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Quantitative molecular interpretation of mesoscopic
correlations in bicontinuous microemulsions
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The charge frustrated Ising model is used as the basis for understanding bicontinuous oil-water-
surfactant mixtures. The elemental energy of the model is related to the surface tension between oil
and water in the absence of surfactant. The two elemental lengths of the model are related to the
volume of a water molecule (or oil segment) and the length of a surfactant molecule. The model is
analyzed analytically with approximations justified for homogeneous mixtures on length scales that
are larger than these microscopic lengths. The symmetry and discreteness of the underlying lattice
are physically irrelevant in this regime. The local mean field approximation is applied to the model
yielding a theory that is consistent with the Landau-Ginzburg phenomenology of microemulsions.
Corrections to the mean field treatment are required for a quantitative description of the correla-
tions of bicontinuous microemulsions. In analyzing these corrections, a theory is derived that is
related to the random wave model, but with all phenomenological coe%cients now determined in
terms of temperature, surfactant density, and surfactant chain length. A comparison with existing
experimental data is successful. Predictions and suggestions are made for future experiments.

PACS number(s): 82.70.Kj, 05.50.+q, 61.20.Gy, 61.25.Em

I. INTRODUCTION

The phenomenon of microphase separation is common
to many physical systems such as diblock copolymers and
amphiphilic mixtures. By far the best studied and best
understood systems displaying microphase separation are
oil-water-surfactant ternary mixtures. The large body of
available experimental data [1] and the very rich and in-
teresting phenomenologies have stimulated a strong theo-
retical effort in the past decade [2]. While most of the ob-
served phenomena are now well understood qualitatively,
quantitative comparison of experiments with microscopic
(first principles) theory has been rare. The present work
is oriented in that direction. In particular, it is now un-
derstood that frustration, arising f'rom competing inter-
actions over diferent length scales, plays a crucial role
in microphase separation [2—4]. Our goal is to identify
both range and. strength of these interactions in terms of
experimentally accessible parameters, such as molecular
lengths, densities, and temperature.

Consider first a binary mixture of a polar species P
and a hydrophobic species II (e.g. , water and oil). Below
the critical point, the mixture phase separates into two
phases, one rich in H and the other rich in P. Within
each phase, the only fluctuations that occur have a small
correlation length, a. The length is microscopic, typically
less than 5 A. in size.

Consider next what happens when a small amount of
surfactant is added to the binary mixture. Surfactants
are long amphiphilic molecules that are P-like at one
end, and H-like at the other end. We use Ps and Hg,
respectively, to denote the polar and hydrophobic seg-
ments of the surfactant molecules. These molecules pref-
erentially exist at the P-H interface, so that heads and
tails can reside in the preferred component. If the con-

centration of surfactant is large enough that the inter-
face is saturated, accommodating additional surfactant
within a single phase, say P, will force an excess of species
Hg into the "wrong" phase. If the length of the surfac-
tant molecules, L, exceeds the correlation length of the
spontaneous Quctuations of the binary mixture, A )) a,
the presence of surfactants within the bulk phases &us-
trates the system. In this case, surfactant molecules self-
assemble to minimize the exposure of the Pg and Hg
ends to the H and. P phases, respectively. The result is
the formation of self-assembled structures, such as mi-
celles and bilayers, or the formation of large coexisting
domains or interconnected channels of P and H. In the
latter case, the system is homogeneous and disordered
over macroscopic length scales, but is highly inhomoge-
neous over mesoscopic length scales (as large as several
hundred angstroms). It is microphase separated.

