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A detailed theory is developed for calculating the average time-dependent precessing nuclear
spin of an atom diffusing through a porous medium in the presence of a nonuniform aligning field.
An expansion in cumulant averages of the phase shift of the precessing spin is set up in terms
of the diffusion propagator. For a periodic porous medium, a practical scheme of computation is
exhibited which is based upon the diffusion eigenstates. This scheme is used to calculate the second
and fourth order cumulants, both numerically and by asymptotic expansions for short and long
precession times, when the field inhomogeneity is caused either by susceptibility differences between
pore Quid and solid matrix or by an externally imposed field gradient. The results are used to
calculate the diffusion effect on the transverse relaxation rate of spin polarization, and to discuss
the validity of the Gaussian approximation for the distribution of phase shifts of the precessing
spins.

PACS number(s): 47.55.Mh, 05.60.+w, 66.10.Cb, 76.60.Jx

I. INTRODUCTION

Even when the static magnetic field which is used to
align the nuclear magnetic moments in a homogeneous
macroscopic sample is somewhat nonuniform, the con-
comitant dephasing of the precessing moments is efFec-
tively cancelled when one performs a spin-echo experi-
ment. However, if the nuclear spins can displace away
&om their initial position by diffusive motion of the
atoms, this introduces an additional decay of the spin-
echo signal. The decay is then characterized by the func-
tion [1]

2~ , 2
exp

I

———(pV'II)'-Dv
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Here, 1/T2 is the decay rate of transverse (i.e. , precessing)
magnetization in a uniform field, w is the time interval
used in the dephasing and rephasing periods of the spin
echo experiment, D„ is the appropriate self-diffusion coef-
ficient, p is the nuclear gyrornagnetic ratio, and V'H is the
field gradient, assumed to be uniform. In many situations
one wishes to avoid the extra decay caused by diffusion
in a shghtly nonuniform field —ingenious tricks, such as
the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence
[1], have been devised for that purpose. Alternatively,
measurements of enhanced spin-echo decay in an exter-
nally applied Geld gradient can be used to measure the
self-difFusion coefIicient D„ in a homogeneous medium
[2].

In a Quid filled porous medium, the self-diffusion of

atoms or molecules in the Quid is strongly affected by
the microgeometry of the pore space. In addition, in-
homogeneities of the magnetic Geld are induced locally
by a combined effect of the microstructure and the mag-
netic susceptibility difference between the pore Quid and
the matrix component, even when the externally applied
field is very uniform. Experiments have been carried
out to measure spin echos in such systems [3—7], but
the theoretical interpretation of those experiments is usu-
ally difIicult. In the case where there is only a uniform
applied field gradient, exact results have been obtained
for isolated pores of simple shape [8,9], and an approxi-
mate treatment has been given for more complicated mi-
crostructures [10]. A more recent discussion exploits the
known form of the difFusion propagator in the presence
of a perfectly reQecting planar boundary in order to de-
velop an asymptotic calculation of the efFects of such a
gradient which is valid at short enough times [11].Some
qualitative estimates of the long time effects were also
attempted in that reference. The more complicated field
inhomogeneities which are due to the susceptibility dif-
ference were discussed by making assumptions about the
distribution of either the phase shifts of individual nu-
clear spins [12,13), or the relaxation times of difFerent
spins [14], or by assuming a particular spatial variation
of the magnetic field [15]. The main source of difficulty
in all of these discussions is the inherently disordered
character of the pore microstructure and the associated
dearth of information about its details.

In contrast with those discussions, our approach is first
to try and develop a detailed theoretical understanding
of diffusion efFects on T2 relaxation in a porous medium
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with a periodic microstructure that is known precisely.
We expect that the most important effects will not de-
pend in a crucial way on the exact long range periodicity
but rather on certain important details of the local mi-
crostructure, like the existence of narrow constrictions
in the pore space or long tubes which connect between
large pores. Thus functional relationships between im-
portant physical parameters, such as the relaxation rate,
echo spacing, bulk effective diffusion coeKcient, magnetic
field gradient, pore size scale, etc. , can be studied. Also,
experience in other areas of condensed matter physics has
shown that a good understanding of periodic systems is a
prerequisite to the successful tackling of disordered sys-
tems. Finally, although natural porous media are usu-
ally disordered, it is possible to make synthetic porous
media which are periodic. Experiments on such artificial
systems should teach us a great deal about what to ex-
pect &om disordered systems, especially when they can
be compared with good calculations on the same sys-
tems. We already applied this philosophy to a discus-
sion of pulsed-field-gradient spin-echo (PFGSE) experi-
ments and to the calculation of the time dependent bulk
effective diffusion coefficient D(t) of a periodic porous
medium [16—18]. Here we apply it to a discussion of spin-
echo experiments in the presence of a time independent
but nonuniform spin aligning magnetic field.

The remainder of this paper is organized as follows.
In Sec. II we develop a basic theory for calculating the
average precessing spin carried by a single diffusing atom
as an expansion in cumulant averages of the time depen-
dent phase shift associated with the diffusive motion. As-
suming a spatially periodic structure for the pore space,
the diffusion eigenstates are used to construct a practi-
cal scheme for computing the second and fourth order
cumulants for cases where the Geld inhomogeneity is due
either to differences in magnetic susceptibility between
pore fluid and solid matrix, or to an externally imposed
Beld gradient VH. In Sec. III this scheme is used to
calculate those cumulants for a range of spin-echo times
w that spans the gap between very short and very long
times, where the behavior can be analyzed using asymp-
totic expansions. We calculate the diffusion related en-
hancement of the transverse relaxation rate of spin polar-
ization. We also discuss the question of whether a Gaus-
sian approximation for the distribution of phase shifts is
valid in the porous medium, as has often been assumed
without proof in the literature on this topic. In Sec. IV
we present some conclusions. In the Appendix we dis-
cuss some important technical properties of the diffusion
propagator and the probabilities of time reversed paths
of a diffusing particle in a porous medium.

II. THEORY

A. Averaging of phase shifts over diffusion paths

We focus upon a single nuclear spin which is aligned by
a strong magnetic field Hp along the z axis. When that
spin is flipped into the x, y plane, it begins to precess

around Hp at the Larmor angular &equency (dp = QHp,
where p is the gyromagnetic ratio. It is convenient and
conventional to transform to a reference &arne which ro-
tates around the z axis at that frequency. In that &arne,
the precessing spin is at rest as long as Hp is the only
field present. When other time independent fields are
also present, the flipped spin, described by the complex
quantity

s+(t) —= s*(t)+ is (t) (2 1)

satisfies a Langevin-type equation of motion

+ —iphH[r(t)]s+ + E(t).
Bt T2

(2.2)

Here, 1jT2 is the average transverse relaxation rate due
to interactions with other degrees of &eedom of the sys-
tem. Those interactions also give rise to the random force
P(t), which fiuctuates rapidly both in time and in space.
The middle term describes the effect of small local devi-
ations bH(r) in the z component of the static field away
&om Hp. These can arise either &om an externally ap-
plied Geld gradient, which we will always take to have a
uniform value, or from local field heterogeneities caused
by the magnetic susceptibility difference between pore
fluid and solid matrix. A time dependence is introduced
into this term by the fact that the position of the nuclear
spin r(t) changes with time as the molecule in which it
resides moves through the pore fluid by diffusion.

If we ignore the rapidly fiuctuating force E(t), then
(2.2) can be solved to yield

s+(t) ( t=.xp
~

———'~ dt'm[r(t')]
~

.
s+ (0) q T2

(2 3)

In a simple spin-echo experiment, with a vr/2 rf pulse
applied at t = 0 and a m pulse applied at t = ~, the
measured quantity would be

= e ~~ exp ip dt6H[r(t)]-s+ (2~)
s+(o) I, 0

2~

dth H [r(t)]
T (2.4)

where the average must be taken over all the actual paths
r;(t) of all the spins i during the time interval (0, 2w).
The field dependent exponent in (2.4) is the phase shift
i C accumulated by a precessing spin at time t = 2w

( 7 2T

C = —p (
dtSH[r(t)] — dthH[r(t)] [

p 7

(2.5)

and it is clearly a functional of the path r(t). An impor-
tant property of this expression is that any time indepen-
dent additive term in bH makes a vanishing contribution
to 4. That is why 4 would vanish in the absence of
diffusion, or if bH were uniform ia space.

