
PHYSICAL REVIEW E VOLUME 52, NUMBER 6 DECEMBER 1995

Irreversible polymer adsorption from semidilute and moderately dense solutions
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We present results from a Monte Carlo study of polymer adsorption from solution at a solid-liquid
interface, in the limit of infinitely large adsorption energy. We study the kinetics of adsorbed layer
formation for both the cases of end-functionalized chains and homopolymers. In the former case,
the adsorbed layer is found to be in the "brush" regime described by Milner, Witten, and Cates
[Macromolecules 21, 2610 (1988)], and its growth is consistent with the formation of an activation
barrier, as predicted by Ligoure and Leibler [J. Phys. (Paris) 51, 1313 (1990)]. In the latter case,
the resulting "pancake" layer is analyzed in terms of loop, train, and tail distributions. The results
are compared with recent scaling arguments proposed by Guiselin [Europhys. Lett. 17, 225 (1992)].

PACS number(s): 61.25.Hq, 36.20.Ey, 68.45.Da, 82.70.—y

I. INTRODUCTION

Systems of polymer chains at an interface have received
considerable attention recently. Indeed, such polymer
systems have proven useful in many applications, such
as colloidal stabilization and lubrication [1]. The behav-
ior of polymer chains in such systems strongly depends
on their conformation at the surface. Computer simu-
lation provides a powerful tool for studying these con-
formations and their dependence on physical conditions.
Most of the previous simulation studies have considered
either reversibly adsorbed layers [3—6] or grafted layers

[2] with preassigned values of the surface coverage. Much
less is known about irreversible adsorption of polymers
onto a solid-liquid interface, although such systems have
attracted recent attention from both theorists [7—9] and
experimentalists [10—13].

For the case of end-functionalized chains grafted onto
a flat surface, the self-consistent-field (SCF) theory of
Milner, Witten, and Cates (MWC) predicts a parabolic
form for this profile [14], unlike the step-function form
assumed by Alexander [15] and de Gennes [16]. The as-
sumption of a parabolic form for this profile has then
served as the starting point for some analytical studies of
the adsorption kinetics [17]. This assumption is appropri-
ate to a regime where the chains are strongly stretched;
however, it may not be applicable (or even attainable)
for the growth of a layer where screening by the free
chains is important [18]. Indeed, for reversible adsorp
tion of end-functionalized chains, it has been shown that
for moderate adsorbing strengths penetration of the &ee
chains into the adsorbed phase can lead to a screening
of the interaction between adsorbed chains, altering the
form of the adsorption profile throughout the adsorption
process [4). It is therefore of interest to follow the growth
of such a layer &om solution for a very large adsorption
energy where the screening efFects of the &ee chains are
expected to be small, and the end-functionalized chains
could achieve the parabolic regime.

For the case of homopolymer adsorption, previous the-
oretical studies of irreversible adsorption have been per-

formed by Guiselin [7] and Aubouy and Raphael [8]. In
these studies, the time required to saturate the adsorbing
surface is assumed to be very short, so that the adsorbed
layer is formed instantaneously &om a concentrated bulk
solution or a melt. Only those chains which are touching
the surface at that given instant are kept, and are taken
to be irreversibly adsorbed. Recent experimental studies
[12,13] have also been carried out to study irreversible
adsorption of poly(dimethylsiloxane) (PDMS) on porous
silica &om a concentrated solution of dichloromethane
or &om melts. The results of these experiments seem to
agree with theoretical arguments in the limit of very large
solution concentrations or melts. However, all details of
the adsorption process are neglected in these theoretical
and experimental studies, and only the final conforma-
tion is studied.

In this paper, we study the growth of polymer lay-
ers &om solution for the case where the chains become
irreversibly adsorbed. We examine the cases of both ho-
mopolymer adsorption and end-functionalized polymer
adsorption. The monomer concentrations considered in
our studies range &om semidilute to moderately dense.
For these concentrations, the adsorbed layer does not
form instantaneously and the theoretical arguments men-
tioned above are not directly applicable. In our simula-
tions, we characterize both the kinetics of the layer for-
mation and the conformation of the chains in the layer
at various stages of the growth process. The results are
then compared with applicable theoretical arguments.

The remainder of this paper is organized as follows. In
Sec. II we describe our model and the method of simula-
tion used in this study. In Sec. III we present results for
the adsorption of end-functionalized chains. In Sec. IV
we present results for the adsorption of homopolymers.
The results of these studies are compared with previous
studies wherever possible. In Sec. V we summarize our
results and discuss them briefly.