Many of these structures involve correlation lengths
that are very large compared to either a or L. As such,
a theory for them should require only a few microscopic
parameters pertaining to the molecules that comprise the
material. This concept is familiar in the theory of simple
fluids where a single energy and one microscopic length
prove satisfactory. The principle of corresponding states
follows kom this minimalist description. For a simple
fluid, the energy parameter determines the critical tem-
perature, or equivalently, the surface tension between co-
existing phases far &om the critical point. The micro-
scopic length is essentially the diameter of a molecule, or
equivalently, the correlation length far &om the critical
point. One theme of this current paper is that only one
additional length is required to capture much of the meso-
scopic behavior of complex Quids. The second length is
L, the typical distance between Hg and P~ groups within
a surfactant molecule.
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The length L is associated with the constraint of stoi-
chiometry. This constraint affects the entropy of the sys-
tem. Stillinger [5] and others [6] have noted that this en-
tropy contribution can be estimated &om an electrostatic
analogy. Accessible Buctuations of Ps and Hg densities
are those that maintain stoichiometry with intramolec-
ular length L. Similarly, accessible charge particle Quc-
tuations are those that maintain electroneutrality on the
scale of the Debye screening length, r~. Generally, Geld-
theoretic implications of a length scale constraint can be
mapped to an interaction that is Coulombic in form [7].
For the specific case of surfactants with mean bulk den-
sity p, the strength of the Coulombic interaction is gov-
erned by the charge, q, given by [5]

a brief discussion. An Appendix is used to discuss some
details of the analysis omitted &om Sec. II.

II. THE LATTICE MODEL

A. Hamiltonian

We consider a cubic lattice with spacing a, and two
binary variables: 8; = +1, indicating whether lattice
site i is occupied by a polar or hydrophobic species, and
t,. = 1, 0, indicating whether that species is or is not part
of a surfactant (if it is not, the species corresponds to wa-
ter or oil). The charge frustrated Hamiltonian for these
variables is

q = d/4irPpA .

In this equation, d denotes dimensionality, and P
k~T. The Debye length associated with this charge is
indeed

Exploiting this electrostatic analogy, Stillinger con-
structed a density Geld theory for surfactant-water mix-
ture [5]. His numerical work established that the model
predicts the formation of micelles and lamellae. Leibler,
and also Ohta and Kawasaki [6] have studied similar
models in the context of diblock copolymer melts. Hur-
ley and Singer have illustrated how &ustration by long-
ranged interactions, Coulombic in origin, leads to spa-
tially modulated phases of two-dimensional films [8].
Deem and Chandler [9,10] carried out an analysis of bi-
continuous phases based upon a slight generalization of
Stillinger's continuum model. With physically reasonable
values of parameters, Deem and Chandler were able to
fit experimental structure factor data successfully. How-
ever, to account for the nonlinearity of the system, a
rather complicated numerical scheme was needed in their
approach, obscuring the underlying physical picture.

We can simplify Deem and Chandler's analysis consid-
erably by working with a corresponding lattice model.
This charge 6.ustrated Ising model was introduced by
Wu, Chandler, and Smit [11]. It is discussed in the
next section where an approximate reduced version of
the model is also derived. The reduction is appropriate
for the description of bicontinuous microemulsion phases.
While the reduced version bears some resemblance to
Widom's lattice model [3], the approach we take is dis-
tinct. The results we derive &om the reduced model are
&ee of artifacts due to the underlying lattice, and we are
able to successfully relate experimental observations to
molecular parameters, such as L.

An analytical treatment of the reduced model is car-
ried out within mean-field theory in Sec. III. A more
accurate analysis is needed to treat experimental results
in a meaningful quantitative fashion. Such an analysis
that accounts for Quctuations is given in Sec. IV. The
development here is similar to the random wave model
[16—19], but with phenomenological coefficients now de-
termined in terms of microscopic quantities. Comparison
with small-angle neutron scattering (SANS) experiments
[1,12—15] is made in Sec. V. We conclude in Sec. VI with

X[s;,t, ] = &s[s;]+&c[s,, t;],
Rs = ——) Jss, —) hs, ,

(2.1a)

(2.1b)

(2.1c)

The quantity p is the chemical potential that controls
the relative amount of surfactants. The corresponding
quantities controlling the concentrations of oil and water
are absorbed into the spatially dependent field h;. The
nearest-neighbor ferromagnetic interaction

J )0, r~=a)
0, otherwise,

expresses the preference of oil and water to phase sep-
arate (r,z denotes the distance between cells i and j).
The sites with kustrating charges interact via the near-
est neighbor interactions plus the Coulomb potential gov-
erned by

1 4'
v(r;, ) = —) exp(ik. r,, )

k
4'

exp (ik . r;, ),
k a3k2 (2.2)

where N is the total number of sites and

(2.3)

gives

—)
k

k, = (67r /a )'~ .