The required average can be expressed as an expan-
sion in cumulant averages of powers of C (() denotes a
cumulant average):
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(e '
) = exp(e ' —1)

= exp —i(C), ——(4 ), + —(C ),~ 1 2 i 3

1 4+—(+) +".
24

(2.6)

dV' G(rr'lt) = — dV' G(r'rlt) = —. (2.11)V„V„V„V„V
In practice, there often is some extra nuclear spin relax-
ation at the interface —that would require replacing the
boundary condition (2.8) by the more general one

These cumulant averages can be expressed in terms of
simple averages () (see, e.g. , Ref. [19]):

OG
Dp +pG=O,"On (2.12)

(~). = (~),
(c").= (@') —(@)' = ((&c')') &@= c' —(c')
(@').= ((&o)')
(c").= ((&@)')—3((&@)')'

OG

Ot
(2.7)

in the pore space,

OG

On
(2 8)

at the pore-matrix interface, and

etc. When the distribution of values of 4 is Gaus-
sian, then all cumulants beyond the second one vanish.
For non-Gaussian distributions, the magnitudes of (4 )„
(44)„etc., are a measure of the deviation &om Gaussian
shape. The cumulant expansion is useful mainly if those
deviations are small.

Averages over possible paths r(t) of a diffusing parti-
cle will be calculated by using the diffusion propagator
G(rr'lt): G(rr'lt)dV is the probability that a particle is
found in the volume element dV around r at time t if it
was at r' at time 0. Mathematically this propagator is
the solution of the following boundary value and initial
value problem, involving the time dependent diffusion
equation:

where p is the interface absorption coeKcient. Here we
will always assume p = 0.

We also note that any possible path r(t) is as probable
as the time reversed path r'(t)—:r(2& —t) when p = 0
(this is proved in the Appendix). Moreover, the phase
shift 4' associated with the time reversed path is equal
to —4, as can easily be shown by transforming the inte-
gration variable Rom t to t' = 2w —t in the expression
for 4'

T 2T
e' = —q l

Ch — Ch
l

bH[r'(t)]
& o )
( 27.

dt' — ch'
l

bH[r(t')] = —4.
0

(2»)

As a result of this symmetry, it follows that any odd
power of 4 averages out to 0. It follows that we have
(4'2), = (4 ), and that the next nontrivial cumulant av-
erage is (44), .

Averages of even powers of 4 can be simpli6ed by
noting that the diffusion process described by (2.7) has
no memory. Therefore the joint probability distribution
for paths which include the points r(tq), r(t2) . .r(t ),
tj & t2 & -. & t„has a density which is just a simple
product of difFusion propagators (see the Appendix)

Gl, o
= h (r —r'). (2 9)

The boundary condition at the pore-matrix interface ex-
presses the fact that there is no net particle fiux into
the interface, which means that there is no absorption
of particles or extra spin relaxation there. As a result
of this, the probability density G(rr lt) preserves its nor-
malization for all times (V„ is the total volume of the
pore space)

G(r-r--~ lh- —t--i) G(r--»--2lt--~ —h--2) "

x G(»» lt2 —t~). (2.14)

This probability density is properly normalized, as can
be seen by integrating it over r„. r2 and using (2.10).

The expression for (4 ")

dVG(rr'lt) = 1.
Vp

(2.10)

tt'

,„(@ ) —
I

& o

It is easy to show, using Green's theorem, that G is
symmetric, i.e. , G(rr'lt) = G(r'rlt) (see the Appendix).
Therefore if the particles are uniformly distributed at
t = 0 (with density 1/Vz) then that property is also pre-
served for all times

1 2T

dtg — Ch~
l
(&H[r(t2. )] ~H[r(t~)]) (2.»)

& o

is best r'ewritten by expanding all the large circular brack-
ets, and rearranging the time integrations in chronologi-
cal order, to give
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f 27' «t» «it+2 ) f T tt

, &@'")=( ~)') (—)"
I

dh2 ch2 -i " du+i
I () p )

x(bH[r(h2 )]bH[r(h2„ i)] . .bH[r(hi, +i)]bH[r(hI, )] . . bK[r(hi)]). (2.16)

A further simplification is achieved by using the following theorem about integration over hypertriangular domains
in an n-dimensional space

I t' I

dt~ dt„ q dt~ 2 . . dhq —— dt's did dt's -. - dt„', (2.17)

where h', = 2w —h; Thi. s shows that the terms in (2.16) which correspond to k and 2n —k are equal, leading finally to

2~ tq+t
q ( ~ t

(C'") = q'"(2n)!) e„(—1)"
~

Ch,„dh„+,
~ ~

Ch„" Ch,
~E)Epp)

x (bH[r(h2„)] . bH [r(h&+, )]bH [r(h„)]".bH [r(h, )]) (2.18)

where eA, ——2 for k & n and e = 1. Similar to what was
noted in connection with (2.5), it is easy to see from
(2.15) that any additive contribution to the averaged
product of bH[r(h)] factors in the integrand, which is in-
dependent of even one of the integration times h;, makes
a vanishing contribution to the final result for (42 ).

The averages in the integrand are evaluated as follows:

@(r) = ).@ge". (2.21)

The sum here is over all the vectors g of the reciprocal
lattice that is dual to the Bravais lattice which character-
izes the periodicity of the microstructure. The expansion
coefBcients satisfy the following infinite set of linear al-
gebraic equations:

(bH[r(h„)] bH[r(h )])
1

dVi dV2 . . dV„bH(r„) bH(ri)
p Vp Vp Vp

xG(r„r„ ~hi„—h„ i) . . G(r2ri~h2 —hi)

(
i~g~@g

—— Hp cos(g, e, )8g1+ 4vr

+ ) I' i]g'~g for g g 0,
g~p

(2.22)

for hi & h2 & & h . (2.19)
gg = (& g') g-g (2.23)

We take the field Quctuation bH to be a sum of two
contributions

bH(r) = r V'H+ bH.„„(r), (2.20)

where the Grst term represents a uniform, time indepen-
dent gradient of the spin aligning magnetic Geld, while
the second term is the result of the Quid-matrix magnetic
susceptibility difference Ay = y„—y (y„, y are the
magnetic susceptibilities of pore Quid and matrix, respec-
tively).

The problem of local magnetic field Quctuations of a
two-component (in this case, ffuid and matrix) compos-
ite, where the components have different values of mag-
netic susceptibility, is mathematically identical to the di-
electric problem of a two-component composite, where
the components have different values of dielectric con-
stant. The latter problem has been treated previously
for a composite whose microstructure is periodic [20].
From that discussion we conclude that the static field
distortion bH, „„(r)can be written as the gradient of a
periodic scalar potential @(r), which can be expanded in
an appropriate Fourier series

1 for r inside the pore space,8 r
0 otherwise,

8g = — dV8p(r)e
1

V

(2.24)

(2.25)

Because y„, y, and Ly are all much less than one, an
excellent approximation to the solution of (2.22) is

i ~g~gg
= 4vrb, yHp cos(g, e, )8g,

and this leads to

(2.26)

bH, „.,(r) = = 4vrEyHp) cos (g, e )8ge'g'a@(r)

g+0

(2.27)

In contrast with bH, „„(r),which is periodic in space

where (I, e, ) and (g, g') indicate the angles between g
and e, and g and g', respectively, e is a unit vector
along the z direction, and 0g is the Fourier expansion co-
efficient of the characteristic function of the pore space
8„(r) (V is the volume of a single unit cell of the mi-
crostructure):
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and therefore bounded, the constant gradient term of
(2.20) is nonperiodic and unbounded. This can lead to
nonconverging spatial integrals in calculations of aver-
ages such as (2.19). In order to avoid this, we recall that
any additive contribution to the average of the product
h'H[r(t2 )] . .SH[r(ti)] which is independent of one of
the times t, makes a vanishing contribution when inte-
grated over t, in (2.15). Therefore we can replace the
average of [r(t2 ) VH] . [r(ti) . VH] by the average of

B. Calculation of (4' )

From (2.18) we get that

(2.30)

The average over diffusion paths is

(O*)=]2f dtgf dt, —f dt2f dt,
]

x (hH[r(t2)]bH[r(ti)]).