II. MODEL AND NUMERICAL METHODS

We model the polymer chains as mutually self-avoiding
random walks of N —1 steps, on a three dimensional
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50 x 50 x 100 cubic lattice. The self-avoidance crite-
rion produces an excluded volume interaction between
monomers, characteristic of a good solvent. We place
a number of such chains in the system to make up the
desired bulk concentration of monomers, $0, taking care
not to place a monomer at a lattice site which is already
occupied. Lattice sites not occupied by monomers corre-
spond to solvent molecules. We consider chain lengths of
1V = 50, 100, and 200 monomers (49, 99, and 199 steps,
respectively), in solutions of inonomer concentration of
5%, 10%, and 20%. The system boundaries are periodic
in the x and y directions, while the z = 0 and z = 99
boundaries are taken to be impenetrable surfaces. The
wall-to-wall distance in the z direction is much larger
than the expected layer thickness for the chain lengths
considered, so that the wall at z = 99 should not af-
fect a layer formed at the z = 0 wall. Our results in
Secs. III and IV confirm this. The system of chains
is made to evolve by repeatedly choosing a monomer

' at random, and attempting a random move with that
monomer. Possible moves include kink jumps, end wig-
gles, crank-shaft turns, and a slithering motion loosely
called a "reptation" of the chain, weighted so that half of
the attempted moves are reptations [19]. For initial equi-
libration of the system in an athermal solvent, the test
move is accepted if it does not cause two monomers to
overlap, or to cross an impenetrable surface. After this
period of initial equilibration, an irreversible contact in-
teraction is "turned on" at the z = 0 surface. Thereafter,
any test move which requires an adsorbing monomer
to be detached &om this surface is rejected. The ad-
sorbing monomers may be the first monomers of the
chains only (end-functionalized case), or all monomers
(homopolymer adsorption). We measure time t in units
of Monte Carlo steps per monomer (MCS/M), such that
one MCS/M corresponds to as many move attempts as
there are monomers. In this way„each monomer under-
goes an average of one trial move during one MCS/M,
although not every monomer will necessarily be chosen
for an attempted move during one MCS/M. It should be
noted that the irreversible interaction leads to a differ-
ence in the chain dynamics &om previous studies with
finite surface interactions. In the present case, sliding
of an adsorbed monomer along the adsorbing surface is
not allowed, since we are presumably modeling a chemi-
cal (fixed) bond [20]. Such chemical bonds have a strong
directional preference and therefore resist lateral move-
ment (sliding) of the bound monomers. In particular, an
adsorbed chain is no longer free to reptate onto and along
the surface. In the case of end-functionalized chains this
may cause the absence of a mode of oscillation wherein
an adsorbed chain is continually reeled in and out, per-
pendicularly to the surface. Its effect on the adsorption
density profile will be addressed later.

The interaction with the adsorbing surface causes the
gradual buildup of a layer at z = 0, similar to that de-
picted in Fig. 1 of Ref. 4. In order to maintain a constant
monomer concentration in the bulk, every time a chain
becomes adsorbed we attempt to place a new chain on
the lattice at some random location. If the attempt fails,

we try again at a new randomly chosen location. In or-
der to ensure that this placement of a new chain does
not affect the growth kinetics, we place the new chain
such that its center of mass lies in the half of the sys-
tem furthest &om the adsorbing surface. We have veri-
fied that the resulting density profiles are well behaved
around z = 50 (i.e., the midway point), to ensure that
our method of placing chains does not cause any pecu-
liarities in the chemical potential. In this way, we model
a system which is in diffusive contact with a reservoir,
which can supply chains without limit to maintain an
approximately constant chain density far from the sur-
face (provided that the volume of the bulk phase does
not change appreciably). This mimics the effect of a fixed
chemical potential far &om the surface, in the bulk phase.
The diffusive contact with the surface phase then causes
equalization of the surface to the equivalent value of this
fixed chemical potential. The total number of chains in
the system is therefore not constant, but varies contin-
ually. This open-system approach is strictly more accu-
rate than the closed-system approaches, which are more
prone to finite-size effects. In particular, the behavior of
the growth kinetics of these closed systems is quickly cut
off as the finite bulk solution becomes depleted (see, for
example, Ref. [5]). Despite these efforts, it will be seen
that the bulk concentration does in fact increase slightly
due to an exclusion of the &ee chains from an adsorption
region near the surface.

The system thus evolves toward a final "quasiequilib-
rium" configuration while physical quantities of interest
are measured. This process is then repeated several times
with different random initial conditions, and the results
of the measurements are averaged over all the "runs"
(typically, we average over ten runs for each system con-
figuration). By this averaging we obtain quite accurate
results for the kinetics of layer growth.

