given
by [22]

f ' qsF(q)H(q, t)dq

f, 'q'F(q)dq
(34)

the square brackets around 8 indicate the same average
over q. The transport mean Bee path, /*, is the charac-
teristic length for photon difFusion; s/l* is the number of
steps in a random walk that is statistically equivalent to
the photon path. Thus the total Geld. correlation function
is [5,15]

l* = I
1 —(cos 0)

'

this is analogous to the persistence length of a semirigid
polymer chain [21]. The scattering angle 0 is geometri-
cally related to kp and q by 1 —cos 0 = q /2kp2, therefore

qF(q) S(q, t) dq (28) gq(t) = P(s) exp —2Dptkp — ds,[H(t)]
0

(35)

and the normalized correlation function for an nth-order
sequence is therefore

j "'qF(q)S(q, t)dq
gE(t) =

f.' '
qF(q)S(q)dq

where P(s) is the probability that diffusing photons fol-
low a path of length s; it is calculated by solving the
diffusion equation for the light, in the experimental ge-
ometry, subject to appropriate initial and boundary con-
ditions. We can rewrite Eq. (35) in terms of a reduced
time,

Using the short time expansion af S(q, t), Eq (21), we.

obtain
= 2Dpkp t,[H(t)1 (36)

gP(t) = Dpt f ' qsF(q)H(q, t)dq

j, ' qF (q) S(q) dq

f ' qsF(q)H(q, t)dq
'

qF(q) S(q) dq
(30)

and a reduced contour length, s' = s/l',

gg(tD) = P(s')e ' ds'.
0

(37)

In order to describe the multiple scattering by a diffu-
sian equation, we must express gP(t) [Eq. (30)] in terms The solution of Eq. (37) has been discussed extensively
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elsewhere [14,23]; it depends on the experimental geom-
etry. In this work the sample is a slab of thickness I,
and of essentially in6nite lateral extent. A transmission
geometry is used; the incident light is focused on one side
of the sample, and the scattered light is collected &om
a point on the other side of the sample. The correlation
function is given by [23]

gc(&) = A(s) sinh s* + e ' (' ~ ) )ds*,
+38~I /le

(38)

where

2l—s —i —e + scnhs + ceshs' e ))A(s') =
2l' 4 / 2s'l' » (y 4l~

(sinhs'+ ',~' coshs') —(',")' (39)

These equations provide an excellent description of the
correlation functions obtained &om DMS experiments
in the transmission geometry, as has been con6rmed by
studies of optically noninteracting particles [5]. Assum-
ing that the data are described by these equations, a zero
crossing routine can be used to invert the data and obtain
tD &om the lower limit of the integral in Eq. (38). Then
we can determine the time evolution of [H(t)] through
Eq. (36). The transport mean free path of the light, l',
can be determined through another experimental mea-

surement such as the total transmission, or by a theoret-
ical calculation.

Even with the averaging over q inherent in DMS, it
is still possible to obtain information about the q de-
pendence of hydrodynamic interactions, by studying the
scattering from particles of different sizes [8]. The rele-
vant parameter is the product qa; thus the upper limit of
integration in Eq. (34) is effectively 2Ihoa. Physically, this
reBects the fact that the scattering dynamics are sensitive
to the number of particles in a volume of order q . If

a=0.77gm a=0.38pm

0 5 10

a=0.21@m

15 20 25 10 'f5 20 25

a=0.10@m

FIG. 3. The weighting factors used for the
DMS averaging for the diferent sphere sizes.
The data are plotted in arbitrary units, as
a function of qa. The weights for the larger
spheres emphasize the large qa region, and
thus reflect the self-di8'usion of the parti-
cles. By contrast, the weights for the smaller
spheres emphasize values of qa below the 6rst
peak in the structure factor, and thus re8ect
the efFects of interparticle interactions.

5 10 15 20 25 0 5 10 15 20 25
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large particles are used, only a single particle can fit into
this volume, and most of the contribution to the average
arises &om values of qa & 1. Then the DWS measure-
ment reflects the high-q limit of H(q, t), corresponding
to the time-dependent self-diffusion coefficient H(t). By
contrast, if smaller particles are used, more than a single
particle can fit into this volume, and the average reHects
increasing contributions &om values of qa & 7r, so that
HI(q, t) makes a larger contribution.

The eKects of using diferent size particles can be seen
more quantitatively by examining the weighting factor in
Eq. (34), qsE(q) Th.e overall q factor arises from two
contributions; a factor of q arises &om the phase space
available for scattering, while the remaining factor of q
arises because of the diR'usive dynamics. The q factor
ensures that the dominant contribution to the average
arises from the larger values of q. We plot q F(q) as
a function of qa in Fig. 3, for several of the particle
sizes used in our experiments. The form factors were cal-
culated using Mie theory [24], and the results for each
particle size were normalized by their maximum value.
The weighting factors are plotted to the maximum value
of qa in each case, i.e., 2A:Oa, where ko ——16.24 pm
The strong oscillations re6ect the Mie resonances in the
form factor. For the larger particles, the dominant con-
tribution to the integral in Eq. (34) comes from values
of qa greater than the first peak in the structure fac-
tor (qa = ar); as a result the integral reflects the self-
contribution, H(t), only. By contrast, for the smallest
particles, all of the weight in the integral arises &om val-
ues of qa less than the first peak of the structure factor,
making the contribution of collective eBects much more
important, so that in this case HI(q, t) makes a signif-
ican contribution.

IV. EXPERIMENTAL METHOD

Our samples are aqueous suspensions of highly
monodisperse polystyrene latex spheres. These particles
are stabilized against aggregation by charges adsorbed
on their surface; their Coulombic repulsion prevents the
particles &om touching when they approach one another.
The range of this repulsive interaction is determined by
the screening length, which is set by the total concentra-
tion of charges in the solution. Since the screening length
is much smaller than the particle radius, the particle-
particle interactions closely approximate those of hard
spheres. We estimate that the screening length is roughly
50 A, compared with a typical particle radius of 1 tLtm;

for the smallest particles (radius O.l pm), we add addi-
tional acid to the solution to reduce the screening length
still further, and ensure that it remains much less than
the particle size. We believe that the particle positions,
as reflected by the pair correlation function, g(r), are
very well characterized by the hard. -sphere distribution.
However, there is a possibility that the interactions be-
tween the particles will be affected by the slightly soft-
ened potential caused by the finite range of the screened
Coulombic repulsion. This will be increasingly likely for

Ar Laser

Wafer Bath

ALV 5000

D/gital Carrelator ~Fiber Beam Splitter

FIG. 4. Schematic diagram of experimental setup.

the smaller particles, where the screening length becomes
a more appreciable &action of the radius. Although we
cannot rule out this possibility completely, we have no
direct evidence for it.