(2.4)

(2.5)

The approximation converting the sum over wave vectors
in the first Brillouin zone to an integral in spherical coor-
dinates is justified for length scales fairly large compared

The quantity k a is the microscopic wave-vector
cutoff. (We work in three dimensions. Extensions to
other dimensions is straightforward. ) The condition of
normalization,
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to the microscopic lattice spacing a (i.e., ka « 1). This is
the regime we are concerned with. Indeed, the concept of
charge frustration is valid only for k & I/A. The results
of our analysis will be independent of the speci6c details
of the underlying lattice structure for the corresponding
length scales.

The basic parameters of the model are a, J, and
The lattice spacing a corresponds to the correlation

length of water or alkane chains. Roughly, we can think
of each lattice site as being occupied by a water molecule
or one unit of the oil or surfactant alkane chain. For
temperatures well below the critical demixing temper-
ature of oil-water mixtures, the short-range interaction
energy scale J can be related to o, the oil-water surface
tension in the absence of surfactant:

B. Reduction of the model

The partition function of the model is

(2.9)

We choose to sum over (t,j first:

) —P'R
Q ( (2.10)

values. This recognition is the 6rst step in making quan-
titative comparison with experiments possible.

J = O.a2/2. (2.6) where

At room temperature, a typical value of surface tension
is cr 50 erg/cm2 O. lk~T A. 2 [20]. The lattice gas
model that is consistent with this value of surface tension
and the compressibility (or mean-square density fluctua-
tions) of water has a 2 A. The other length scale, A, is
the root-mean-square separation between head and tail
groups in a surfactant molecule [21]. The typical mag-
nitude of A will be f'rom A 5 A. for short-chain sur-
factants, to tens of angstroms for long-chain surfactants,
and even longer for diblock copolymers.

In this lattice Hamiltonian, for each surfactant
molecule, there is a corresponding pair of charged sites.
The density of polar surfactant segments at lattice site i
1s

Q [ ] ) —PR (2.11)

Qc = 2)rPq detv

x V exp —— j q v
'jk

x ) exp(is, t)P, +. Ppt~.) . (2.12)

For the calculation of Qc, the nonlocal term in 'Rc can
be made linear in s, t; by a Hubbard-Stratonovic trans-
formation [23]:

pp, (i) = (1+ s;)n~, t;/2a, (2.7)
j=1 t~ ——0)1

where nJ~ is the number of polar segments per surfac-
tant. Similarly, the hydrophobic surfactant segment den-
sity, p~s(i), is (1 —s;)nest;/2a . Within a surfactant,
n sites (o. either Ps or IIs) are constrained to move
together. As such, they are replaced by one charged site
in the lattice model. Flory's entropy factor for the mix-
ing of polymers follows from the same observation [22].
The spins, s;, do not represent molecules or segment of
molecules, per se, but rather, they provide a discrete rep-
resentation of density Gelds.

The lattice cells have a volume much smaller than that
occupied by a surfactant molecule composed of several
segments. Therefore, the connectivity of a surfactant is
not fully accounted for. This feature would generally un-
derestimate the effect of surfactants frustrating the phase
separation, especially for long-chain surfactants. The er-
ror can be alleviated by regarding

(2.8)

as the volume &action of surfactants. This formula is
motivated by the fact that the length and cross-sectional
area of a surfactant molecule are roughly 2L and a,
respectively.