III. ADSORPTION OF END-FUNCTIONALIZED
CHAINS

A. Growth kinetics

Presently, we consider the case of polymer chains of
which only the first monomer adsorbs irreversibly to
the z = 0 surface, i.e., molecules with a functionalized
"sticker" head. In Figs. 1 we plot the surface density
of adsorbing heads o. as a function of time for a typical
system configuration. At early times, o. can be seen to
grow according to a power law, consistent with Brownian
diffusion of the chains toward the surface [Fig. 1(a)]. The
exponent, however, is not 0.5, as expected, but around
0.3 (although the first few data points would tend to yield
a larger exponent). The slowing down of this power-law
growth is attributed to screening by the chains already
present at the surface [17], which begin to form a layer
before even the first measurement is made. Even in the
cases of a 5% solution, we note that there are already over
1000 monomers in the adsorbed phase at the time of our
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first measurement (t = 100 MCS/M). From Fig. 1(a), a
crossover is evident at intermediate times, at which point
the power-law behavior gives way to a slower growth. At
late times [Fig. 1(b)], the growth of 0 is seen to be essen-
tially logarithmic in t. This logarithmic growth is charac-
teristic of the second phase of growth; it arises with the
formation of a strongly stretched brush layer. Because
of this layer, an adsorbing chain must give up some of
its &ee energy in straightening itself out to penetrate the
brush layer. In this way, adsorption of further chains
is impeded by the formation of an activation barrier, as
d.escribed by Ligoure and Leibler. We can quantify this
logarithmic growth in terms of a characteristic grafting
density o* such that o(t) cr* ln(t). In Table I, we
list the values of o.* obtained from least-squares 6ts of
o(t), for the system configurations considered. We note
that o* d.ecreases with increasing chain length, scaling
roughly as o* 1/K. We have verified that the form
of Ligoure and Leibler for this growth shows a similar
behavior. The activation barrier is thus more effective at
impeding the progress of longer chains through the brush.
It does not, however, appear to change with changing so-
lution concentrations, remaining practically constant for

all concentrations considered.
We have not pursued the study of the growth kinetics

past the point where the onset of this second phase of
growth has been clearly established. Indeed, achieving
a final steady state is not practical for such a system.
Since the chain exchange can only be one sided, there
can be no equilibrium governed. by a detailed balancing
of chains.

~actual
V'o CTs,

50 0.062 0.0132
5O O 122 O O128
50 0.242 0.0188
100 0.063 0.00545
100 0.132 0.00579
100 0.264 0.00781
200 0.0823 0.00284
200 0.1539 0.00352

&quasiequil

0.075
0.093
0.122
0.039
0.052
0.078
0.022
0.032

4'snab

0.305
0.354
0.439
0.191
0.264
0.370
0.155
0.219

(~) &

6.43
6.75
7.09
10.25
10.58
10.87
16.15
15.89

&~)a~a
~1/3 N
0.305
0.298
0.286
0.301
0.283
0.254
0.286
0.249

TABLE I. Characteristics of a growing brush layer of
end-functionalized chains. Values correspond to an instan-
taneous, averaged "quasiequilibrium" state (see text).



52 IRREVERSIBLE POLYMER ADSORPTION FROM SEMIDILUTE. . . 6539

B. Layer structure

As explained above, the growth of the adsorbed layer
was terminated after the onset of the logarithmic phase
was evident. The system configurations thus achieved
therefore only correspond to a "quasiequilibrium" sit-
uation. While we would expect the further growth of
the layer to proceed indefinitely (barring effects due to
a finite-sized system), we do not expect the chain con-
formations to change appreciably. We therefore average
our system conformations over late times (logarithmic
phase) —typically over a time t = 10000 MCS/M in or-
der to describe the structure of the layer in this phase of
growth. The density profiles of a typical system averaged
in this way are plotted in Fig. 2. The density profile of
adsorbed chains resembles a parabola [14], motivating a
least-squares fit to the functional form P g, (z) = A Bz-
which is also shown in Fig. 2. We also calculate (z), the
first moment of the brush layer. From this, we find that
(z)/o ~s N, as evidenced in Table I where we see that
the ratio (z)/0 ~sN is approximately constant. This scal-
ing result is characteristic of a strongly stretched brush
[14—16]. We note a tendency for this ratio to decrease
slightly as the bulk concentration increases. The stronger
osmotic pressure of a more dense solution compresses the
layer and reduces (z). As well, a MWC parabola obeys
the relation [14,21]

4A
9B¹o.2

which we find to be in good agreement with the results of
our parabolic fits. From these results, we can also deduce
the value of the excluded volume parameter u according
to the relations

the screening effect of the &ee chains (which would re-
sult in a smaller value for the eQ'ective excluded volume
parameter) is small in the present simulations.

The above conclusion is supported by noting that the
free chain density quickly vanishes within the layer. The
&ee chains are almost totally expelled &om the adsorbed
phase, in contrast to our previous study of finite adsorp-
tion energies which showed significant penetration by the
free chains down to the adsorbing surface [4]. Because of
this expulsion of the free chains &om the adsorbed phase,
the actual monomer concentration in the bulk solution,

, is slightly larger than our initial concentration
By our adding new chains to the system to prevent

depletion of the solution, we are maintaining the number
of &ee chains in the whole system; but the volume this
number is restricted to becomes smaller as the adsorbed
phase grows, so gP~'~" is slightly greater than Po. Of
course, this efFect will be weak when the volume of the
system is much larger than the volume of the final layer.
In this way, the increase in bulk concentration is an ar-
tifact of our finite-sized model. The measured values of
gPz' " are also presented iii Table I, where we can see
that the increase in concentration &om the intended val-
ues (see Sec. II) is small, but non-negligible.