(bH [r(t2)]bH [r (ti)])

x ([r(t2) —r(t, )] . V'H) (2.28)

().&2"n! (—1)"

in (2.15). In order to see this note, for example, that the
last factor expands to a sum of three terms [r(ti) .V'H]
2[r(ti). VH][r(t2) VH]+[r(t2). VH] . The first of these
is independent of t2 while the third is independent of tq,
therefore they make a vanishing contribution to the time
integral. However, before transforming to (2.18) we have
to symmetrize this product, i.e., replace it by

de dV2 G r2rq &2 —&q bH r2 bH rq .1

Vp v„v„
(2.31)

We note that for a microstructure that has inversion
symmetry, 0+ is real and satisfies 0 I ——0g. Therefore
bH, „„(r)is even under space inversion. Finally, for an
inversion symmetric microstructure the diffusion propa-
gator satisfies

x(]r(t, )
—r(t, )] tttt)'), (2.29)

where P is a permutation of t~ . - t2 which transforms
the set of time pairs (t2~t t2~ i) . (t2, ti) into a different
set of time pairs. The sum over all such permutations 'P
comprises (2n)!/(2 n!) different terms, and is symmetric
under any further permutation of tq - t2~.

G( r r lt) = G(» It). (2.32)

Consequently, since the product (ri . VH)bH, „„(rq) is
odd under space inversion, its contribution to the inte-
grand of (2.31) vanishes upon integration. As a result
of this, the external field gradient and the susceptibility
difference make separate, additive contributions to the
averages in (2.30), without any cross terins:

1
(hH[r(t2)]hH[r(ti)]) = — dVi dV2 G(r2ri ~t2 —ti)

Vp v„v„
x (ri . VH)(r2 VH) + (4vrkyHO) ) ) cos (gi, e ) cos (g2, e, )og, o* e'I""

go+0 82+0
= (external field gradient contribution) + (susceptibility difference contribution). (2.33)

We can therefore evaluate these two contributions sepa-
rately. G(rr'~t) = —) e ""~~'~P ~(r)P„* (r')e'~'!' ' l, (2.34)

Susceptibility difference terms

In order to compute the integrals in (2.33), we use
the expansion of G in the Bloch-type eigenfunctions
P ~(r)e' ' of the diffusion equation [P ~(r) is periodic,
q is a wave vector in the first Brillouin zone, and n is a
band index] [17]

where A«are the eigenvalues and V is the total volume
of the pore space and matrix. For a microstructure with
cubic symmetry and for small q, the eigenvalues A q can
be expanded in the form

Dp
A„q ——A q

CL

2 [&„o+H„q'a'+ C„q a +O(q a )], (2.35)
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where a is the edge of the cubic unit cell and A & is
the dimensionless reduced eigenvalue, which is usually of
order 1 or greater [17]. The coefficients A„p, B, C,
etc. , depend upon the shape of the microstructure, but
are independent of the absolute size scale a. [Actually,
the fourth order terin here and in (2.36) below, as well
as the higher order terms, can depend on q in a more
complicated way, even for cubic symmetry. We avoid this
complication by always taking q ll x, since we only need
to know the order of magnitude of these terms. ] The
lowest band of eigenvalues Ap~ is an exception to this
rule, since Aoo ——0. The next coeKcient in the expansion
of Apz in powers of qa (i.e. , Bp ——D, /D„) is related to
the bulk effective stationary dift'usion coefFicient D, :—
D(t -+ oo), where D(t) is defined in (2.61) below [17].
Therefore we can rewrite (2.35) for the case n = 0 as

Ap~
——D,q + D„Cpq a + O(q ), (2.36)

1
d V2e 'g"' P ~(r2) e'~"

p ( Vt j
rx dVie's""P' (ri)e (2.46)

Because of the periodicity of P ~(r) and e'g', these in-
tegrals vanish unless q = 0. In that case they can be
calculated by restricting the integration volume to a sin-
gle unit cell of voluine V . When this is done, (2.46)
becomes

Og gI with the eigenvalue 1.
When (2.34) is used in (2.33), the double integral of the

susceptibility difFerence contribution (the second term in
the square brackets) separates into a product of single
integrals,

The eigenfunctions are assumed to be normalized as fol-
lows,

1
dV8„(r)P„' (r)P (r) = b„

V
(2.37)

and their values restricted to the inside of the pore space
can be expanded in a Pourier series as follows:

1(1
dV8„(r)e 'g"P„p(r)

lP(V~ v
1

x
l

— dV8„(r)e 's"P„p(r)
l

1-
p (g2) 4'*p (gi). (2.47)

8 (r)&- (r) =).&- (g)e"
S

(g) = — dv8p(r)y„~(r)e-' '.
V

(2.38)

(2.39) (~II[r(t2)]~H[r(ti)]). -

We thus get for the susceptibility difference contribution
to (2.33)

1
Ao(g) = ~8,
&-p(o) = V & ~-p.

(2.40)

(2.41)

From the orthogonality property (2.37) the following use-
ful results can be shown to follow:

(2.42)) .4', (g)4-q(g) = ~-

8„(r)8„(r')) P ~(r)P' (r') = V 8p(r)b' (r —r'),

The eigenfunction P ~(r) depends on the detailed
shape of the microstructure, however, if expressed as a
function of qa and r/a, it has no further dependence on
a. Similarly, if P ~(g) is expressed as a function of qa
and ga, then it too has no further dependence on a. We
note here, and use later, the fact that Ppp(r) = 1/~P, a
constant (P—:V„/V, i.e. , the volume &action of the pore
space). Using this we get

1= —(4vr&yHp) ) e " oI ~ —
alla„l ~ (2.48)

a„—= ) cos (g, e, )8*$„p(g).
gWO

(2.49)

ap —— ) cos (g, e, ) l8s l
. (2.50)

Invoking the cubic symmetry of 0g we can replace
cos2(g, e ) in the sum by s [cos (g, e„) + cos (g, e„) +
cos2(g, e )] = s. This leads to

).18.1'-8.'
i
= v&(1 &)--(

(2.51)

We note that ap can be calculated explicitly for the
case of microgeometry with cubic point symmetry: Prom
(2.40) we get

) .4-~(g)&: (g') = 8s-s'
(2.43)

(2.44) Using (2.44) we can also show that the sum over all the
terms la l2 satisfies the following inequality:

Another useful result which follows from (2.38) is

) .8g-s &-%(g') = &-Q(g). (2.45)

This means that P ~(g) is an eigenvector of the matrix (2.52)

) la l

= ) ) cos (g, e, )8'8s I 8s cos (g', e )
n

SAMOS'WO

( ) cos (g, e )l8 l' & ) cos'(g, e )l8gl'
sgp IWO

1= -4(1 —4)3
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Here we used the fact that the eigenvalues of the matrix
0+ gi are 0 and 1 in order to get the first inequality sign,
and the cubic point symmetry to get the last equality
sign. From (2.52) and (2.51) we also get

) .Ia-I' = ) .Ia-I' —ao &
3 &(1 —&)

The spatial integrals are evaluated by taking derivatives
of the Fourier transform of G

dVj dV2[(r2 i'i) V H] G(r2r1 lt2 —tl)
1 2

Vp v„ v,

n)0

In order to get the corresponding contribution to (42),
we still need to calculate the following integrals over
times: where

M(k, t2 —ti), (2 59)
c) l

Ok)

T t2

d~, e-"-'~"-"~
0 0

M(k, t) = — dV dV'G(rr'lt)e ' '~' '). (2.60)
&p v„v„

T T

d)2 dg e &no(t2 —tg+T)

0 0

2~ 1
(1

—&no~) (3 &no~)
Anp A2p

=5 (T) for A p $0.

The function M(k, t) is the so-called pulsed-field-gradient
spin-echo (PFGSE) amplitude which can be measured
in a PFGSE experiment [21]. Recently it has been dis-
cussed in great detail in connection with both experi-
mental and theoretical studies of diEusion in a porous
medium [22—28,16—18,29]. For small k, this function has
a simple Gaussian shape

This quantity has a simple form in two limiting cases M(k, t) =- e
— ( ) I

l~' (2.61)

sA„p~s when A„p~ &( 1,
when A pw && l. (2.55)

These results are not valid for n = 0, since A0p
——0—in

that case the integrands of (2.54) are time independent
and the result is 0.

We finally get for the susceptibility difFerence contri-
bution to (O')

where D(t) is the time dependent bulk efFective diffusion
coeKcient. This coefBcient is useful for characterizing
the small k behavior of M(k, t), but can also be used
to construct an approximate representation for M(k, t)
at arbitrary k [25]. The asymptotic behavior of D(t) at
short times has been worked out explicitly [27]. Here we
only note that when t is either very small or very large,
D(t) tends the following simple limits

(C').„..= —(4~7m, ~Ho)' ) b„(~)la„l'
n)0

(2.56) D„ for small t
D for large t. (2.62)

4= —(4~&b XHo)'

~3D
x ") A„pla

l
when " «13' Gn)0

For a periodic porous medium M(k, t) has a conve-
nient expansion in terms of the eigenstates of the difFu-
sion equation (see, e.g. , Refs. [26,17])

7G
x ) la„l' when, )) 1.