The preceding discussion emphasizes that all param-
eters in the model have clear physical meaning directly
related to experixnental conditions with known typical

Note that diagonal terms of v,j,

v;; = 4)r/a k
k

(2.i3)

Qc = 2)rPq det v 17/ exp (—S [P, , s;]), (2.14)

where

—) ln [1 + z exp(isiPz)] . (2.15)

The quantity z is the fugacity of charged sites:

z = e~". (2.i6)

The partition function has been reduced to a functional
integral with an action S[P;,s;] that consists of a nonlo-
cal Gaussian part and a non-Gaussian local part. It is
similar to that of the neutral Coulomb gas. A Gaus-

can be included in Eq. (2.lc) to make the transformation
(2.12) well defined. This amounts to a trivial shift of the
chemical potential p since s; t, = t, . The sums over (t;)
are now done, yielding
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1
ln Qc ——) L~s, sj,

U

(2.17)

sian approximation of this nonlinear functional integral
is analogous to the Debye-Huckel theory of electrolytes.
In the Appendix we show that the Gaussian approxima-
tion yields, apart &om irrelevant constant terms,

III. MEAN-FIELD THEORY

As a standard approximate treatment of the reduced
spin model (2.22), we first use local density mean-field
(MF) theory. A reference Hamiltoiiian is defined in terms
of an undetermined field (b;),

where I;~ is a screened Coulomb potential,
Ao ———) bs;. (3.1)

with

and

LI, exp (ik . r;j)
k

(3fa /2vr 6 r;~ ) exp ( r;~ /—rD)

fa/A(") = 1+~2~2/6

(2.18)

(2.19)

—pX& —p&MF [b;]

= ) ln(2 cosh Pb;) —P(R —'Ro)0, (3.2)

where the angular brackets represent

The reference Hamiltonian is variationally optimized in
first-order perturbation theory:

r~ = a/i/6. (2.20)
) —PRp

s;)
(3.3)

Combining (2.17) with (2.10) gives

q ~ e
—~~ = ) e

—~~

ks')
(2.21)

Finding the extremum leads to the familiar self-consistent
field equations,

with the reduced spin Hamiltonian

P ji'. = ——) PJ;~ s;s~ —) P. h;s- , ~ —) L;js;sj
1 . . 1

~ ~

(2.22)

where

m, = tanh Ph; + ) Vjm~
2

&ij = PJij Lij r

(3.4)

(3.5)

This Hamiltonian represents a frustrated spin model gov-
erned by the competition between a short-range ferro-
magnetic interaction with length scale a, and a longer-
range antiferromagnetic interaction with length scale rD.
The latter is of the order of the surfactant molecule
length, 2L. We will see that the typical length scale of
the mesoscopic domains in bicontinuous microemulsions
is determined. by the relative strength and range of the
two competing interactions.

The Hamiltonian (2.22) can be compared to that of
Widom's pioneering and highly influential model [3]. The
Hamiltonian of Widom's model is

m; = (s;)0 ——tanh Pb;, (3.6)

PE[m;] = —) (1+m, ) ln(1+ m;)
1

+(1 —m, ) ln(1 —m, )

and jb;j minimizes XMF[b;].
Equivalently, XMF[b;] can be expressed as a functional

of m, . To within a trivial additive constant, this func-
tional is

P'R~ = —j) s;sj —2m ) s;sj —m ) s;sj, (2.23)
NN DN 2AN

1—) Ph;m; ——) V; m;m. (3.7)

where j is the nearest-neighbor (NN) coupling, 2m is the
coupling between diagonal neighbors (DN), and m cou-
ples axial next-nearest-neighbor (2AN) sites. The &us-
tration occurs with j ) 0 and m ( 0. The interactions
involving m are motivated &om the consideration of the
bending energy of surfactant layers, but their form is
strictly phenomenological. If we neglect I;~ for r;~ ) 2a,
Eq. (2.22) can be made similar to Eq. (2.23). However, the
restrictions with which Q becomes 'R~ seem arbitrary,
without apparent microscopic justification. Unsatisfac-
tory predictions of the Widom model, such as its depen-
dence on lattice symmetry, may be the result of these
apparently arbitrary restrictions.