In Fig. 3(a) we plot the density of monomers
in the adsorbed phase scaled by its maximum value,
P g, (z)/P, as a function of the reduced distance,
z/(z), for the various cases considered. We also
plot the reduced density profile of &ee monomers,
Py „(z)/gPz' " . The resulting density profiles are seen
;o coincide, leading us to infer the scaling relations

9vr20

32A3
or 8¹B (2)

From these two relations we obtain cu = 0.5, particularly
for the low concentration cases, where the parabolic fit
is especially good. This value of u is in agreement with
previous studies of end-grafted lattice polymers in the
absence of any free chains [21]. This result indicates that

where we might expect that

g(z) + h(z) = 1.

(4)
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otal profile FIG. 2. Density profile of monomers near
the surface for the case of end-functionalized
chains, 1V = 100, Po = 5'. The solid line
is a least-squares fit to the functional form

A —Bz . Note the almost complete
expulsion of the free chains from the brush
region.
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The latter relation can be understood as expressing the
constancy of the chemical potential p, (z) at quasiequilib-
rium, assuming that p is proportional to both P q, and
Qf, i.e. , p(z) = Aog g, (z) + Hpgf„„(z) . Far from the
surface, Py„„= Po and P~g, = 0, while right by the
surface, Pf „——0 and P g, = P . We plot g + f in
Fig. 3(b) and note that there is in fact a significant dip in
the region where the bulk and adsorbed phases interact,
presumably due to screening of their self-interactions.
We also note a trend for the dip to be more pronounced
for shorter chain lengths. Shorter chains have a higher
concentration of chain ends and are thus more interpen-
etrating. This in turn leads to stronger screening of their
excluded volume interactions and a larger deviation of
g + f f'rom unity. This deviation may therefore be seen
as an effect of finite chain lengths. On the other hand,
we must also bear in mind that our system is not at equi-
librium; the constancy of p, however, is only strictly true
for an equilibrium situation. It is therefore possible that
the system's evolution is not quasistatic, causing the dip
in p. Finally, p may not be simply a linear function of
P; it may be that this moderately dense system requires
a more complex equation of state.

Although the scaled parabolas seem to coincide rea-
sonably well [Fig. 3(a)], there is a visible tendency for
the profiles &om higher concentrations to flatten out

more at larger z/(z). In particular, for the case of
N = 100, Pp

——20% [Fig. 3(c)], a small plateau re-
gion becomes visible in the "parabola, " as the higher
osmotic pressure of the bulk causes the chain distri-
bution to become slightly more compact and to devi-
ate kom the parabolic form. This flattening out of the
parabola at higher concentrations has been predicted by
Shim and Cates [22], who have generalized the MWC self-
consistent-field approach to the case of dense systems of
grafted chains. They applied a Flory-Huggins type equa-
tion of state, which allows for saturation effects at high
densities, and considered an extra non-Gaussian term for
the chain elasticity, in order to prevent unphysical ex-
tension of the chains at these higher densities. At low
densities they recovered the MWC parabolic profile, but
the profile was seen to flatten out as the grafting den-
sity was increased to moderate values. If the equation
of state does in fact cross over to a nonquadratic form,
i.e. , where the free energy is not proportional to P2, then
we cannot expect p to be linear in P(z), and Eq. (5) no
longer holds.

We now compare the density profile of an irreversible
adsorption case in quasiequilibrium to that of a L = 6kT
case in true equilibrium [Fig. 4(a)], both with roughly
the same adsorbance (i.e., the same total number of
monomers in the adsorbed phase) and bulk concentra-

0.6

0.5 Irreversible Adsorption

— - - Finite Adsorption, b,=6 kT

0.4

0.3

0.2

0.1

00
0

1.2

1.0

0.8

I

(b)

10 20

——Irreversible Adsorption

Chains—

25

FIG. 4. Comparison of density profiles
of irreversible (b, = oo) and reversible
(A = 6kT) end adsorption. (a) Equilibrium
profiles of cases with similar bulk concentra-
tions Ps —0.05 and similar adsorbances I'.
(b) Comparison of scaling functions for irre-
versible (A = oo) and reversible (A = 6kT)
end adsorption. The results for A = 6kT are
taken from Ref. [4]. The solid line represents
a reversible adsorption (A = 6kT) case where
adsorbed monomers are not allowed to slide
along the surface.
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tion. We find that the value of P g, (z = 0) is much
larger for the latter case; the adsorbed chains are more
stretched in the case of irreversible adsorption. While
both cases have about the same number of adsorbed
chains, a greater portion of the chains is pressed against
the surface in the case of finite adsorption strength. In
the limit of irreversibly strong adsorption, the functional
tips are apparently very successful at driving the non-
adsorbing monomers off the surface. Now in our previ-
ous study [4], we found that the density profiles of various
systems with L = 6kT and L = 9kT obeyed a scaling re-
lation similar to Eq. (3). When rescaled as above, these
profiles were found to coincide with a common scaling
function. One might therefore question whether Eq. (3)
is valid for all values of 4, &om low values up to and
including the present case of 4 = oo. It turns out, how-
ever, that the scaling functions g(z) and f (z) are not the
same as those in our previous study; these two studies
take place in different regimes, so the scaling functions
are naturally difFerent. This is demonstrated in Fig. 4(b)
where we compare g(z) with the scaling function derived
in Ref. [4]. We see that there is a small but definite difFer-
ence in the scaling functions. Furthermore, we compare
these two functions with a third, derived &om a model
similar to that of Ref. [4], i.e. , with a finite adsorption
energy (A = 6kT), for N = 50, fp = 0.05, but with
the artificially imposed condition that there be no "slid-
ing" of adsorbing monomers at the surface. This mim-
ics the chain dynamics of the present irreversible study
to some extent. The resulting scaling function can be
seen to lie between the two other functions, without co-
inciding with either one. It is interesting to note that
this "hybrid" function can also be fitted to a parabolic
form whereas the original, "with-sliding" function has
a Gaussian shape. The fit, however, is much worse
in the tail region of the profile than it is for the irre-
versibly adsorbed chains, since the change in dynamics
mostly affects the proximal region of the density pro-
file. Presumably, a strong lateral anchoring of the graft-
ing monomers helps the chains to stretch out, resulting
in a more parabolic profile. Interestingly, most of the