Anp G
(2.57)

M(k, t) = —) e ~"o~'~lP„~(gk)l', (2.63)

The simple asymptotic results are valid only if all the
eigenvalues A p which contribute substantially lie in the
same asymptotic limit (i.e. , either A„pT (( 1 ol' A p7 )) 1
for all the relevant eigenstates).

2. Eixed gradient te~ms

We now calculate the uniform gradient contribution to
(4 ), denoted by (4 )s, ~. Using (2.18) and (2.29) we

get

q=o
. (2.64)

We now use (2.35), (2.36), and (2.41) to rewrite this as

—2(&H)'D. lt2 —ti
l

where gk is the reciprocal lattice vector which is closest
to k, and q = k —gi, . Using this expansion in (2.59) and
noting that gg ——0 for small k, the result of the spatial
integration becomes

( 2& 4
—,(c')„.& =

l
2 ct, ct, — ct, dt,

l

T T o )
x

I l
CVi dV2[(r2 —ri) . V'H] 2

&p) v„v,
+—) e-"- ~"-"

~

l
vH .

l ly„, (o) l'1 . „, , (
c)q)

(2.65)

x G'(»»lt. —t, ). (2.58) The time integration then yields
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(C )s, s —(pVH) D—,r

+-).b-() I~VH, I 14-.(0)I'
0 )'

Oq
q=o

(2.66)

glected. Note also that, although the asymptotic forms
of D(t) are independent of the size scale a [see (2.62)], at
interxnediate times D(t) does depend on a (see, e.g. , Ref.
[27]). Therefore, (42)s, g should also depend on a, and
not just on the shape of the microstructure.

where b„(w) was defined in (2.54). Note that the n = 0
term in the sum of (2.65) is time independent and there-
fore makes a vanishing contribution to the time integra-
tions and does not appear in (2.66). In the same limits
that were considered before, we find that the second term
of this expression becomes

(2.67)

C. Calculation of (4 )

In the case under discussion, of a pore structure with
sixnple cubic periodicity and inversion symmetry, (O4) is
a sum of three contributions: pure susceptibility differ-
ence terms, pure fixed gradient terms, and cross terms.
Each of these will now be discussed separately.

n)0 q=o
Ssseceptibility diggeressce ter ms

p ~)p», p q=o
(2.6S)

D(t) = D. — 82

n - q=o

(2.69)

Using (2.61) we can also write the result of (2.59) as
—2(V'H) D(t2 —ti) ~t2 —ti ~. Comparing this with (2.65),
we get the following representation for D(t)

For the pure susceptibility difference term we need to
calculate the following integral

1
dVi dV4 G(r4rs ~t4s) G(rsrz ~t32) G(rsrx ~4x)

&p V„ Vp

+&+ +~+4 +4 (2.72)

where t2~ = t2 —t~, etc. If we substitute the expansion
(2.34) for G, then the volume integrals can be performed
independently, resulting in some Fourier expansion coef-
ficients of the diffusion eigenfunctions or of products of
those eigenfunctions. The integral of (2.72) now becomes

where qlx = (q. VH)/~lVHt is the component of q along
VH. We can also write

1 2

2
(C )grad

) ) ) &»o l&4s I ~~o lsss I
&i l& o&ls

x Prrp ( g4) ~nm ( g3)a ml ( g2) tbxp (gl ) & (2.73)

f 2& g2 2T T

= —(pVH)
~

2 dt2 dti — dt2 dti
~

T T T 0

XD(t2 tl)(t2 tl) ~ (2.70)

—(4')s, g = (pV'H)' D~7. , — (2.71)

In the limiting case of a uniform fiuid, D(t) = D„and
the time integral can be evaluated to yield the following
well known result [1]

1~-(g) =——
V.nV.

= ) .&.*p(g')4-o(g+ g')
gl

~.' (g) =~-(—g)
(0) = h„

dVQ„'p (r)P p (r) e

where the matrix elements of ~(g) are given by

(2.74)

(2.75)
(2.76)

which is exactly the same as the second term in the ex-
ponent of (1.1).

Clearly, for suKciently long times ~, the first term in
(2.66) dominates the behavior of (42)s, q. Since that
term is similar in form to the uniform Quid result, one
might be tempted to conclude that measurement of a
CPMG spin-echo train in a porous medium would simply
measure the bulk effective stationary diffusion coeFicient
D, in the same way that it measures Dp when performed
in a uniform Quid. This conclusion is, however, prema-
ture as will become clear in the following subsection: it
is only correct if the higher order cumulants can be ne-

1-
~p-(g) = &-p(g) (2.77)

1 -*
~-p(g) = ~&.'p( —g). (2.7S)

Using (2.44) and (2.45) we can also calculate the product
of two u matrices:

It is useful to note that, because of (2.40), the expression
for u„(g) simplifies whenever either n = 0 or m = 0:
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): -(gi)~-i(g2) = ) ).&.*o(g'i)~g, +g, —,.&io(g. + g'. )
gy gg

= ).4*p(gi) 4io(gi + g2 + g)
g

= (dpi(gi + g2). (2.79)

The matrix (d„„(g —g') is easily shown to be non-negative and bounded: for any vector Ag we find [A(r) is the
function whose Fourier coefficients are As]

).):&:~-(g—~') 4' = ) ) &-0(a —~')". = —f «'(~)~~e-D(~) 4(~)~~'

g g' g g'

max !P„p(r)! ) !Ag!',
rGv &vJ

& 0.

Thus the eigenvalues of m „(g—g') lie between 0 and max!P„p(r)!, which is usually of order 1.
The necessary time integrals are

(2.80)

2 dt4 dt3 dt2 dt's —2 dt4 dt3 dt2 dt's + dt4 dt3 dt2 dt's

~n ~43 ~rn ~32 ~l ~21 —g, (2.s1)

where we have oinitted the 0 subscript &om A o, etc. , and where the last equality serves to define b i(v). The
precise form of this function, which can be obtained by straightforward though tedious integration, is

2 f
b i(~) =

AiA A„

2(2 —e "'
)

Ai(A —Ai)

1

Ai(A„—A )

e A— 2 (1 e
—A ~ 1 e

—A„r)

1 (1 —e ~'~ 1 —e ""~) 1 (1 —e

A„—Ai (, Ai A„) A„—A i A

/1 —e "-~ 1 —e ~"~b fl —e "- e "I —e

A A„) g A A —Ai

1 —e
—"-~

&

A„

(2.s2)

This form is strictly valid only when A, A, and A~ are all difFerent and nonzero. The special cases when two or
more of these eigenvalues are equal, or when one or two of them vanish, can be obtained as limiting cases of this form.
Thus, for example, b pi(7) is obtained &om (2.82) by taking the limit A ~ 0, leading to

b„pi(~) = 2 f 1 2 —e+
) (

1 f 1 —e "" l ( 1 —e
+

Ai

—A„) 2 2
—A(~ /1 e—A(~

I+ —,A„) A, A„—A, ( A

(2.83)

The further limits A + 0 and A~ ~ 0 lead to

2"
b„pp(~) = ——

3 A„
5w

bppi(~) = ———
6 A)

—A„~q

A„
2 7-2 1 —C

2A) A)

27 2&
»+12A + A, +» I I

n n n n

2(2 —e
—"~ ) (1 —e

—"~
——+ —!-

A,
'

(, A,
' Ai

(2.s4)

(2.s5)

9Ai —6A —A„
nmi 60

7-' for small v, (2.86)

An iinportant property of b i(w) is its asymptotic be-
havior when 7 is either very large or very small. This is
summarized by 27-

b i(r) = + O(1) for n, m, l ) 0,
A)A A„

b„p(~) = — + + O(1) for n, m ) 0,
A A„ A A„

(2.s7)

(2.ss)

and by the following expressions, which are valid for large
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27
b„pt(r) =

A)A„

bp t(r) =
A)A

57

A)2A„

4w

A2A

37 + O(1) for n, l ) 0,
AtA2

(2.89)

+ O(l) for m, t ) 0,
A)A2

The a coefBcients can be bounded by considering the
following sum:

) .Ia-I'

(2.90)

(2.91)