The minimum of the Bee-energy functional, P[m, ], is at
m,. = m;, where m; is given by Eq. (3.4).

With Eq. (2.19) and the Fourier transform of (2.2),
Eq. (3.5) gives

fa/6
Vi, =2PJ) cosk a (3.8)

where the sum on x is over the three components of the
vector k. Since we are interested in the behavior of the
model in the small-k region, we make a small-k expansion
of Eq. (3.8):
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Vy 6PJ —fa/4 + (faA/6 —PJa )k —(faA /36)k,
(3.9)

which is valid for k & ~6K ~ & a ~. The lowest-order
anisotropic term (PJa /12) P k has been neglected in
Eq. (3.9). For the typical values a 2 A, A & 5 A. , and
PJ = Pcra /2 0.2, the neglected term is comparable to
faA k /36 only for f & 0.04. At these small surfactant
densities, for k & 1/a, the O(k ) term dominates over
the O(k4) term in Eq. (3.9).

The continuum limit of Eq. (3.7) can be derived using
Eq. (3.9). It is

7.0
I

I

I

6.5 Disorder
',~ line

l~ Lifshitz line

6.0

5.5

oil/water coexistence
and lamellar phases

5.0

4.5
0.0 0.2 0.4

microemulsions

0.6 0.8

PE[m] =

where

+—m (r) —Ph(r)m(r) + O(m )12
(3.10)

a2 ——1 —3Pcra + fa/A,
cg ——Po a /2 —faA/6,
c2 ——faA /36.

(3.iia)
(3.iib)
(3.llc)

dF 1 2 1 2 1 2 2—a2m (r) + —cg(V'm) + —c2(V' m)
G 2 2 2 FIG. 1. Mean-6eld phase boundaries surrounding the mi-

croemulsion phase: reduced temperature T' = 2/Poa vs the
volume fraction of surfactant f at constant A = 6 A. and
a = 2 A. . The solid line separates the homogeneous mixture
and oil-water phase separated region. The water-mater cor-
relation function of the homogeneous phase oscillates to the
right of the disorder line. This line continues smoothly to
the stability line separating microemulsions from modulated
lamellar phases. The long-dashed line, marking the onset of
bicontinuity, is the Lifshitz line.

The correlation function S;~ = (s;sz. ) = S(r;z) can be
computed from Eq. (3.10) through the identity

b~ I'
S '(lr —r'I) =

bm(r)8m(r') J ( ) ( ) o
(3.12)

where S (lr —r'l) denotes the functional inverse of the
correlation function. Evaluation yields

(3.i3)

or with Eq. (3.9),

1
~I —-

a2 + cgk + c2k
(3.i4)

Teubner and Strey [12] first suggested the form (3.14) for
the structure factor of microemulsions. The form is mo-
tivated from a Landau-Ginzburg expansion of the &ee-
energy functional. In this construction, a2, cq, and c2
are arbitrary phenomenological parameters. With these
three fitting parameters, various scattering data of mi-
croemulsions can be accurately fit for k up to the mi-
croscopic cutofF k, . Equations (3.11) connect our mi-
croscopic model parameters to the phenomenological pa-
rameters of this theory.

The mean-Geld phase diagram is obtained by global
minimization of Eq. (3.10). Restricting ourselves to
the case of oil-water symmetry, h(r) = 0, continu-
ous phase transitions occur between the paramagnetic
(mixed) phase and modulated phases when the coeffi-
cient of the quadratic lmgl changes sign at some wave
vector, k . The case of k = 0 corresponds to oil-water
phase separation. For cq ) 0, the mean-field expression
predicts a transition line at a2 ——0 or 2/Po'a = T' =