previous studies which consider only end-grafted chains
without chain exchange and which yield parabolic pro-
files consider the head group to be immovable. In this
way, they too provide this strong anchoring against lat-
eral motion. It should be noted that Lai and Binder [23]
did not find any such difference between their so-called
"quenched" and "annealed" states, although they only
looked at grafted chains with an infinite L in the ab-
sence of any &ee chains. In our case, artificially imposing
this "no-slide" condition provides a strong lateral anchor-
ing, but it does not produce the expulsion of &ee chains,
and thus cannot exactly rnatch the scaling functions ob-
tained in the irreversible case. In fact, the imposition
of this condition does not seem to affect the &ee chain
density profile at all. The imposition of the "no-slide"
condition on the case of finite 4 reduces the equilibrium
value of P ~, (z = 0), but it also drastically reduces the
total adsorbance. It is easier to pack more chains into the
adsorbed phase when they can easily redistribute them-
selves along the surface. We conclude that it is only in the
case of a finite adsorption energy that the entropy difFer-
ence caused by this lateral &eedom significantly affects
the form of the density profile. For irreversible cases,
the change in dynamics only perturbs the parabolic fit
slightly, although the kinetics will no doubt be speeded
up if the chains can diffuse along the surface.

We present a similar scaling study in Fig. 5, where the
reduced density profiles are plotted for difFerent times
within a given system configuration. We see that the
scaling relations given by Eqs. (3) and (4) are obeyed
dynainically as well. We conclude that (z) can be consid-
ered the dominant length scale in the profile, throughout
the growth of the layer.

IV. ADSORPTION OF HOMOPOLYMER CHAINS

A. Growth kinetics

We now investigate the formation of a polymer layer
in the case where all monomers can interact irreversibly
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of Monte Carlo steps per monomer, as de-
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cr fNQAa/N QAa/R QAa/N", (6)

which is the above result. Note that we use Po rather
than Po'i" i in this argument, since at early times the
concentration of free chains has not increased signifi-
cantly from its initial value Po. This result suggests that
the first phase of the growth of the polymer layer in-
volves the gradual collapse of only those coils which are
initially touching the surface. These are the same chains
that are kept in Guiselin's study [7]. The adsorption of
further chains proceeds more slowly, requiring chain dif-
fusion through the layer.

We consider the further growth of the whole layer
by measuring I', the total amount of polymer in the
adsorbed phase, in units of equivalent monolayers. In
Fig. 7(a) we plot ln(I') as a function of ln(t) for a par-
ticularly illustrative system configuration. From it, we
can see that the growth of the adsorbed phase follows a
power law at early times. Again, this power is less than

with the adsorbing surface. We define a quantity [1—
8(t)], describing the surface density of free sites (here,
0 is the surface coverage of monomers). Initially, this
quantity can be seen to decay exponentially with time,
as shown in Fig. 6 where we plot its natural logarithm as a
function of t. The decay constant n, where (1—0) e
is tabulated in Table II, for the various system configura-
tions. From these values of cr, we note that n Po/¹,
with v = 0.6 (0.55 + 0.15, from a least-squares fit to
our data). This exponential decay follows from con-
sidering the vacant sites as particles detaching &om a
surface. The probability n of such a particle becom-
ing detached is directly proportional to the number of
monomers adjacent to the surface, into which the parti-
cle can "jump. " Now, if the polymer chains are initially
viewed as spherical coils, then each coil will have a &ac-
tion f ~ aR2/Rs ~ a/R of its N monomers near the
surface of the sphere. (Here, R is the radius of a spher-
ical coil, a is the lattice constant, and A is the surface's
total area. ) The number of such spheres centered be-
tween z = R/2 and z = R/2 + a (and thus touching the
surface) at t = 0 is simply PoAa/N, whence

TABLE II. Characteristics of a growing layer of homopoly-
mer chains. Values correspond to an instantaneous, averaged
"quasiequilibrium" state (see text).