The radii of the particles studied included 0.099, 0.206,
0.380, 0.765, and 1.55 pm; the precise values were de-
termined by dynamic light-scattering measurements of
the hydrodynamic radius, performed at very low concen-
trations. This range in particle size allows us to probe
both the high-q, single-particle limit of H(q, t) (using the
larger spheres), as well as collective motions at smaller qa
(using the smaller spheres). There is a lower limit to the
particle size; particles smaller than 0.1 pm do not scatter
strongly enough to enable the diffusion approximation,
inherent in DWS, to be used. The samples were ini-
tially prepared in a stock solution with P = 0.10. Lower
concentrations were prepared by diluting with water to
the desired concentration. Higher concentrations were
prepared by sedimentation, using gravity for the larger
spheres or a centrifuge for the smaller spheres. Water
was removed &om the top of the sediment to attain the
desired volume fraction and the samples were remixed.
In all cases the volume &action was measured directly by
weighing a portion of the sample before and after dry-
ing in a vacuum oven, maintained at room temperature.
The weight &actions were converted to volume &actions
by assuming that the particle density was equal to the
density of bulk polystyrene.

A schematic of the experimental setup is shown in Fig.
4. The laser was an Ar+ ion laser, operating at a wave-
length of 0.5145 pm. A temperature-controlled etalon
in the laser cavity forced it to operate on a single longi-
tudinal mode. This was essential because our detection
system was suKciently fast to be able to detect the beats
between neighboring modes, which occurred at 125 MHz
for our laser cavity. Moreover, operating in a single mode
ensures that the temporal correlation length of the light is
larger that the longest diffusive light paths in the sample.
If this is not done, the correlation function can be seri-
ously degraded and its shape changed &om the predicted
form, since the phase of the light traveling the longest
paths is randomized by the loss of coherence rather than
by the particle motion. The laser beam was focused onto
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one side of the sample, and the light was collected from
the other side. The laser power incident on the sample
was typically about 100 mW, and was adjusted for the
different samples to attain sufficient count rates for each.

The scattering cells were thin optical cuvettes, 1 cm
wide. Thicknesses of 1, 2, or 5 mm were used, with the
choice dictated by ensuring that L/l' ) 20 so that the
diffusion approximation could be safely applied, and so
that boundary effects were minimized [25]. The samples
were immersed in a water bath, which allowed the tem-
perature to be maintained constant to within less than
0.1 K over the course of the measurements. This is es-
sential to ensure that the viscosity does not vary over
the course of the data collection. Immersion in the water
bath also reduces the effects of internal reQections at the
interface. Data for the larger spheres were all collected at
room temperature; data for the smaller spheres were col-
lected at an elevated temperature of about 40' C. This
decreased the viscosity of the water, thereby increasing
the characteristic hydrodynamic time scale, wo ——pa /go,
and allowing us to make measurements at shorter relative
time scales.

To study the very fast time scales of interest, we used
a cross-correlation technique [26]. The signal was di-
vided into two equal portions, each of which was detected
with a photomultiplier tube (PMT). The outputs of the
two PMT's were cross correlated. This method reduces
the deleterious effects of afterpulsing in the individual
PMT's. Afterpulsing is caused by the generation of sec-
ondary pulses induced either by ionization of atoms in-
side the tube, or by emission of photons due to electron
absorption on a dynode or on the anode. The occur-
rence of afterpulsing introduces a spurious correlation at
short times when the signal from a single PMT is auto-
correlated; this is greatly reduced by cross correlating the
signals &om two PMT's. The cross-correlation technique
also reduces the effects of dead time in the PMT's and
the electronics, since only the rising edge of each pulse
triggers the counter in either channel. Provided that the
count rate in each tube is not too large, this allows mea-
surements to be made at signi6cantly faster time scales
than would be possible with a single PMT.

Our detection optics used either multimode or single
mode optical fibers [27]. In both cases, the beam split-
ter was integrated into the fibers, greatly simplifying the
alignment. The multimode fiber had a core diameter of
100 pm, and standard, two-pinhole optics were used to
collect the light. The fiber aperture itself acted as one of
the pinholes, and a lens imaged the fiber face onto the
collection side of the sample. Thus, the 6ber diameter
determined the area over which the light was collected.
A second aperture at the lens was adjusted to limit the
range of scattering vectors collected by the fiber, thereby
increasing the size of the speckle spot so that it matched
the size of the fiber core; this ensured a relatively large
value for the intercept, P, of the measured intensity cor-
relation function. In some experiments, we used a single
mode 6ber, instead of the multimode fiber; in this case
the light was collected by a graded index (GRIN) lens
with a 0.25 pitch. The single mode fiber collects only
the light incident on the face of the GRIN lens, which is

in a single spatial mode. This results in an even larger
intercept, P, while maintaining a high efficiency for light
collection. Moreover, a single mode fiber receiver ofFers
the possibility of working with an arbitrarily large scat-
tering volume and with an arbitrary working distance.

The correlation functions were calculated using a cor-
relator capable of measuring delay times as short as 12.5
ns. At longer times, the channels were spaced. in an
increasing geometric progression with delay time. This
provided sufIicient accuracy to measure the decay of the
correlation function down to levels of about 10 . The
very short delay times of the early channels made obtain-
ing data with good statistical accuracy quite challenging.
This problem was exacerbated by the need to maintain
the count rate at a relatively low level to avoid dead-time
problems in the cross-correlation technique. As a result,
we typically collected data for about 12 h to obtain suf-
ficiently good statistics at the shortest times. The cor-
relation functions were collected in successive 10-min in-
tervals, and the results were averaged. The samples were
mounted on a motorized wheel, and the larger spheres
were rotated and shaken every 10 min to minimize the
effects of sedimentation.

V. EXPERIMENTAL RESULTS

In a DWS experiment, as in all dynamic light-
scattering experiments, we measure time correlations in
the intensity of the scattered light (I(t)I(0)). Since the
average intensity is nonzero, (I(t)I(0)) does not decay
to zero at long times, but to the square of the average
value of the intensity, (I); thus we normalize the data
to their long-time limit and obtain a normalized intensity
autocorrelation function,

(I(o)I(t))
(I)'

Since the Quctuations in electric field are Gaussian, the
Quctuations in intensity can be replaced by the square of
the ffuctuations in electric field (the Siegert relationship),
allowing us to express g2(t) in terms of the normalized
field autocorrelation function gi(t) [Eq. (35)]

P is the coherence factor, which determines the intercept
of the data at zero delay time. The value of P depends
on the optical arrangement used in the experiment and
reQects the number of coherence areas detected; as the
number increases, the modulation of the intensity, and
thus P, decreases. For polarized scattering detected with
a single-mode optical fiber, P 1; for the typical two-
pinhole receiver, P is somewhat less than 1. However,
multiply scattered light is completely depolarized, and
there is no correlation between the intensities of the two
polarizations in a single speckle; thus the value of P is
reduced by a factor of 2, so that P = 0.5.