6/(1+ fa/K) Here, k. = 0. This line is graphed as the
solid curve in Fig. 1. It is the line of oil-water demixing
criticality as a function of surfactant volume fraction, f
This critical line terminates at the point where cq ——0.
It is continued for cq & 0 by cq ———2(a2c2) /, depicted
by the dashed line in Fig. 1. Here, k = (—cq/2c2) / .
The singularity in the mean-field structure factor at these
finite wave vectors suggests the onset of modulated long-
range order as in a lamellar phase. In actuality, this line
represents a limit of stability of mean-field theory. A cor-
rect analysis of the phase diagram for temperatures be-
low the solid and dashed lines of Fig. 1 must account for
nonlinear contributions to the &ee energy. These consid-
erations will delineate regions of coexistence and predict
that the transition to a lamellar phase is first order.

The treatment of coexistence is beyond the scope of
the current analysis. In particular, the Debye-Hiickel ap-
proach used in obtaining the reduced Hamiltonian (2.22)
is derived with the assumption that the system is macro-
scopically homogeneous. Given the similarity between
the reduced Hamiltonian and Widom's (2.23), one thus
understands why Widom's model predicts a continuous
transition to oil-water coexistence. First-order transi-
tions are observed experimentally. The derivation of the
reduced Hamiltonian (2.22) can be generalized to remove
the limitation of homogeneity, as we show in forthcoming
work [24]. For the current paper, we confine our attention
to the regime above the solid and dashed lines of Fig. 1.
In this regime, what is most; significant is what mean-field
theory predicts about the stability of microemulsions.

Note that in the absence of surfactant, i.e. , f = 0, w' e
have cq & 0 and c2 ——0. As such, with f = 0, Eq. (3.14)
has the usual Ornstein-Zernike form. Increasing surfac-
tant density brings the system to the disorder line where
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ci ——2(a2c2) . Beyond this line, the real-space correla-
tion function oscillates [12]. At yet higher surfactant den-
sities, the system reaches the Lifshitz line, where c~ ——0
or f = 6a/T*A—:fr, A. t any higher density, the struc-
ture factor peaks at a nonzero wave vector, characteristic
of microemulsions with microphase separation.

The amplitude of these finite-wave-vector correlations
is governed in the mean-Geld theory by the size of a2 and
therefore the proximity to criticality. Fluctuations con-
siderably lower the line of critical temperatures &om the
predictions of mean-field theory, as previously shown in
studies of other lattice models [2,25—27]. Therefore, an
improvement to the mean-field theory result is necessary
for quantitative comparison with experiment. We con-
sider now an improvement that allows for Huctuations.

1
Sg ——

(1 —A) i —Vj,
(4.7)

The k-independent part of Sk is renormalized by the
inclusion of A. To determine A or equivalently

a2 ——a2 + A/(1 —A), (4.8)

we impose the hard spin condition (1/K) P& Sg = S;; =
(s,') =1 [28]:

1 = (1 —A) —VI,
k

(4.9)

With Eq. (3.9), the integral can be done approximately
by taking k ~ oo. The approximation is justified in the
mesoscopic regime, k ( 1/A. The result is

IV. ROLE OF FLUCTUATIONS

To include part of the effect of Buctuations, we go
back to the reduced spin Hamiltonian (2.22) and use a
Hubbard-Stratonovic transformation to express the par-
tition function as a functional integral [23]. In particular,

where

1
SA: =

a2+ cik2+ c2k4'

c2 t' a,'
n2 ———

/4 E 16vr~c22 c2 )

(4.10)

(4.11)

where

Q ~ j&0 ~xv (—&W;I), (4.1) The constants ci and c2 are given by Eqs. (3.11b) and
(3.llc). Fourier inversion of Eq. (4.10) gives the real-
space correlation

A[vP, ] = —) (g, —Ph,;)V, (@~ —Ph~. ) —) 1ncoshg;.
22

(4.2)
where

S,, = " exp( r;, /(—),
sin Kr;~

KP2~
(4.12)

j&0(&'4') exp (—&I@])
I 17vP exp (—A[/;])