27-

A3
+O(1) for m) 0,

(2.92)
57

boot(&) =
6A)

572 47

»i' &i'
+ —+ O(1) for l ) 0. (2.93)

7 7
b pp(r) = — + 2 + O(1) for n ) 0,6A„2%2

27 27
bp p(r) = — +

3A

= —P(1 —P) max lg„p(r) I2. (2.99)

= ) ) cos (g, e )8'u„„(g —g')8s cos (g', e )
g+0 g'QP

& max IP p(r) I ) cos (g, e ) I8zl
g80

& max lg„p(r)l ) cos (g, e )I8sl
g+0

1 4 1 4—(4 ) = —(47rkg&Hp) ) bwnl(r)a~a~ma~tat ~

n, m, l

(2.94)

where a is given by (2.49), and

a„:—) cos (g, e,)8*at„(g).
gwp

(2.95)

From (2.75)—(2.78) we get that

The pure susceptibility difFerence part of (O ) is given
by

From the asymptotic behaviors of b„(r) (oc r ) and
b„ t(r) (oc r ), at short times it is clear that (4 ),„„is
asymptotically much greater than 3(4 ),„„,but much
less than (42),„„. Thus for times r that are short
enough, the Gaussian approximation will be valid for
the probability distribution of O'. By contrast, when 7-

is large, it appears at first sight as though (4 ),„„in-
cludes terms that are asymptotically much greater than
both 3(4' ),„„and (4 ),„„.However, a remarkable set
of cancellations occur which can lead to a situation where
the Gaussian approximation is valid even then. From the
asymptotic behaviors of b (r) and b„ t(r) at long times
we get for the fourth order cumulant average, after some
algebra,

amn y

1
apm = — am&

1
a p —— a*.

(2.96)

(2.97)

1 4 4 (a2
24
—(4' ) = (4vrpAyHp) r

I I
X4 for large r,

&D.)
(2.100)

where

F4 ) a„a„~a~t at*

PAtA A„

&(1 —4)a-a-a' (A-+ A-) la-I'la-I' - (1 —4)'la-I'
3/A' A„' P'A A„' ) „, 9/As

(2.101)

is a dimensionless numerical factor of order 1, which
tends to 0 when P ~ 0 or P ~ 1. From (2.57) we can
also write

tion of 4 will be approximately Gaussian for large 7- if
the ratio 24(4 ), ,„„/z(C'2),„„«1, i.e. , if

a
2
—(C' ),„„=(4vrpAyHp) r W2 for large 7, (2.102)

Dp

, ( a' ) X4
(4~qA~Hp)'

I I
&& l.

t,D„
(2.104)

where

W2 = —) (2.103)

is another dimensionless factor of order 1. The distribu-

Since T2, T4 are both independent of a, therefore the left-
hand side of this inequality is proportional to a . In Sec.
III we present results of a numerical study of (O ),„„
and (C' ),„„over a range of times r, including large r,
in order to study the validity of the Gaussian approxi-
mation.



6526 DAVID J. BERGMAN AND KEH-JIM DUNN 52

2. Eixed gredient ter nba

For the pure uniform gradient contribution to (C) ) we need to calculate the following spatial integral [see (2.20),
(2.18), aIId (2.29)]:

dV4 dVI[(r43 VH) (r21 VH) + (r42 VH) (r31 VH) + (r41. VH) (r32 VH) ]
vp v, v~

XG(r4r, lt43)G(»»lt32)G(r2riI 21)

This is again done by taking derivatives of an appropriate Fourier transform

1
3( 1 2 3I21 3243)= 1' ' 4 ( 4 3I 43) ( 3 2I32) ( 2 iI 2i)

V„ Vp

where r21 = r2 —ri, etc. The result of (2.105) is obtained as

(92 82 f'0 85'(ct (9i' ((9 (9 o) 5 82

~@2~~2+ I ~k
+

~~ I I g@
+

~~ I
+

I ~@
+

~@
+

~@ I ~@2 M3(lik213lt21t32t43)
A:;=0

(2.1O5)

(2.106)

(2.1O7)

where each partial derivative actually stands for the scalar product of the gradient operator in k space with VH, i.e.,

0 0
Ok; Ok;

(2.108)

Using (2.34) to expand the diff'usion propagators, we get the following representation for M3 in the case where all the
k; are inside the first Brillouin zone, and are therefore replaced by q, :

(q q q It t t ) ) ) ) e
—&(rr, f

29. f

— rrrr6, f 69 f
—

&rrr669 f&46

g]. gg n)m, L

X 0'lqi (gl )0'lqi (0)0'mq~ (g2) 0'mq~ (gl )0'nq66 (0)4'nqe (g2) . (2.109)

When the time integrations of (2.81) are applied to this result, the time dependent exponential factor is replaced by
b„ l(r) as given in (2.82), but with Al, A, A replaced by Alq, , A q, , A„q, . We denote this quantity by b q, q, lq, (r).
We thus get for the uniform field gradient contribution to (Cr )

c)2 c)2 f(9 8') f (9 Bi (0 c) (9)'82(4')-s= +I +
I I

+ +I + +
i ~VI &~2 & i~a ~V2 P g ~qi ~q2 ~q3)

where

2 4
X (pVH) ) bnq66mq&lq& (T)pnqI (0)Wnq8mq~ &mq9 lq6 (rblq& (0)

n, m, l q;=0

(2.110)

~mqnq' = ) &mq(g) &nq' (g) (2.111)

is a Hermitian matrix which satisfies

~mqnq' —~nq'mq &

~mqnq —~mn &

m p„p ——(D „(0)=h

(2.112)
(2.113)
(2.114)

If the partial derivatives are applied to the time dependent exponential factor before the time integration, (2.110)
has the following form:

(4' )z, g = (rrrH) (
D'r —96Dr rr Car + —) 6 r( )(A—B+CDr+ CF)g

n, m, l-

—2D.c„ l(r)(A+ C + F)g —2D.d„ l(r)(C + D+ 8+ F)g —2D.e„ l(r)(8+ 27+ F)g (2.115)
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0
2'

C—:
i

+( c))

( (9qx

+f c)

( (9qx

t9
2'

g3

8 l
~q2)
8 (95+

(9qs j

+~( (9 c)) i
~aqs aq, q

'

19

2 (2.116)

where Cp is given by (2.36), A, 8, C, 17, 8, and P are
partial differential operators defined by

in (2.110) when exactly two q derivatives are applied to
the b z z,xz, (r) factor, which shows up as the second
term in (2.115). The terms of order O(7' ) do not appear
to cancel out, therefore

(C)' ),,s,~g
——O(w a ) )) (4' )s, g ——O(w ) for large w.

(2.122)

operating on the function g

&(qx, q2, qs) —= 4-q. (o)~ q. ~.~-~.x~, 4x~, (o) (2»7)

and c~~x(v), d„~x(7 ), and e„x(w) are obtained by time
integrations like those in (2.81) for b x(r), but with dif-
ferent integrands defined as follows

c„r(v)—:f
r(~) = f

'-~(~) = f

~n t43 ~rn t32 +t t21t43e

+n t43 ~rn t32 ~t t21t. 2C

—An t43 —A~ t32 —At t21t2iC n ™

(2.118)

(2.119)

(2.120)

(4 )s, g = (pV'H) D, 7 +—O(w ) for large 7'.

Note that besides the explicit dependence on a, which is
exhibited in (2.115), b„&(w), c &(r), d~~&(w), e„~x(r)
also all depend on a through the eigenvalues A p xx g 0,
etc.

In Sec. III below we present results of numerical eval-
uations of (4 )s, s. Here we confine our discussion to
the limits of small or large w. Because (4 )s, s oc 7 in
both of these limits [see (2.66)—(2.68)], therefore we also
investigate the asymptotic behavior of (C)' )s, g in those
two limits.

At short times w, the leading behavior is (4 )s, g oc
wsa2 [see (2.86)]. This is much greater than 3(4 ), & oc

&Pa, but much smaller than (C2)s, g, therefore the
Gaussian approximation for the distribution of 4 will
again be valid for sufBciently short times. This result
differs from what is quoted in Ref. [11], where it was
found that (4 ), s, s oc w ) at short times. We believe
our result is correct, although the conclusion regarding
the validity of the Gaussian approximation at short times
remains unchanged.

At long times, the situation is more complicated. The
leading behavior of (4 )s, ~ is obtained from the n =
m = t = 0 terms in the sum of (2.110), and when the
q derivatives all act upon b ~, ~,x~, (w). It shows up as
the first term in (2.115). Hence, we have

This leads to the conclusion that the Gaussian approxi-
mation for the distribution function of 4' in the presence
of a uniform Beld gradient must always break down if 7
is large enough, and that this will occur sooner when a
is larger.