N
50
50
50
100
100
100
200
200

&0

0.05
0.10
0.20
0.05
0.10
0.20
0.05
0.10

0.000437
0.000881
0.00139
0.000305
0.000501
0.000893
0.000219
0.000401

&ehi ft
3.70
3.92
4.92
6.09
6.56
5.48
9.34
11.73

z eff
tail s

4.54
6.31
3.62
7.98
8.49
10.33
14.96
10.81

CX

4n& —v

0.0752
0.0757
0.0597
0.0767
0.0631
0.0562
0.0807
0.0738

0.5, due to screening by the layer which is already signif-
icant by the time of the first measurement. We also plot
I' as a function of ln(t) in Fig. 7(b), and see that at late
times the growth of the adsorbed phase proceeds logarith-
mically, just as in the case of end-functionalized chains.
As we shall see in the next section, the adsorbed layer
has a stretched region similar to that of an end-adsorbed
brush, which the incoming chains again can only pene-
trate by expending &ee energy to straighten out. Con-
sequently, the same growth mechanism as described for
end-adsorbing chains also applies here. During this loga-
rithmic growth, the quantity (1—0) defined above decays
according to a power law (Fig. 8), (1 —8) t, where
x depends on the chain length. For the shortest chains
considered (N = 50), x = 1, while for N = 100 and
200 2: is much smaller (around 0.6). This linear behavior
would seem to be due to a progressive adsorption of suc-
cessive monomers along a chain, as each adsorbed chain is
"reeled in." This can only work with very short chains;
longer chains form large loops which get entangled in
the layer and slow down this "reeling in" process, as evi-
denced by decreasing values of x for longer chains. While
this mechanism of adsorption is no doubt present at early
times as well, it is only at late times that it becomes ev-
ident. This is because at these late times very few new
chains are being added to the layer. While at early times
the addition of new chains overwhelms the other con-
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-3.0

-3.5

FIG. 6. Decay of the surface density of free
sites with time for the case of homopolymer
chains, N = 100, Po = 10%%uo. Note that the
initial decay of (1 —8) is exponential with
time t.
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FIG. 7. Growth of the adsorbance I' with
time for the case of homopolymer chains,
N = 100, Ps ——10% (a) l.n(I') vs ln(t): the
initial growth proceeds according to a power
law, slightly smaller than 0.5. (b) I' vs ln(t):
the growth at late times is essentially loga-
rithmic.

40
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ln(t)

I
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tributions to the adsorption process, at late times the
dominant mechanism is one involving a rearranging of
the chains already in the adsorbed phase. Thus, this
"reeling in" of the chains becomes visible at these late
times.

B. Layer structure

In Fig. 9, we plot the monomer density profiles near
the surface, averaged over late times as in the case of
end-functionalized chains. The surface is very nearly
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FIG. 8. Decay of the surface density of free
sites with time for the case of homopolymer
chains, N = 100, $0 = 10%. Note how the
decay obeys a power law at late times.
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FIG. 9. Density profile of monomers near
the surface for the case of homopolymer ad-
sorption, N = 100, @p ——10%. The pro-
file due to tails resembles a parabola, pushed
outward by the dense layer of loops.

0.1

0.0
0 10 20 30 40

completely saturated, as witnessed by the sharp peak
around z = 0. In the figure, we distinguish the profiles
due to chain loops and tails. (The contribution Rom
trains is trivial, residing purely at z = 0.) We note the
rapid decay of the loop profile as we move away &om
the surface; beyond a few lattice spacings &om the sur-
face, only the tails are appreciably present. We there-
fore expect the interaction between adsorbed and bulk
phases to occur primarily with the chain tails. The tail
profile appears to be parabolic, as in the case of end ad-
sorbed chains. Now, we might expect that the adsorbed
chains be touching the surface at arbitrary points along
the chain. The tails would then be of arbitrary lengths,
making the tail brush polydisperse. But the density pro-
file of a polydisperse brush is in general not parabolic
[24]; the parabolic appearance therefore suggests that the

tail profile must be very nearly monodisperse. We ver-
ify this by plotting the distribution of tail lengths for a
typical system in Fig. 10(a). From it, we can clearly see
a sharp peak near ¹ The greatest contribution to the
tail profile comes &om chains with only a few monomers
at one tip adsorbed. This is attributed to a dense pro-
tective layer at the surface which strongly favors pene-
tration by one chain end, leading to only end adsorption
of the chains. We have verified that this profile appears,
albeit slightly distorted, as early as t = 1000 MCS/M
[see Fig. 10(b)], by which time over 60% of the surface
sites are already occupied. Its form then quickly becomes
more parabolic over a few thousand MCS/M, as the sur-
face coverage increases, and the peak in the distribution
becomes sharper. At this initial time, t = 1000 MCS/M,
the peak is broader and centered at smaller tail lengths,
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FIG. 10. Normalized distri-
bution of tail lengths for the
case of a homopolymer layer
with N = 100, Pp —10%. (a).
At quasiequilibrium: the strong
peak near 100'/ON implies that
the tails form a nearly monodis-
perse brush. Here, 892 tails
were sampled. (b) The peak is
present at early times, and is
broader. Here, 546 tails were
sampled.
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-3

C400 FIG. 11. Semilogarithmic plot of the den-
sity profile due to adsorbed loops, for the case
of homopolymer adsorption. The profile de-
cays exponentially with distance z in some
region.