A typical set of data, collected for about 12 h &om
a sample of 1.53-pm-diam spheres at a volume &action
of P = 0.20, is shown in Fig. 5; we plot g2(t) —1 versus
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FIG. 5. A typical correlation function obtained in the
DWS experiments for a 1-mm-thick sample cell containing
0.77-pm-radius polystyrene spheres at g = 0.2. The data
were collected for about 12 h to improve the signal-to-noise
ratio. The data have been normalized by the measured back-
ground, which is the square of the average intensity; this back-
grou. nd has also been subtracted from the data. The solid
line through the data is a 6t to the functional form, scaled
to the volume-fraction-dependent hydrodynamic time scale.
The second decay at longer times is due to Huctuations in the
laser intensity.

PIG. 6. The correlation function with the laser Buctuations
subtracted. Over four decades of decay can be observed. The
inset shows the first few data points on a linear scale, and
demonstrates the absence of afterpulsing e8'ects down to the
shortest time scales. The Quctuations at the shortest time
scale result from the very narrow sample times used and rep-
resent the largest noise in the data. The solid line through
the data is a fit to the functional form, scaled to the vol-
ume-fraction-dependent hydrodynamic time scale.

time. The signal-to-noise ratio of the data is good enough
that over two and a half decades of decay in the corre-
lation function are observed. At longer times there is an
additional correlation observed in the data, due to Buctu-
ations in the laser intensity. Independent measurements
of this correlation function were made, allowing the con-
tributions of the laser Buctuations to be subtracted &om
the DWS data. This was done by fitting t;he contribu-
tions of the laser Buctuations to an exponential decay,
and subtracting this &om the data. The corrected corre-
lation function is shown in Fig. 6; the subtraction proce-
dure is suKciently accurate that the corrected correlation
function can be measured aver more than four decades
of decay.

The inset displays the data over the first 0.5 ps in a
linear plot. It confirms the absence of afterpulsing ef-
fects, even down to the very short time scales accessible
with our fast correlator and cross-correlation scheme. It
also illustrates the level of the random Buctuations, or
noise, in the data at the shortest time scales. This repre-
sents the largest Buctuations in the data because the time
scale is so short; at longer times, these Buctuations are
substantially reduced. The measured intercept is = 0.42,
somewhat less than 0.5 as expected for the two-pinhole,
multimode optical fiber receiver used. The actual value
of the intercept must be determined experimentally; for
very short times (i.e., for small decays of the correlation
function), the uncertainty in P is the limiting factor in
the accuracy of the data. To determine the most reliable
value of P, a smooth polynomial is fitted to the first few
data points. The data are normalized by the fitted value
of P and the electric-field correlation function, gr(t), is
then obtained using Eq. (41). A zero crossing routine
is used to invert the data, which are assumed ta fallow

the equation for a point-source geometry, Eq. (38). From
this inversion, we obtain tr [Eq. (36)]. This is multiplied
by [S(q)], which is calculated using the Percus-Yevick
equation for the structure factor [28] and the Mie-theory
scattering results for the form factor (Fig. 3). The fi-
nal result from this analysis is the DWS-averaged [H(t)]
defined in Eq. (34).

To set the absolute level of the [H(t)] data, knowledge
of the transport mean &ee path, l*, is required. It can, in
principle, be obtained by two independent methods: l*
can be calculated theoretically [29], using Mie scattering
theory for the form factor and correcting for the par-
ticle correlations using the Percus-Yevick structure fac-
tor; alternatively it can be determined experimentally
by a measurement of the static transmission through the
sample [15]. The static transmission is proportional to
l*; by comparing the measured transmission with that
through a reference sample of identical thickness, and in
the same geometry, the value of /* relative to the ref-
erence can be measured [30,31]. By using a sample of
relatively low volume &action, the value of t* can be cal-
culated with reasonable accuracy, allowing the unknown
l* at higher volume fractions to be determined. How-
ever, in practice, we find that either of these techniques
can introduce experimental uncertainties of the order of
5% in the value of /, which translate into uncertainties
of the order of 10% in the absolute magnitudes of [H(t)]
determined &om the data. Thus, we instead determine
the absolute level of the data by scaling its long-time
asymptote to the expected value of [H ], which is cal-
culated using the theoretical values for H (q) [32]. This
ensures that the data at the different volume fractions
and particle sizes are normalized in a consistent fash-
ion. The uncertainty in this method can be tested by
comparing the resulting values of /' with those obtained
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&om independent static transmission measurements and
&om a Mie scattering calculation. This comparison is
shown in Fig. 7 for three different particle sizes. In all
cases, the values of l* obtained by these different pro-
cedures are in good agreement with one another. The
largest discrepancies between the two experimental mea-
surements of /* (scaling [H(t)] to the theoretical long-
time asymptote [H ] and static transmission data) are
within about 5%, consistent with the experimental un-
certainties in the measurements. The discrepancies with
the Mie scattering theory are somewhat larger, as much
as 30% in the worst case. We conclude that this scaling
procedure provides a consistent method for determining
[H(t)], without introducing further uncertainties result-
ing &om additional experiments.

The measured [H(t)] are shown in Fig. 8 for several
different particle sizes, and for a series of different vol-
ume &actions. The values of [H(t)] are normalized by
Dp the limiting value of the diffusion coeKcient at low
volume &actions. The data are plotted as a function of
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FIG. 7. Comparison of the values of l' obtained by 6tting
the measured data to ensure that [H(t)] goes to the expected
value at long times (circles) with those values obtained by in-

dependent static transmission measurements (triangles) and
vrith calculations based on Mie scattering and a structure fac-
tor calculated from the Percus-Yevick equation (line). The
small deviations reQect the uncertainties inherent in each of
these approaches, and con6rm the validity of adopting the
procedure of determining l* from the Gt of the data to the
long-time value.

the normalized time scales, t/Tp, where 7 p = pa /gp is the
viscous relaxation time of the suspension at low volume
&actions. We are able to probe much shorter reduced
times using larger particles; for the smallest particles, we
can collect data only at times greater than several wo,

even though we have reduced the viscosity of the suspen-
sion by making the measurements at an elevated tem-
perature. The dashed line in each figure represents the
behavior expected for a single particle in the fluid [12].
It includes the effects of the hydrodynamic interactions
between the particle and the Quid, and thus approaches
the asymptotic value very slowly, reQecting the algebraic
decay of the velocity correlation function. The data for
the lowest volume &actions follow this curve for all the
different particle sizes; however, for the smallest parti-
cles, it is necessary to go to extremely low volume &ac-
tions (0.5%) to obtain agreement with the single-particle
theory. At higher volume &actions, the data have lower
asymptotic values, as expected; they also deviate &om
the single-particle curve at successively shorter times as
the volume &action is increased. However, in all cases,
the data approach their asymptotic values rather slowly.