In the limiting case of a uniform medium, the result
(2.121) is exact with D, -+ D~. This is due to the fact
that P„~(g) = h'zz is then independent of q and that
(2.36) is then also exact with D, ~ D„and Cp ~ 0. It
is therefore clear that, for a uniform Quid medium with a
low density of solid obstacles, the deviations &om Gaus-
sian behavior must remain small for all values of 4 which
have a non-negligible probability, i.e., the coeKcients of
the w, w, a dna terms in (C ), s, s are sufficiently small
that those terms can be neglected for all times at which
(O )s, s is not too large. It rexnains to be seen whether
this can occur also in a non-dilute system of obstacles—
this will be investigated numerically in the following sec-
tion, using (2.115).

8. Cross terms

In contrast with (42), the fourth moment (O4) contains
cross terms where both the susceptibility difFerence and
the uniform field gradient parts of bH(r) contribute. In
the integrand of the symxnetric time integration of (2.15)
these terms are

((ri V'H) (r2 V'H) bH, „„(rs)bH, „„(r4)
+ 5 similar terms). (2.123)

A discussion similar to the one at the end of Sec. IIA
leads to the replacement of this average by

—12([(ri —r2) VH] bH, „„(rs)b'H,„.,(r4)
+ 5 similar terms), (2.124)

(2.121)

Comparing this with (2.66) shows that it is exactly equal
to the leading term of 3(4~)2, &, therefore the O(ws) term
of the fourth order cumulant average (4 ), s, s vanishes.

The next terms in the large v expansion of (O )z, g are
O(w a ), and they arise from the n = m = t = 0 terms

and replacement of the symmetric integration over the
four times ti - . t4 by the combination of integrations
which appears in (2.81). A somewhat tedious calculation,
in which G is represented as in (2.34), and the eigenfunc-
tions are expanded as in (2.38), results in the following
expression for the cross term in (O4):
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(4 )„„=—(4vrAyHpp ) l

VH.12
)9q )

x ) [b npmolq(7 )a na nemo/q4&lq(0)
nml

+bnpmqlq(7 )an~npmqamqlq4 lq (0)

+bnqmqlq(&)4'nq(0) anqmqamqlqpiq( )

+bnomqlo (7 )an ~nomq~mqlo al

+bnqmqlp (r)pnq (0)anqmq~mql pal

+bnqmolp(7)dnq(0)~nqmpaml l ] & (2.125)

where

a.q-q
———).co"(g, e.)~; ).&.*,(gi) 0-q(gi + g).

g40 gz

(2.126)

Again, if the partial derivatives are applied to the time
dependent exponential factor before the time integration,
(2.125) has the following form:

cjl2~lr»')'(v ) ().'-~( ) .(~-~-«-o«4i;(o)+~-«-o-"-«. 4],(o)
n, m, l

Oq2

+Pnq(0)anqmqamqlq)lq(0) + an+nomq&mqloal + rtinq(0)anqmq&mqloal + Pnq(0)&nqmoamlal ]

—) 2D, la l [cpp (7 ) + d (7 ) + e pp(7 ) + cp (7) + dp (T) + cp p(7 ) + dp p(7 )
n&0

+eo 0(7')+d o(v)+e„o(v)]) (2.127)

(4 )„., = —(4~6yHpp VH) D,
4

x ) la„l'
qA„

3~'
2A2

+ .
l

for large w. (2.128)

The leading w a behavior is exactly cancelled by the
leading large v behavior of 6(4 ),„„(C )s, ~. In the next
order, ~ a, there are also contributions from other parts
of (2.127). The v terms in (4 )„„arenot cancelled by
similar terms in 6(4 ),„„(4)s, ~, therefore (4 ), „„(x
w a for large 7..

III. RESULTS AND DISCUSSION

One of our goals in the foregoing theoretical develop-
ment is to try to address several issues facing the inter-
pretation of T2 CPMG measurements for porous media,
such as rocks. For instance, an increase in w causes an
increase in relaxation rate due to diffusion effects. How
does this increase in rate relate to the time dependent ef-
fective diffusion coeKcient or other physical parameters
such as pore size, formation factor, and susceptibility dif-
ference? If the assumption of a Gaussian distribution for
the phase angle eventually breaks down, as discussed in
the previous section, over what range of w values is the
assumption valid? How does the length of this time kame

These expressions are used in Sec. III in order to cal-
culate (44)„„numerically for some specific examples of
a periodic porous medium. In order to examine its large
w behavior, we notice that the leading terms come from
the second suinmation in (2.127), hence,

depend on some of the parameters mentioned above?
The magnetic field inhomogeneities affecting the T2

measurements for porous media come kom two sources.
One is the field gradient externally applied to the sys-
tem. It occurs over a much larger scale compared to
pore dimensions, and in the above treatment, we have as-
sumed that it is uniform throughout the system. Another
source of field inhomogeneities is the magnetic suscepti-
bility difference between the pore fIuid and solid matrix,
which makes the local field nonuniform even when the
applied field is accurately uniform. The resultant spatial
variations are at the pore size scale and can be strongly
affected by the local pore geometry. Assuming the phase
angles of spins have a Gaussian distribution (which is a
good approximation if (4 ), « (42)), the magnetization
of the system at time 2w is given by

q=0

+ —(47rpayHp) ) c (w) la
m&0

(3.2)

M(2~) f' 2~ 1 2 1

M(0) T2 2 2
= exp

l

———-(@')--—-(O')s-~
l

(3 1)

where (42),„„and (4 )s, g are given by (2.56) and
(2.66), respectively.

Frequently, in T2 CPMG measurements, increased re-
laxation rates are measured. Using Brown and Fantazz-
ini's method [14], it can be shown that from (2.56) and
(2.66) we get

M(2n7 ) 2n7

M(O)
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where c (w) is given by 0.20

2n~ tanh(A o~)
cm T 1—

A p A o~

e
—&~o~

neo

0.15

The increase of relaxation rate is obtained by differenti-
ating (3.2) with respect to elapsed time t,, where t = 2nr.
We note that for the magnetic susceptibility difference ef-
fect the increase of the relaxation rate is proportional to
the square of the field strength and the magnetic suscep-
tibility difference. From (3.3), it can be shown that at
short times, the increase of relaxation rate is also propor-
tional to A pT = A oD&v /a . At long times, it is in-

versely proportional to A o
——A oD„/a2, where A o can

be considered as the dominant term in the summation.
Hence, the total shift of relaxation rate due to magnetic
susceptibility difference effect at sufIiciently long time is
proportional to a2/D„, where a is the edge length of a
unit cell. For the external Geld gradient effect, the in-
crease of the relaxation rate is proportional to the square
of the Beld gradient. Its short time behavior is also pro-
portional to 7 a, but at long times it is dominated by
the w behavior from the term containing D, and is
again independent of a. The above statements are valid
only when the phase distribution is Gaussian, or nearly
Gaussian.

In the following, we present results of numerical cal-
culations which we carried. out for a periodic porous
medium consisting of simple cubic arrays of identical
spheres which just touch each other. Similar calculations
can be extended to overlapping spheres or any periodic
system. We believe that many of the properties studied
here do not have to do with the long range order and can
be extended to disordered systems such as porous rocks.

In Fig. 1, we show results of the computations for
(CI ),„„and (CI )s, g as functions of r using (2.56) and
(2;66) for three different values of a (10, 20, and 30 pm),
where a is the edge length of the unit cell. The phase an-
gle C is in radians. The spin aligning magnetic Geld was
chosen to yield a resonance frequency of 1 MHz for pro-
tons, which is quite close to the commercially available
NMR logging tools used in the petroleum industry. The
external magnetic field gradient was arbitrarily chosen to
be 1 G/cm. The behavior for other values of magnetic
field or Geld gradient can be easily scaled according to
(2.56) and (2.66). The magnetic susceptibilities used here
are: solid matrix (quartz) y = —1.3 x 10 emu/cm
and pore fluid (water) y„= —0.7 x 10 emu/cms. (The
magnetic susceptibility of sandstones varies, ranging from
slightly diamagnetic to paramagnetic with typical values
of y = 2 x 10 emu/cm .) The effect of these values
can also be scaled as (b,y), according to (2.56). Unless
otherwise specified, we have assumed the same values
quoted here for Ho, VH, y, and y„ for all the numeri-
cal results presented in the following.