-8 I

10
I

15 20

approximately 0.85¹This is because the greater num-
ber of &ee surface sites allows for a larger portion of the
chains' tips to adsorb, much like a diblock copolymer. We
also note that, while the profile due to chains appears
to be parabolic, the parabola can no longer be consid-
ered to be centered at the surface, as it was in the case
of end-functionalized chains. Its center is displaced by
the collapsed loops, a distance of several lattice spacings.
This displacement, z, h, fg is tabulated in Table II for the
various system configurations, along with other profile
parameters. By assuming that this is in fact a shifted
MWC parabola, we can use Eq. (1) to infer an effective
coverage I'~,f&, for the tails outside the loop region, which
we include in Table II.

In Fig. 11 we plot the natural logarithm of Pi ~, as a
function of z. Prom the figure, it can be seen that the
profile due to loops decays exponentially in this limiting
regime, apart &om saturation efFects near the surface and
finite-chain-size efFects at larger distances. We extract a
characteristic decay length A, such that Pi „, e
and find that in general A/z, i„.yt 0.5. This supports
the conclusion that the distribution of tails is "pushed"
outward by the loops, as the peak of the tail parabola is
shifted proportionately to A.

For all the cases considered, we calculate and tabulate
various quantities of interest in Table III. These include
the average height of the layer (z) and adsorbances con-
tributed by the tails, loops, and tails of the layer. As

shown in this table, we can fit our results to the scaling
form (z) Po¹.Guiselin [7] has proposed an elegant
scaling argument to determine these exponents by anal-
ogy with the irreversibly adsorbed layer with a polydis-
perse brush formed &om a melt, which we now summa-
rize.

For a grafted polymer brush, we have &om Alexander
[15] that

2
)
—5/6

where ( is the blob size and g is the number of monomers
per blob. For a polydisperse brush, let 17(n) be the num-
ber of pseudotails of length greater than n. (A long
loop is considered to be two pseudotails. ) I et us also
assume that all pseudotails are stretched the same way,
so that z = z(n). Then, at a distance z, the layer can be
seen as a brush of pseudotails with local grafting density
0 (z) = 17(n(z)). Using this in Eq. (7), we find

—- —- a[a 17(n)]
dz

dA g

dz - a[a'17(n)]'/s,

N

a[a 17(n)] / .
0

TABLE III. Characteristics of a growing layer of homopolymer chains. Values correspond to an
instantaneous, averaged "quasiequilibrium" state (see text).

50
50
50
100
100
100
200
200

~actual

0.059
0.116
0.230
0.064
0.127
0.228
0.077
0.146

z Gds

3.39
3.93
4.55
5.86
6.86
7.48
10.85
11.93

(ya ctuaI )p.2 N0. 8$

0.251
0.254
0.257
0.244
0.249
0.241
0.248
0.240

2.954
3.543
4.566
3.572
4.605
5.986
4.667
6.373

1.327
1.909
2.953
1.918
2.900
4.169
3.054
4.642

I'loops

0.632
0.637
0.615
0.666
0.714
0.823
0.633
0.748

I'tv. ains

0.995
0.997
0.999
0.988
0.990
0.994
0.981
0.982
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Now let f (n) be the number of pseudotails of length n in
a typical chain. For a melt, there will be Rgo Ni~2

monomers in the adsorbed phase per unit area, assuming
that only the coils initially touching the surface are kept.
This leads to the conditions

f
N

nf (n)dn = N,
1

where the latter relation ensures that the typical chain
has N monomers. Assuming that f (n) has the form of
a power law, we find from these that f(n) Ni~2n

Using the fact that 17(n) = f f(n) n i~2 in Eq. (8)
yields

N —1/6 ~5/6

for a layer formed in a melt. We can imagine our semidi-
lute solution as a melt of blobs by making the substitu-
tions N + N/g, i and a + (, i. As well, for a semidilute

solution we have [25] (,~i Po and g,~i Po . Us-

ing this in Eq. (9) yields Guiselin s result, namely,

results with Guiselin's. Nevertheless, our present study
does not exactly correspond to Guiselin's assumptions.
For one thing, we allow the chains initially at the sur-
face to adsorb more completely over time. We also al-
low the further adsorption of new chains. In this way,
our quasiequilibrium profile actually occurs in a some-
what diferent phase of growth from the one studied by
Guiselin. Using P~' " and our results for (z) from Ta-
ble III, we find 6 = 0.20 +0.03 and c = 0.81+0.05, which
is in excellent agreement with Guiselin's first result. This
agreement motivates us to plot in[/ g, (z) a ] as a function
of ln(z) in Fig. 12, for all the system configurations stud-
ied. We also plot the slope corresponding to Guiselin's
second result for comparison. The agreement is not very
good, but not inconsistent with our data either. It may
be that the predicted region is very short in the cases we
consider.