The most remarkable feature of the experimental data
is that, for all volume &actions and for all sphere sizes,
the measured [H(t)] can be scaled onto a single master
curve [8]. The functional form of this curve is given by
the time-dependent mean-square displacement of an iso-
lated sphere, Hp (t*), which can be calculated analytically
[Eqs. (3) and (4)] [12]. The scaling of the experimental
data is shown in Fig. 9 for the same set of particle sizes.
For the largest size shown, a = 0.77 pm, the experimen-
tal data are not sensitive to the interaction portion of
[H(t)], and thus reflect the time-dependent mean-square
displacement of individual particles. By contrast, the
data for the smaller spheres are sensitive to the inter-
action contribution to [H(t)], and thus the data can no
longer be interpreted in terms of the mean-square dis-
placement, but rather represent an average over time-
dependent collective diffusion coeKcients at various wave
vectors.

The scaling of the data for the smaller spheres was
unexpected; the measured [H(t)] reflects a sum of two
contributions, one &om the self-correlations H(t), and
a second &om the interparticle hydrodynamic interac-
tions, Hi(q, t). The data for large spheres measures the
self-correlation H(t) only, and this can be scaled to the
master curve. There is no reason to expect the inter-
action contribution to have the same functional form as
H(t); in fact it has a quite different time dependence
(see Sec. VIIB). Nevertheless, the sum of the two con-
tributions does scale to the same master curve; however,
the scaling times, [w(P)], are different for the different
particle sizes. The P dependence of these scaling times,
normalized by ~0, is shown in Fig. 10 for all the different
particle sizes. The scaling times exhibit a pronounced
dependence on both volume &action and particle size.
The data for the largest spheres follow the inverse of
the +dependent, high-&equency viscosity [9], gp/g(P),
as shown by the solid curve in Fig. 10. However, for a
given volume &action, [v(P)] decreases rapidly with de-
creasing particle size. Even at very low volume fractions
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FIG. 8. Measurements of [H(t)] for four
different particle sizes and for several volume
fractions for each. The data are plotted as
a function of time normalized by the hydro-
dynamic time for each particle. The dashed
lines are the theoretical prediction for a sin-

gle particle at very low volume fractions; in-
terparticle hydrodynamic interactions cannot
affect this behavior. The data for the lowest
volume fractions are in good agreement for all
particle sizes. The data for the larger spheres
were obtained at room temperature, while
those for the smaller spheres were obtained
at an elevated temperature, to increase wo,

and thereby access earlier normalized time
scales.
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[w(P)] is still sensitive to particle size; only at volume
fractions P ( 0.5% is it independent of particle radius.

The fact that the small sphere data scale in the same
way as the large sphere data suggests that the approxima-
tion of a single relaxation time is still valid, independent
of particle size; in a single relaxation time approxima-

tion, [w] = [H ]vs. However, the scaling time [w] mea-
sured in the DMS experiments for small particles is much
shorter than would have been expected &om experimen-
tal measurements of the wavelength-dependent diffusion
coefBcient [33]. Moreover, for the smallest particles, the
measured relaxation time [w(P)] is even smaller than the
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FIG. 10. Volume-fraction dependence of the measured scal-
ing times for the different sizes of spheres. The scaling times
are normalized by their values at P = 0, corresponding to the
hydrodynamic time for each set of spheres.

VI. SIMULATION METHOD

Numerical simulations have begun to make significant
contributions to the study of particle suspensions, by
incorporating accurate calculations of the low Reynolds
number or creeping-Qow hydrodynamic interactions be-
tween spheres [34,35]. Nevertheless, these methods are
very expensive computationally, and cannot easily be ap-
plied to large systems. Moreover, extensions of these
methods to time-dependent hydrodynamic interactions
would be even more time consuming; it would be neces-
sary to calculate the hydrodynamic interactions at many
different frequencies and then take an inverse Laplace
transform. Theoretical results for time-dependent hy-
drodynamic interactions are only available for dilute
suspensions [36]. However, numerical algorithms based

q = 0 relaxation time, H (0)'Tp which is the shortest
time we would have expected to measure. We discuss
this point in more detail in Sec. VIID.

Since we have a simple analytic form for [H(t)], we
can both check and refine our data analysis by working
backwards to the original experimental correlation func-
tion g2(t). Using the analytic form for Hp(t*) [12], and
our values for the scaling time [r], we calculate gq(t) di-
rectly from Eqs. (36) and (38). The correlation function
g2(t), calculated using Eq. (41), can be compared with
the original, and the intercept then adjusted to provide
the best agreement with the data. We typically found
that only small changes in P were required. An example
of the quality of the fit to the original data is illustrated
by the solid line shown in Fig. 6; clearly the agreement is
excellent. We can also use this back calculation to check
for the possibility of absorption. Although both water
and polystyrene latex exhibit very weak absorption, the
optical path lengths are suKciently long that absorption
can have some inQuence. The effects of absorption can be
included in the back calculation of the correlation func-
tion, g2(t), by incorporating an absorption length [31].
However, we found that the data showed virtually no ef-
fects of absorption, and so the shapes of the correlation
functions were not modified.

on discrete-velocity (lattice) gases [11,37] simulate the
time-dependent Navier-Stokes equations directly, includ-
ing thermal fiuctuations; these techniques can therefore
probe the temporal and spatial evolution of hydrody-
namic interactions in complete detail. In this paper we
use lattice Boltzmann simulations [6,7] to help interpret
the DWS results. It may be that an improved under-
standing of these time-dependent interactions will lead
to new and more efEcient methods for computing time-
independent (creeping-fiow) hydrodynamic interactions.

The simulations used in this work are based on a com-
bination of molecular dynamics, which is used to track
the motion of the solid particles, and a Huctuating lattice
Boltzmann model of the Quid. The motivation behind the
development of lattice-gas and lattice Boltzmann models
was the desire for a simplified molecularlike model of the
Quid, which, although lacking some of the detailed me-
chanics of molecular dynamics, would still reproduce cor-
rect hydrodynamics at suKciently large scales. It turns
out that such models are remarkably efFective at repro-
ducing the hydrodynamic forces that occur in the dy-
namics of colloidal suspensions [7], although it has be-
come apparent that the lattice Boltzmann equation is,
by and large, a better simulation tool for hydrodynam-
ics than lattice gases. However, in its normal state the
lattice Boltzmann equation cannot model the molecular
Quctuations in the solvent that give rise to Brownian mo-
tion. Nevertheless, on length scales and time scales inter-
mediate between the molecular and the hydrodynamic,
thermally induced Huctuations can be reduced to random
fluctuations in the fiuxes of the conserved variables [38].
In the present context, this means that the time evolution
of the lattice Boltzmann velocity distribution includes a
stochastic term representing the thermally induced Quc-
tuations in the stress tensor [ll). These random stress
Huctuations are uncorrelated in space and time and are
sampled &om a Gaussian distribution; the variance of
the Huctuations serves to define the effective temperature
of the fiuid [38]. Numerical tests show that the result-
ing particle motions, in dilute to concentrated suspen-
sions, closely match experimental results [9,10], even at
very short times where particle inertia plays an impor-
tant role. Since a detailed account of the algorithm has
already been published [6], together with extensive nu-
merical tests [7], this discussion will not be repeated here.
Instead we will describe specific details of the calculation
of time- and space-dependent hydrodynamic interactions.