In laboratory measurements, the applied magnetic field
gradient is typically quite small. Thus the susceptibility
difference effect can dominate the T2 relaxation behavior.

0.10-

0.05-

0.00
0 ~ 00

I

0 ~ 02
I

0.04
I

0.06 0.08

r(sec)

FIG. 1. Results for —(CI ) vs 7 for a periodic porous
medium consisting of a simple cubic array of identical touch-
ing spheres with unit cell edge lengths of a = 10, 20, and 30
pm. The external magnetic 6eld gradient is assumed to be
1 G/cm and the magnetic susceptibilities are those for pure
quartz and pure water.

This may also be true for NMR logging tools designed
to probe a region of uniform field. On the other hand, if
the external magnetic field gradient is significantly larger
than 1 G/cm, the susceptibility difference effect will be
negligible. Figure 1 also shows the effect of unit cell size
variation (hence, grain size) from 10 to 30 pm. From this
graph it is clear that the fixed gradient contribution to
(CI ) is doxninated by the D, term [i.e., the first term in
(2.66)] for all times v—that is why there is almost no
dependence on a.

Figure 2(a) shows the results for the increase of re-
laxation rates due to susceptibility and gradient effects,
using (3.2), for three difFerent values of a (10, 20, and 30
pm). Note that the pure susceptibility effect is propor-
tional to A oD„& /a2 at short times, and to a /(A oD„)
at long times. Hence, initially, as v increases kom 0, the
relaxation rate increases faster for small a than that for
large a, but eventually approaches a constant value which
is proportional to a . For the gradient effect it has two
contributions [see (3.2)], one Rom the term containing
D, the other from the summation term, which involves
the higher diffusion eigenstates. For clarity, they are re-
plotted in Fig. 2(b). The term containing D, has a v
behavior at all times. The summation term has a similar
behavior as that of the pure susceptibility effect. It varies
as w at short times and approaches a constant value at
long times, except that the asymptotic value is propor-
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FIG. 2. R laxation rate increases ~ue to ~d to ~a~ both efFects
of external field gradient and magnetic susceptibility difFer-
ence, and (b) only the efFect of external field gradient wit
contributions rom e ef th D term and the summation terxn, as
functions of 7 for a = 10, 20, and pd 30 m.

tional to a instea o a e4 d f 2 because of the second derivative
factor 8 ~g~z(0)~ /8 For a equal to 10, 20, and 30
pm, apparent y el th D term is dominant for both short
and long times. s a iA ncreases the contribution &om7

the summation term will become important. However,
for surncien y ong imrn tl 1 times the D term will eventually

dominate.
Figure 3(a) shows (4 }ause& (C }grad& an (C' crass

f N = 2 3 and 4. N denotes the size of thecase of N =, , an
reciprocal lattice used in the Fourier expansion of the
eigen unc ions:f t' . The reciprocal lattice vectors ave t e
form g = (2n/a) (n, n„,n, ), where n, n„, and n, are
arbitrary integers between —N an +N.

For the periodic system we are considering, i.e., a sim-
ple cubic array of identical touching spheres, the poros-
ity is P = 0.476. The constants D, and Co in (2.115)
were evaluated &om the lowest eigenvalue band com-
puted at qa = (0, 0, 0), (0.05,0,0), and (0.1,0,0) for the

Co ———0.0092. These values indicate that the conver-
gence of the numerical computations is quite good for
D„where only the second derivatives of the eigen unc-
tions are involved, but not so good for Co, which involves
fourth order differentiations.

The computations of (Cl ) take much longer than those
for (e'2). To compute (C4) for the case of K = 5 would
take a prohibitively long time on the workstation we used.

are likely to be more accurate than those for N = 4,
but compute the summation term in (2.115) only up to

Figure 3(a) shows that the convergences of (4 }s,a~,
with increasing N are all very(@ )cross ~ an susc

good for the unit cell size a = 10 pm. The numerical com-
putations yield dimensionless eigenvalues A z and eigen-

4vectors P z(g). In the computations for (4,„„,scale
D a2 were used butdependent eigenvalues z ——A zD„

differentiations of eigenvectors were not needed. Hence,
it has the best numerical results of the three. On t e
otlleI' hand fol' (C }srag aIld (4 )cross& fourth aIld sec
ond order derivatives of the eigenvectors with respect to
q had to be calculated. We computed eigenvectors or
five different q values, i.e. , qa = (0.03, 0, 0J. . .O),0.05 0 0
(0.07,0,0), (0.09,0,0), and (0.11,0,0), in order to carry
out fourth order differentiation numerically. For the sec-
ond order differentiations, eigenvectors for the Grst three
q values were used. These derivatives are scale depen-
dent. As the unit cell size a increases, the errors in the
eigenvectors magnify through differentiations. This is il-
lustrate in igs.d

' F' . 3(b) and 3(c) which show, respectively,
the results for (4 ) for the unit cell sizes a = 20 and 30
pm wit increasing . mh

' ' N Among the three quantities cal-
cu ate, on yl d, l ~4 ~ is reasonable over the whole time

4regime. ise. This is not true for (4 }s,ag an «~„. or
f2 olt e case oh f (4'4) an increase of a by a factor of (orgrad &

3) causes a magnification of error by a factor o 2 (or
3 ) through the differentiation, which coupled with the
errors in scale dependent eigenvalues renders the result

pletely unreliable. The effect on (4 )„„is less severe,
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but the results below 12 ms in Fig. 3(b) [or 30 ms in Fig.
3(c)j are probably also unreliable. In fact, some of the
early values for (4 )s, g and (44)„„were negative, and
are not shown.

Figure 4(a) shows 2 (4 ), ,„„and 24(44), ,„„asfunc-
tions of ~ for the unit cell size of a = 10 pm for two
difFerent values of Ay. The results for quartz (y—1.3 x 10 emu/cm ) and water are shown as data
points connected by lines. The dashed lines are those
for the solid matrix with y = 2 x 10 s emu/cms and

water. In the second case y is closer to what is found in
ordinary sandstones. Both results indicate that the ratio
24(4'4), ,„„/2(42),„„is so small that the phase angle
distribution is essentially Gaussian. However, this ratio
increases as (AyH0) . We have assumed a resonance fre-
quency of 1 MHz for the numerical computations. Hence,
for a resonance &euency of 100 MHz or so, the distribu-
tion may no longer be Gaussian. Notice that 24 (44), ,„„
is negative below 40 ms and positive above that.

Figure 4(b) shows 2 (42),„„and 24 (44),„„asfunc-
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FIG. 3. Results of (4' ) due to susceptibility difference, fixed gradient, and cross terins as functions of r for N = 2, 3, and
4, for (a) a = 10 pm, (b) a = 20 pm, and (c) a = 30 pm, where N is the size of the reciprocal lattice used in the truncated
Fourier expansions.
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tions of w for difFerent values of a. Again, the results show
that the ratio of 24(C'4), ,„„/z(42),„„is so small that
the phase angle distribution is essentially Gaussian. Of-
ten 2 (4 ), ,„„is negative which means the phase angle
distribution is narrower than Gaussian.

Figure 5(a) shows 2 (4 )~ s,ag and 24(4 ), s,~g as func-
tions of v for the unit cell size of a = 10 pm for two dif-

ferent values of field gradients. The result for 1 G/cm in-
dicates that the ratio 24(4 ), s, g/2 (C' ), s, g is so small
that the phase angle distribution is essentially Gaussian
up to w = 80 ms. This ratio increases as (V'II) . For
the results with a field gradient of 20 G/cm, this ra-
tio reaches 0.37 by 20 ms. At later times, a Gaussian
approximation is no longer adequate. However, when
7. = 20 ms, the spin-echo signal has already decayed to
exp( —(4 )s, g/2) = exp( —28). Thus the signal is un-
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FIG. 5. Results of ~ (C' ),s, g and —(4 ) s, g vs 7' for (a)

a = 10 pm and two diferent values of magnetic BeM gradient,
and (b) one magnetic field gradient (1 G/cm) for different
values of a.
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observable, and the question of validity of the Gaussian
approximation is purely academic.