A scaling study by Marques and Joanny [26] pre-
dicts that in a melt (or dense solution) the adsorbance

should obey the scaling relation I' Ni~2go~, which
is supported by recent experimental results by Auvray,
Cruz, and Auroy (ACA) [12] on irreversible adsorption of
PDMS on silica. Marques and Joanny have also applied
this result to semidilute solutions. This scaling result
follows &om writing

I' 1 + 4'oR

N0 (i.e. , b = 7/24, c = 5/6).

Proceeding similarly for P(z) g, i/Q &, we find that

P(z) ~ Po (a/z) ~, which is Guiselin's second result.
Recent experiments by Auvray, Auroy, and Cruz (AAC)
[13] on irreversible adsorption of PDMS on silica sup-
port these scaling results. Note that in Guiselin's study
the layer is in contact with pure solvent only, not a bulk
solution of polymers, as in our simulation. The e8'ect
of this difFerence is thought to be small in the limit of
infinite adsorption strength. This is because the bulk
chains do not penetrate the layer as they do in the case
of finite adsorption strength [4], and so should have lit-
tle efFect on the layer. For this reason, we compare our

where I"*is the surface excess and R N ~ P ~ . The
second term is an estimate of the adsorbance (here, the
number of monomers in the adsorbed phase per unit area)
due to chains initially present at the surface, i.e. , between
z = 0 and z = R. It corresponds to the chains kept in
Guiselin's study. In a melt, Po ——1, and this second term
will be the dominant contribution to I', while the first can
be neglected. It is in this case that the results of ACA
agree with this relation. Although ACA focus mainly
on this case, they also tabulate several results for lower
concentration solutions, similar to our semidilute case.
These results show a progressive decrease in these scal-
ing exponents as the solution is made more dilute, and
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FIG. 12. Logarithmic plot of the total den-
sity profile of adsorbed chains, for the case of
homopolymer adsorption. The solid line rep-
resents the slope corresponding to Guiselin's
scaling prediction.
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I' becomes non-negligible. From our results, we find
roughly that in this intermediate regime I' No

aspic&
ss.

These exponents are consistent with the experimental re-
sults of ACA for a 10%%uo solution of the shortest chains
they consider.

V. CONCLUSIONS

We have studied the kinetics of growth of polymer
chains adsorbing irreversibly to a surface &om semidi-
lute solutions. We have considered the cases of both end-
functionalized polymer chains and adsorbing homopoly-
mers. We have also studied the structure of the adsorbed
layers at late times.

The growth of a layer of end-functionalized chains is
found to be governed by diffusion of the chains at early
times, hindered by interference from the existing layer
which forms extremely quickly. Thus, the exponent of
0.5 characteristic of diffusion measures closer to 0.3 here.
The growth quickly becomes logarithmic with the for-
mation of an activation barrier, as predicted by Ligoure
and Leibler. The incoming chains must expend some
&ee energy in stretching to penetrate the brushlike layer,
and this growth becomes slower with increasing chain
length, matching Ligoure and Leibler s prediction. The
resulting layer is found to be a strongly stretched brush,
with a density profile similar to the parabola predicted
by Milner, Witten, and Cates. We begin to see devi-
ations &om this parabola at higher solution concentra-
tions, as the distribution becomes more closely packed in
some regions, causing the profile to become flatter than
a parabola. The &ee chains are found to be completely
expelled &om the region occupied by the brush, unlike in
our previous study, where the significant &ee chain pen-
etration is thought to be responsible for perturbing the
shape of the density profile. The adsorbed profiles fall
onto a master curve when lengths are rescaled by (z),
the first moment of the brush, and P d, (z) and Pf „(z)
are rescaled by their maximum values, respectively. This
scaling works well throughout the growth of the brush,
and at late times (quasiequilibrium) also. The scaling
curve &om our previous study does not match this one,

because of the total expulsion of the free chains from the
region near the surface, and also because the dynamics
in the present case are slightly difFerent, not allowing the
brush chains to slide along the surface.

The growth of a layer of irreversibly adsorbing ho-
mopolymers is found to proceed in three phases. In the
first phase of growth, the number of vacant surface sites
decays exponentially, as the coiled chains initially near
the surface become adsorbed. Meanwhile, the total ad-
sorbance I' grows mainly through the same screened dif-
fusion as in the case of end-functionalized chains. This
diffusion continues through the second, crossover phase.
In the third phase of growth, the further growth of the
layer is dominated by a "reeling in" of the partially ad-
sorbed chains, which becomes complicated for large chain
lengths. During this final phase, I' grows logarithmically,
as incoming chains have a hard time penetrating the ex-
isting layer, and must stretch somewhat in order to poke
through.

At late times, the layer comprises a number of loops
near the surface, and tails extending further out. The
density profile of the tails is parabolic, but the parabola's
center is pushed outward by the loop distribution. This
tail-dominated region of the profile behaves like a brush
layer; it is responsible for the logarithmic growth of I',
just as in the case of end adsorbing chains. The den-
sity profile of the loops behaves like an exponential de-
cay a few lattice spacings away &om the surface. The
first moment of the whole layer (z) is found to be consis-

tent with Guiselin's prediction h aPt N ~, but his
further prediction that the density profile should behave
as P(z) z ~ does not convincingly fit our limited
amount of data.
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