DifFusing wave spectroscopy probes times that are very
short compared with the time it takes a particle to dif-
fuse a hydrodynamically significant distance; typical par-
ticle displacements are around 10 of the particle radius.
We can most easily reproduce this situation on the com-
puter by constraining the particle coordinates to their
initial values. Thus the particles sit at fixed positions
and interact hydrodynamically via Huctuations in trans-
lational and rotational velocity; in this case the long-time
limit of H(q, t) is related to the short-time wave-vector-
dependent diffusion coefficient, D(q) /Dp ——H (q) /S(q) .
However, we cannot measure particle displacements di-
rectly, as is done experimentally, since the particle coor-
dinates are fixed. Instead we calculate H(q, t) indirectly,
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via its second derivative, the longitudinal velocity corre-
lation function J(q, t); Rom Eq. (10),

J(q, t) = [DotH(q, t)]
N—) [q. U, (t)U, (0).q] e'~

N . .

The initial value of the correlation function J(q, 0)
k~T/M, where M is the particle mass.

We calculate J(q, t) from the particle coordinates and
velocities, by averaging over 104 time steps, or about
500 times the typical relaxation time of the correlation
functions. In addition, the simulations were run for 10
steps before any data were collected, to allow time for the
hydrodynamic interactions to develop and for the parti-
cle velocities to come to thermal equilibrium. Since the
particle configuration does not change during the course
of the simulation, it is necessary to average over an en-
semble of initial conditions, which were generated from a
hard-sphere Monte Carlo program. Thus in addition to
the time averaging, we also ensemble averaged each set of
results over ten independent configurations. The statisti-
cal errors in H(q, t) are of the order of 10% at long times
and significantly less at shorter times; this is adequate
for the present purposes. It would have been desirable
to use more extensive ensemble averaging, say 100 con-
figurations, but the computational demands would have
been excessive. Simulations were run at volume &actions
of about 5% (dilute), 25% (semidilute), and 45% (con-
centrated). The effects of varying particle size, particle
mass, number of particles, and fIuid viscosity have all
been studied. A compilation of the parameters charac-
terizing each run is reported in Table I. It should be noted
that the variations in particle size reported in the simula-
tions do not correspond to difFerent physical systems; the
different particle sizes afFect only the numerical accuracy
of the results [7].

For a direct comparison with experiment, we have sim-
ulated the DWS average [H(t)] [Eq (34)] using the Mie
scattering form factor I"(q, a) (see Fig. 3) appropriate to
each particle size. In the simulated DWS average, the
particle size enters only through the choice of form fac-
tor; it has nothing to do with the particle radius reported
in Table I. The qs factor in Eq. (34) weights the average
towards the high-q components of H(q, t). Thus for suffi-
ciently large particles, that is, for particles with a radius

greater than about 1 pm, DWS probes only the motion
of individual particles [the high-q limit of H(q, t)). For
smaller particles, the DWS average includes some of the
collective motions as well.

A drawback of the current computer code is that it can-
not simulate neutrally buoyant particles, but only rather
massive ones (pR ) 4). This makes a comparison with
the DWS data somewhat indirect, as we must scale both
sets of data to difFerent Ko(t', p~) functions, appropri-
ate to the different mass ratios; the values of pR for each
simulation are shown in Table I (for the experimental
data pR = 1.05). The variation in p~ makes a notice-
able difFerence to the shape of the He(t', p~) function;
a rough idea of the differences can be obtained by com-
paring the curves plotted in Fig. 9 (p~ = 1.05) and Fig.
13 (p~ = 10). Although this difference in p~ means
that we cannot compare simulation and experimental
data directly, we can nevertheless still compare each to
Ho(t', p~) using the appropriate value of p~, thereby pro-
viding an effective comparison between simulation and
experiment. Moreover, this has also allowed us to probe
different physical systems and perhaps learn something
new about hydrodynamic interactions (see Sec. VII D).
The technical reason for the limitations on particle mass
is that the velocities are updated explicitly, with infor-
mation at one time step being used to calculate the ve-
locities at the next time step. Such numerical schemes
can be unstable if insuKciently damped; in the present
context this leads to a stability criterion that sets a lower
bound to the particle mass [7]. This problem can be cor-
rected by using a more complicated implicit update of
the particle velocities, which uses information &om both
old and new velocities; this is planned in future work.

VII. SIMULATION RESULTS

Our simulations of the long-time hydrodynamic inter-
actions, Hrv (q), show a significant dependence on system
size, or number of particles, N. The deviations of Hg (q)
from the large system limit [H (q)] arise from the spa-
tially correlated How fields of the periodic images; they
are of order a/I or (P/1V)i~ . In previous work [39], it
has been shown that a correction for the system size de-
pendence of H (q) in the q = 0 and q ~ oo limits can
be calculated analytically. In the Appendix, these results
are generalized to arbitrary q; the final result for a system
of N spheres is

TABLE I. Speci6cation of the system parameters used in
the computer simulations; the labels in Figs. 11 and 15 cor-
respond to the entries below.

1/3
H (q;P) = Hg (q;P) +1.76S(q;P)

System
1
2
3
4
5
6
7

0.050
0.243
0.243
0.255
0.451
0.451
0.451

N
128
128

1024
128
128
16

128

a
1.54
2.61
2.61
4.53
4.53
4.53
4.53

PR
8.7

10.0
10.0
5.0

11.0
11.0
5.0

where HN is the simulation measurement. These correc-
tions lead to consistent estimates of H (q) over a range
of system sizes from N = 16 spheres to N = 1024 spheres
and over the whole range of volume &actions, &om dilute
to concentrated. We have used Eq. (43) to correct all our
simulation data for H (q); the results are shown in Fig.
11.
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Dynamically, the data for finite systems H~(q, t) be-
gin to deviate &om the large-system limit at times of the
order Lz/v; beyond this time, vorticity generated by the
periodic images interferes with the Bow in the unit cell of
interest and H(q, t) asymptotes rapidly to H~(q). Thus
the accessible time range over which reliable simulation
data for H(q, t) can be obtained is proportional to Nz~s

We have found empirically that systems of 128 spheres
are sufficiently large to enable H(q, t) to be calculated
out to times of order 100&(g) which is the range of ex-
perimental interest; thus most of our simulations are for
128 spheres.