Figure 5(b) shows 2 (4 ), s«s and 24(4' ), s»g as func-
tions of w for difFerent values of a (i.e., 10, 20, and 30
pm). The results for a = 10 pm indicate that the ratio
24 (4 ), s«s/2 (4 ) ~ s«g is quite small as discussed pre-
viously in Figure 5(a). The results for a = 20 and 30 pm
indicate that the values for 2(O ) s, ~ do not change
much &om those for a = 10 pm as already shown in Fig.
1. But the limited good results for 24(4' ), s, s when
a = 20 and 30 pm seem to suggest that as a increases,

24 (O ), s, s also increases, as expected from (2.122).
Figures 4 and 5 show results for the magnetic suscep-

tibility difference and the external field gradient effects
separately. If both effects are present in the porous sys-
tem, then we have to consider the cross terms too. Figure
6 shows results for difFerent values of a (i.e. , 10, 20, and
30 pm) where the cross terms are included in the compu-
tation of 24(44), . Again, the ratio of 24(O4), /2(42) is
quite small up to r = 80 ms. In general, ~z(44), is posi-
tive which means the phase angle distribution is broader
than Gaussian. Here, as before, we compute the cumu-
lants only up to w = 80 ms, becasue for porous rocks, the
T2 signal usually becomes very small when v is greater
than that.

Frequently, as pointed out earlier, one is tempted to
take the increase of relaxation rate due to nonzero ~ in a
CPMG spin-echo experiment and calculate an apparent
D(t) using a formula identical to that for a uniform fluid.
It is not clear whether the apparent D(t) obtained in this
manner is the same as the time dependent D(t) for the
porous medium obtained &om the pulsed field spin-echo
(PFGSE) experiment [i.e., (2.69)]. Figure 7 shows D(t)
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FIG. 6. Results of —(4 ), and —(C ), vs r for different

values of a including all three contributions, i.e., susceptibility
difFerence, fixed gradient, and cross terms.
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FIG. 7. Results for D(t)/D~ obtained from theoretical ex-

pression for pulsed-field-gradient spin-echo (PFGSE) type ex-
periments, and apparent D(t)/D„obtained from relaxation
rate increase in T2 CPMG experiments for a constant field
gradient using a formula identical to that for a uniform fiuid.

obtained from PFGSE calculations [17], as compared to
the apparent D(t) [using (3.2)] for a = 10 pm and a
field gradient of 1 G/cm. Note that the time t for D(t)
&om PFGSE is the diffusion time, whereas the apparent
D(t) obtained from the increase of relaxation rate [which
should really be denoted as D(w)] is plotted as a function
of v. We notice that the difference between them is quite
small provided the assumption of Gaussian distribution
for the phase angle is valid. We already pointed out that
this assumption breaks down for v greater than 20 ms for
a field gradient of 20 G/cm in Fig. 5(a). It will probably
also break down at larger grain size for a smaller field
gradient.

The numerical results presented above, though not
necessarily representative of disordered systems, can nev-
ertheless serve as good starting points for learning more
about the T2 relaxation behavior in complicated disor-
dered systems. The system we considered has smooth
curved surfaces, whereas porous media such as rocks can
have solid grains with very sharp corners. These will in-
crease the magnetic susceptibility difference effect. We
believe our findings will also be useful for understand-
ing NMR T2 relaxation behavior for porous media in the
presence of a nonuniform magnetic field.

A few remarks are probably worth mentioning re-
garding the numerical computations. As pointed out
in Ref. [17], spurious eigenstates appear in the calcula-
tion due to the fact that we are dealing with finite size
matrices. In order to reduce the computation time for
(O ), we included only those eigenstates with the norm
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Ig„~(g)I2 greater than 0.1 in our computations. In
g

the coinputation of (42), where computing time is not
a major concern, we found that including all eigenstates
versus including only those with a norm greater than 0.1,
0.3, or 0.5 did not make a significant difFerence in the re-
sults. Because the functions 6 i(v ), c i (w), d„ i (7 ),
and e„ i(r) contain terms with differences of eigenvalues
in some denominators, large numerical errors sometimes
resulted when two different eigenstates were nearly de-
generate, i.e., when the eigenvalues were nearly equal.
This could be corrected either by making those eigenval-
ues exactly equal, and using appropriate limiting forms
of the above mentioned functions, or by artificially in-
creasing somewhat the separation between the eigenval-
ues, and using the generic forms of those functions. In
practice, we found that it is more convenient to use the
second method.

IV. CONCLUSIONS

In summary, we have developed a theory for T2 relax-
ation in a periodic porous medium for the case where
there is no enhanced relaxation at the pore-matrix in-
terface. We identified relationships between the mag-
netization (or relaxation rate change) of the porous sys-
tem and parameters such as magnetic field strength, field
gradient, magnetic susceptibility difFerence between solid
grains and pore Quid, pore size scale, echo spacing, etc.
We also carried out numerical computations for a peri-
odic porous medium consisting of a simple cubic array
of identical touching spheres. These computations are
used here in order to learn more about the phase angle
distribution of spins and its relations with variations of
grain size, susceptibility difference, and field gradient, in
order to gain more insight as to the time kame for which
the assumption of a Gaussian distribution is valid. They
also serve as illustrative examples for understanding more
complicated disordered systems.

To brie Qy summarize our results for the periodic
porous medium, we find that: (1) For a uniform applied
field, the magnetic susceptibility contrast effect can be
significant. As w increases, the T2 relaxation rate also
increases and eventaully levels off. The total increase of
relaxation rate is proportional to a, where a is the edge
length of a unit cell. (2) For a = 10 to 30 p,m, 1 MHz

resonance frequency, and 7 up to 80 ms, the phase angle
distribution due to the magnetic susceptibility contrast
effect is essentially Gaussian. (3) For the external field
gradient effect, the assumption of Gaussian distribution
for phase angle will eventaully break down when w is
large enough. (4) For a = 10 pm and a field gradient of 1
G/cin, the Gaussian approximation is valid up to 7. = 80
ms, but not valid for a field gradient of 20 G/cm when w

is greater than 20 ms.
Clearly, the work we have described needs to be ex-

tended to more complicated microstructures, in order to
study the effect of microgeometric features such as nar-
row constrictions and long tubes. In principle, such sys-
tems should be not more difBcult to study than the sim-
ple microgeometry which we have focused upon: the only
difference will be that 8„(r), and hence 8g, will have a
different form. Our treatment also needs to be extended
so as to allow for the possibility of enhanced spin relax-
ation at the pore-matrix interface. Finally, it is hoped
that experiments will be done on synthetic porous media
with a periodic pore structure, for comparison with these
calculations. Such comparisons will hopefully enable us
to identify those microgeometric features which have a
dominant efFect on the NMR relaxation rates.
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APPENDIX

First we show that

+(r2rl lt2 tl) = G(rlr2lt2 tl) (A1)

for the general case of a porous medium (i.e. , not nec-
essarily periodic) with a boundary condition of partial
absorption at the pore-matrix interface. We can assume
t2 ) ti, then, using Green's theorem and (2.12), we get
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t2

Dp dt dV[G(rr21t2 —t)V' G(rriIt ti) —G(rrilt —ti)V' G(rr2lt2 t)l
t1 V~

= D„dt dS G(rr2It2 —t)
OG(rr, It —t, ) —G(rri It —ti) &G(»2It2 —t) =0. (A2)

tg BV~ 072 |974

Using the difFusion equation (2.7) and the initial condition (2.9), this can also be written as
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f
t2 ciG(rr & It

—t z) clG( 2 I
t2 —t)

dV dt G(rr, [t, —t) Bt
—G(rr, It —t, ) Bt

dV[G(rrz[t —tz)G(rrz[t2 —t)]I:I' = G(r2rx[t2 —tx) —G(rxr2[t2 —ti) = 0, (A3)
v„

which proves (Al).
Because diffusion is a process without memory, there-

fore the probability of a path that passes through
a sequence of volume elements dV~ . .dV around
r(tq). . . r(t ) at the chronological sequence of times tz (
~ . &t, is

P(rg)dVj G(r2rg[t2 —tg)dV2G(rs 2I 3 2) 3

x G(r„r„&It„—t„&)dV„, (A4)

where P(r) is the probability density for finding a par-
ticle at r. When p = 0, this density has the position

P(r„)dV„G(r„gr„[ —t„g + t„)dV„
x G(rgr2

I

—tg + t2) de . (A5)

Prom (Al) it follows that this is equal to (A4) except
for the factor P(r„), which is equal to P(rq) only when
p = 0 but differs from it when p g 0.

independent value I/V„. Otherwise, P(r) varies with po-
sition, decreasing as r approaches any point on the inter-
face. Similarly, the probability of the time reversed path
r( —t ) r(—t ), t„&— & tg xs—
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