A. Wavelength-dependent difFusion coe8icients

The long-time asymptote of H(q, t) can be obtained
&om a single integral of the longitudinal velocity corre-
lation function [Eq. (42)],

d
H (q) = lim H(q, t) = lim —[tH(q, t)]

= Do J(t)dt;
0

(44)

this integral asymptotes to H much more rapidly than
H(q, t) itself. In Fig. 11 we show simulations of H (q)
and Do/D(q) = S(q)/H (q), for comparison with the-
ory and experiment; the data have been corrected for
finite-size efFects as described in Eq. (43). The difFerent
symbols correspond to solid particles of difFerent size and
mass, and to systems with different numbers of particles.
The parameters characterizing each simulation are de-
scribed in Table I. Within the statistical uncertainties,
the corrected data for H (q) are independent of number
of particles, particle size, and particle mass. The results
are in quite good agreement with Beenakker and Mazur's
theoretical calculation [32]. However there are some dis-
crepancies at intermediate concentrations (P = 0.25),
which is also the region with the largest errors in the theo-
retical calculations of the limiting cases of low q (H (0))
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FIG. 11. Wavelength-dependent diffu-
sion coefFicients at various volume frac-
tions. Simulation results for the function
H (q) = S(q)D(q) are shown as solid sym-
bols. The difFerent solid symbols correspond
to different numbers of particles, particles of
difFerent mass, and particles of different size
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numbers correspond to the system parame-
ters given in Table I. The solid lines are com-
puted from theoretical work by Beenakker
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son with experiment [33]. The symbols are
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and high q (H ). The simulation results are in better
agreement with the known results [39]; the theoretical
calculations are too small by 10%—20%. At high concen-
trations, both simulations and theory deviate &om the
correct results at high q [39] by 10%—20%; simulations
with larger particles are necessary to completely capture
the short-range hydrodynamic interactions at high con-
centrations. Results for Do/D(q) = S(q)/H (q) are also
shown in Fig. 11, for comparison with experiment [33].
Again the agreement is quite good, but a detailed com-
parison is hindered by obvious uncertainties in both the
simulation and the experimental data. However, the
general behavior is similar; the peaks and troughs in
Do/D(q) appear at the same values of qa and have quite
similar magnitudes. The experiments would predict a
higher first peak in H (q) at P = 0.45, but this discrep-
ancy is probably due mostly to the coarse sampling of qa
in the simulations.

B. The interaction contribution Hz(q, t)

In Fig. 12 we show a small sample of our simulation re-
sults, for two characteristic wave vectors; qa = 1.8, a rel-
atively long wavelength [Fig. 12(a)], and qa 3.6, near
the first peak of the structure factor [Fig. 12(b)]. The q
dependence of the correlation functions is similar at all
volume &actions, but more pronounced at higher concen-
trations; we show results at a volume fraction P = 45%%up

to indicate the maximum variation with q. The scaled
single-particle contribution, H(t/7. (ztz) )/H (P), is indis-
tinguishable from the theoretical curve for one sphere,
shown in Fig. 12 by the solid line. By contrast, un-
der these same scaling conditions, HI(q, t) exhibits very
di8'erent behavior that is strongly dependent on q.

For small q (qa ( 2) the interaction contributions are
negative. At first sight this might be a little surprising;
because of hydrodynamic interactions, the motion of one
sphere tends to cause its neighboring spheres to move
in the same direction. However, for sufBciently large vol-
umes (i.e. , for suKciently small q), the average How across
any plane in the system must vanish. Thus, the motion of
a particle induces a backflow of displaced Quid, which in
turn sweeps the other particles along with it; this motion
of particles and Quid opposes the motion of the primary

sphere. Therefore, on suKciently large length scales,
there is an overall anticorrelation of particle velocities.
By contrast, the wave vectors qa m probe primarily
the first shell of neighbors; for such closely spaced parti-
cles the direct hydrodynamic interactions dominate the
much weaker backQow effect;, so that these contributions
are positive. Finally, for very large q, there is no phase
correlation between diferent spheres, and the interaction
contribution vanishes.

C. Scaling of H(q, t)

The most remarkable result shown in Fig. 12 is that,
although the interaction contributions (circles) do not
scale to the single-sphere curve, the sum of the self-
contribution and the interaction contribution at a partic-
ular wave vector (squares) does scale to the single-sphere
curve, but with a di8'erent normalization, H (q) rather
than H, and a different relaxation time 7 (q). This is
a general result, independent of q and independent of P.
An additional set of H(q, t) data (P = 0.25, N = 1024)
is shown in Fig. 13, to illustrate the scaling over the
whole range of wave vectors. The wave vectors are pro-
portional to the number of wavelengths, n, within the
periodic unit cell q = 27m/I [the length of the unit cell
I = (4~%/3$) ~ a]; in this case (No. 3) qa = 0.24n (Ta-
ble I). Results for a system of 128 spheres are essentially
identical for even values of n where the wave vectors are
coincident. Simulations at other volume &actions show
similar behavior and are not shown. Once again we see
that the H(q, t) data scale very well to the single-sphere
master curve. There are deviations &om scaling at small

q (n ( 2), but these are artifacts, which arise because the
simulated systems are much more compressible than the
experimental ones. As a result, the time scale for sound
propagation, a/c, (c, is the speed of sound) is not neg-
ligible compared with the viscous time scales, pa /zoo;
with the parameters chosen for these simulations, the
dimensionless quantity pc, a/zjo is of order 10, whereas
experimentally it is of order 1000. The simulated veloc-
ity correlation functions show a pronounced oscillation at
low q, due to the eKects of sound waves; the period of the
oscillation is proportional to q [Fig. 14(a)]. These oscil-
lations in the velocity correlations cause the deviations
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FIG. 12. Wavelength-dependent mean-
square displacements at a volume fraction
P = 0.45. Simulation data for H(q, t) from
a 128 sphere system (squares), normalized
by the long-time asymptote 2DotH(q), have
been scaled to the single-sphere curve by ad-
justing the relaxation time r(q) The wave.
vectors are qa = 1.78 (a) and qa = 3.56 (b).
The circles indicate the interaction contribu-
tions Hz(q, t) at the two wave vectors, scaled
in the same way as the single-particle corre-
lation function Hs(t).
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from scaling in H(q, t) observed in Fig. 13. To confirm
that these deviations are a compressibility effect, we have
run a calculation with a much smaller viscosity, so that
the ratio pc, a/go is now about 200. The velocity corre-
lation function for this system is monotonically decaying
at all q; an example is showii in Fig. 14(b). Thus for
truly incompressible systems, we expect to see scaling of
H(q, t) over the whole range of length scales. It is also
worth noting that these low-q correlation functions make
next to no contribution to the DWS averages, since their
weighting is very small.

The scaling of H (q, t), observed in the simulations, im-
plies that time-dependent hydrodynamic interactions can
be characterized by a single time scale at each value of q,
suggesting that the suspension is behaving as an effective
medium at all length scales and at all time scales. The
relaxation times required to scale the simulation data
to the single-sphere master curve are shown in Fig. 15.
The relaxation time scale is quite short at low q; it peaks
around qa = m, and then, at large q, reaches the asymp-

totic value expected for the self-difFusion coeFicient. The
q dependence of the relaxation times is similar to the
long-time asymptote H (q) (Fig. 11), although there
are noticeable deviations at small values of q (qa ( 1);
overall, this is reasonably consistent with a single relax-
ation time for H(q, t).

We emphasize that this observed scaling is not a triv-
ial result. Although H(q, t) has very little structure, the
overall fit is still sensitive to variations in system param-
eters. For instance, if one should attempt to scale H(q, t)
data to the single-sphere function for a particle with an
incorrect mass density, no manner of adjustment of the
relaxation time will produce a good fit. Although we do
not claim that this scaling is necessarily exact over the
whole time range, nevertheless, within the accuracy of
both simulations and experiment we cannot detect any
signi6cant deviations &om scaling.

The most important question is why should the data
at various q scale onto the single-particle curve. We do
not, as yet, have a complete explanation for these obser-
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FIG. 14. Wavelength-dependent velocity
correlation function J(q, t) at a voluine frac-
tion P = 0.25. Simulation results from a
1024-sphere system are shown in (a) at vari-
ous wave vectors qa = 2vrna/L = 0.24n. Re-
sults from a system with a smaller viscosity
are shown in (b). Since this simulation was
for 128 spheres, there is only one coincident
wave vector, qa = 0.48.
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vations. At asymptotically long times the velocity corre-
lation functions (U;(t)U~(0)) are known to decay with an
algebraic t j dependence, regardless of the separation
between the spheres [40]. Thus any spatially weighted
average of these correlation functions will also decay as
t ~ with some effective relaxation time [41]. However,
the most interesting observation is that the correlation

functions apparently see the same single-time-scale relax-
ation mechanism, regardless of spatial scale and concen-
tration, modulated only by an efFective viscosity g(q, P);
the origin of this is not understood.

D. Scaling of [H'(t)]
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FIG. 15. Wavelength-dependent relaxation times 7 (q), de-
termined from plots similar to Fig. 13. The difFerent solid
symbols correspond to difFerent numbers of particles, particles
of different mass, and particles of different size (with respect
to the underlying lattice); the numbers correspond to the sys-
tem parameters given in Table I. In a single-relaxation-time
approximation v(q) = H (q)TO.

We have already observed that both the simulation
data for H(q, t) and the experimental data for [H(t)] can
be scaled to the single-sphere curve, HII(t*; p~), for the
appropriate mass particles (see Sec. VI). This scaling is

strikingly similar to our earlier observations for single-
particle motion [9,11]. However, the efFects of the collec-
tive hydrodynamic interactions are very evide nt in the
behavior of the time scale, both in the experiments (Fig.
10) and in the simulations (Fig. 15). At a given vol-

ume fraction P, the experimentally measured ratio [w]/ro
decreases rapidly with decreasing particle size. At erst
sight, the monotonic decrease of the measured [r] seems
inconsistent with the variation in 7 (q) shown in Fig. 15.
To investigate the origin of this apparent discrepancy, we

used the q-dependent simulation results to calculate the
DWS-weighted average value, [H(t)]. We used the ex-
pected DWS weighting factors shown in Fig. 3 [5]. The
behavior of the DWS-weighted simulation data is quite
consistent with experimental observations; as shown in
Fig. 16, the results for different particle sizes and dif-
ferent concentrations can again be scaled to the single-
particle curve. The relaxation times, shown in Fig. 17,
decrease monotonically with decreasing particle radius,
as well as with concentration. Thus the pronounced vari-
ations in relaxation time with wave vector, observed in
the simulations (Fig. 15), are washed out by the averag-
ing over wave vectors inherent in the DWS experiment.
The simulated DWS averages are insensitive to the de-
tails of the averaging process, and to the exact form of the
weighting function; even using the asymptotic Rayleigh-
Gans form factor instead of the Mie expression makes
little difference to the result.

Although both the experimental and simulated [H(t)]
data scale to Ho(t'; p~), the experimentally measured re-
laxation times (Fig. 10) for the smaller particles are much
shorter (by about a factor of two) than predicted by the
simulations (Fig. 17). We can make an independent es-
timate of the expected DWS relaxation times, based on
the ratio of the integral of the longitudinal velocity cor-
relation function [H (q)] to its initial value k~T/M; if
there is a single dominant relaxation process, this equiv-
alence is exact . We can there fore take experimental dat a
for the wave-vector-dependent diffusion coefficient, D(q)
= H (q)/S(q) [33], and use it to estimate the DWS-
averaged relaxation times. The resulting estimates of [w]

are close to the simulation results shown in Fig. 17 but
quite different &om the DWS-measured relaxation times.
Moreover, for the smallest (0.1 pm) particles, the mea-
sured [w] is even shorter than the q = 0 relaxation time,
H (0)wo, which is the shortest time one would have ex-
pected to observe. These considerations strongly suggest
that there is an additional relaxation process in the DWS
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experiments that is absent &om the simulations. We be-
lieve that the excitation of collective motions of the par-
ticles by the scattering of sound waves may provide the
extra relaxation mechanism. A quantitative theory for
hydrodynamic interactions in a compressible fluid (i.e. ,
including the propagation, scattering, and damping of
sound waves) has not been developed as yet; even the
theory for a single sphere is quite complex [42]. In the ab-
sence of a proper theory we suggest a mechanism, which
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curve shown in Fig. 16.
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wave vectors has been averaged over the appropriate weight-
ing functions, as described in the text. The H(q, t) data was
taken from runs 1, 3, and 6 (see Table I).

seems to us to be physically reasonable, and which can
account for the very short relaxation times observed in
the experimental data for small particles.

When a sphere undergoes a Quctuation in its velocity,
an impulse of momentum is transferred to the Huid. Part
of this momentum impulse diffuses by viscous Aow and
gives rise to hydrodynamic correlations that require some
time to take effect (of the order Tp', see Fig. 12). How-
ever, additional momentum is carried off by sound waves,
which causes a rapid decay of the particle velocity at very
short times (of the order a/c, ). Thus, in a very dilute
suspension, the velocity of a neutrally buoyant particle
decays almost instantaneously &om a root-mean-square
value of gk~T/M to a smaller value of J2k~T/3M [43].
This rapidly decaying portion of the velocity correlation
function makes no contribution to the mean-square dis-
placement, and simply rescales the initial value (see Sec.
II). In more concentrated suspensions the sound waves
are scattered by neighboring particles, inducing collec-
tive motions at very short times; we have observed this
effect visually in some two-dimensional computer sim-
ulations. Thus the velocities of diferent spheres can
be correlated by sound propagation even at very short
times, t = a/c, «wp. The effect of the scattered sound
waves on the test sphere would be negligible, as only a
tiny &action of the initial momentum would be scattered
back to the original location. Thus we would not ex-
pect the sound waves to significantly alter the shape of
the self-correlation function, H(t) (which dominates the
large particle data), but only the collective correlations,
HI(q, t), probed by the smaller particles.

The sound waves should perturb the collective particle
motions until they are damped out by viscous dissipation,
roughly on a time scale rp ——pa2/gp. Thus the scatter-
ing of sound waves &om particle to particle would pro-
duce additional contributions to H(q, t) at small q and at
short times. At longer times, the sound waves would be
damped out; eventually we expect; the mean-square dis-
placement to track the incompressible Quid result. The
overall effect of the sound waves would then be to in-
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crease the measured values of [H(t)] for small particles
and at short times. Because the experimental measure-
inents of [H(t)] for small particles are so ffat (see Fig. 8),
and because the absolute amplitudes are not well known,
a relatively small change in the short-time behavior of
[H(t)] (i.e. , for times less than Tp) could have a large
effect on the estimated relaxation time.

This picture satisfactorily accounts for the main qual-
itative features of our observations. The primary differ-
ence between the experimental and the simulated sys-
tems is the mass density of the particles. In the DMS
experiments they are nearly neutrally buoyant (minimiz-
ing sedimentation efFects), whereas in the simulations the
particles have a much larger mass density than the sur-
rounding Quid. This provides a possible explanation for
the discrepancy between the simulated relaxation times
and the experimental measurements. The total momen-
tum carried off by sound waves is independent of particle
mass; it depends only on the mass of the equivalent vol-
ume of Quid. Thus for particles with mass densities much
larger than the surrounding ffuid (as in the simulations)
this effect is small and almost all the momentum transfer
is by viscous Qow. However, for neutrally buoyant parti-
cles (as in the experiments), the momentum in the sound
waves is a signiffcant fraction of the total (1/3) and there
are instantaneous correlations in particle velocities that
are essentially absent for the more massive spheres used
in the simulations.

There is another possible source of the discrepancy in
the simulated and measured relaxation times. As we
noted earlier (see Sec. IV), a sinall number of pairs of par-
ticles may lie within the range of the screened Coulomb
potential. There are approximately SvrN a Ag, /V such
pairs, where A is the screening length and g is the value
of the pair distribution function at contact. These pairs
of particles will repel each other electrostatically as long
as they remain within the screening length; the interac-
tion time tq is of order Agm/k~T, assuming the par-
ticle motion is ballistic in this time regime. Estimating
the screening length as A = 50 A gives an interaction
time tp 0.2 ps for the O. l-pm spheres; this is in the
appropriate time range to modify the measured [H(t)] at
short times. We can also estimate the magnitude of the
possible correction to the mean-square displacement. A
pair of particles within the screening length will exert a
force on one another of order k~T/A; over the interaction
time, this produces an additional displacement of order
(k&T/2mA)t& A. Multiplying this mean-square dis-
placement (A2) by the estimated number of interacting
pairs, we can estimate that the correction to [H(t)] is of
order A /aaptp —A gp/gmk~T. This factor is of order
unity for the smallest particles. For the larger particles,
the effect is much less pronounced. The magnitude of the
correction scales as a / and the time scale over which
it operates is proportional to a / . Thus changes in the
shape of [H(t)] due to electrostatic interactions scale as
a

VIII. CONCLUSIONS

In this work we have shown that the scaling relations
first observed for the self-diffusion coefficient [9,11] ap-
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APPENDIX: FINITE-SIZE EFFECTS

At long times, the hydrodynamic interactions between
spatially fixed (or very slowly moving) particles can be
computed from the quasistatic or "creeping-Qow" Quid
equations [44). The velocities of the spheres U; are lin-
early related to the forces F~,

N

U;=) p~F~; (A1)

the mobilities p, ;~ are dependent on the conf1guration
of all N spheres in the system. For a single sphere
pp = (67rgpa) . The hydrodynamic interaction function
R (q) is given by an ensemble average of y„~ [32]

ply to collective diffusion as well. Computer simulations
show that the wave-vector-dependent diffusion coefBcient
has the same functional dependence on time for all wave
vectors and at all solid volume &actions. These results
suggest that monodisperse suspensions behave hydrody-
namically as continuous media, over a substantial range
of space and time scales, with only a varying effective
viscosity. The characteristic time that scales the simula-
tion data for the difFusion coeKcient has a qualitatively
similar dependence on wave vector to the structure factor
of the suspension. The validity of the computer simula-
tions was examined by a detailed comparison with difFus-
ing wave spectroscopy experiments, which are sensitive to
particle motions at the very small length scales and time
scales required to observe the temporal evolution of the
hydrodynamic interactions. The effective diffusion coef-
ficient probed by the light scattering reQects an average
over many wave vectors; however, by using particles of
different sizes, the contributions &om smaller wave vec-
tors can be measured. Again the time-dependent data
are found to scale to the same single-sphere functional
form, with the characteristic scaling time decreasing with
decreasing particle size, reQecting the larger contribution
&om the smaller wave vectors. A detailed comparison of
wave-vector-averaged simulation data, weighted to match
the light scattering, exhibits the same qualitative trends
as the experiment; however, differences in relaxation time
persist. We believe that these differences suggest that
sound wave propagation may play an important role in
the development of hydrodynamic interactions.
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ppH (q) = —) q. S '&
. qe"

i,j=1
(A2)

It describes the average response of the system (U(q)),

N

(U(q)) = N). q. II' "
i=i

(A3)

to a spatially periodic external force F(q),

F, = qF(q)e '~

from Eqs. (Al) —(A4)

(U(q)) = ~pH (q)F(q).

(A4)

(A5)

For a very dilute suspension, H (q) -+ 1 at all q.
However, for a periodic system, H~(q) difFers from 1 by
terms proportional to a/I (L is the length of the unit
cell). The coefficient can be calculated by summing the
fiow fields from an infinite cubic array of spheres [45]; the
correction to Hg (q) is given by [39]

H (q) =Hg(q)+1. 76(y/N) ~ +O(y/N). (A6)

Except for very small systems, terms of order P/N can
be ignored.

At higher volume &actions, the hydrodynamic inter-
actions between a sphere and its periodic images are
screened by the other particles in the suspension. Since
these interactions are at distances of order L )& a, the

screening can be accounted for by an eBective medium,
with viscosity rl(p) [46]. Thus if a force is applied to a
particular sphere in a periodic system, that sphere ex-
periences the fIow field &om all its periodic images, but
modulated by the suspension viscosity, rl(p), rather than
the pure fIuid viscosity, go. This gives a correction to the
high-q (single-particle) limit [39],

N

F,tr = ) qF(q)e'~ ( ' ') = qF(q)S(q).
j=1

(AS)

S(q) is the structure factor defined in Eq. (15). Thus
our correction for H (q), valid at all wave vectors and
volume &actions, is

H (q) = H (q) + 1.76S(q, g) (P/N) ~,
n(4)

(A9)

as given in Eq. (43).

H = Htv + 1.76 (Q/N) i .
n(4)

It has been shown that this correction accounts for the
system size dependence of the short-time self-difFusion
coefficient, Ds (P) = H Dp essentially exactly [39].

At longer wavelengths a particular test sphere sees not
only the Bow field &om its periodic images, but also the
fIow Beld &om images of neighboring spheres. We can
approximate this fIow Beld as an average How field located
at the image of the test sphere (sphere 1) but with an
efFective force [47].

* Present address: Lawrence Livermore National Labora-
tory, Livermore, CA 94550.
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