(4.3)

by

The spin-spin correlation function S;~ is related to the
correlation of the field

and

1/2

2 (c2)

i/2

2 Ec2)

Ci

4c2

+
4c2

- 1/2

(4.13)

(4.14)

or in k space,

SA, ———V~ + V@ gI, . (4 5)

A[@,, h = 0] = —) @,V,, 'vP, + —) (A —1)@;. (4.6)
22

Now gq Vq —(1 —A), and from Eq. (4.5),

The last term in the functional (4.2) can be expanded
in powers of @;. A Gaussian approximation to Eq. (4.3)
is obtained by neglecting all terms in the expansion be-
yond quadratic order. This approximation gives gI,
1/(V& —1) whereupon, through Eq. (4.5), we get the
mean-field result (3.13). To account approximately for
higher-order terms, we estimate their effects with an ad-
ditional quadratic term, its coeKcient A to be determined
self-consistently:

p(r) = (@(r)) (4.15)

The average and spectral density of the Gaussian variable
vP(r) determines the statistical properties of the density
field p(r) by Eq. (4.15). Teubner [17] used a step func-
tion for this transformation. In our case, the spin that
coincides with the density is related to the renormal-

The augmentation of the Gaussian approximation to
enforce the hard spin condition, Eqs. (4.7) and (4.9), is
a mean spherical or optimized random-phase approxima-
tion [29—31]. The development given here follows those
of Miihlschlegel and Zittartz [32]. It provides the founda-
tion for the random wave model of bicontinuous phases
[16—19]. In the random wave model, Cahn's model of
spinodal decomposition [33] is adapted to the descrip-
tion of bicontinuous phases by constructing the density
field p(r) from a random Gaussian field @(r) through a
transformation
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ized Gaussian field vP, by an invertible transformation.
Namely,

0.30

s; = tanh@;, (4.16)
0,20

as can be verified &om Eq. (4.2) by replacing g;
vP;+Ph; and differentiating to obtain (s, ) = 01n Q/OPh;.
Deem and Chandler [10] used the transformation (4.16)
in the density functional version of the model (2.1) to
analyze the interfacial structure of bicontinuous phases.
For bicontinuous phases with large microphase separated
domains, the transformation function difFers from its
asymptotic values for only a small &action of the to-
tal system. For this situation, the distinction between
a continuous transformation and a step function trans-
formation is probably irrelevant. To the extent the dis-
tinction is irrelevant, the theory presented here provides
a derivation of the random wave model of bicontinuous
micro emulsions.

V. COMPARISON WITH EXPERIMENT

0.10

0.00
0.50 0.60 0.70

FIG. 2. The position of the peak maximum given by
Eq. (5.2) as a function of surfactant volume fraction, f, at
constant A = 4.4 A. , Po = 0.1 A, and a = 2 A. The Lif-
shitz line is at f = 0.545. The rectangles are the data points
for water-octane —C4Ei samples from Ref. [14] (three points
of which are shown in Table I).

For comparison with experimental SANS data, we as-
sume the density of water is given by po(s; + 1)/2 where
po is the bulk density of water. This correspondence en-
tails a small error, as 8; = 1 does not by itself distinguish
polar solvent from polar surfactant segment. To the ex-
tent this error is negligible, the scattering cross section
difference between water and oil, I(k), is proportional to
the spin-spin structure factor, Eq. (4.10). Thus,

a'(An) '/4
a2 + cik + c2k

(5.1)

where Ln is the difFerence of the scattering length den-
sities between water and oil. This formula is valid for
k small compared to 27r/A. At larger wave vectors, or
for 61m scattering, the general analysis of the preceding
section, leading to the random wave model, is still accu-
rate. In this section, however, w'e con6ne our attention to
bulk scattering in the small wave-vector regime and test
our predictions of the coefBcients in the Teubner-Strey
structure factor, (5.1).

The maximum of I(k) occurs at k = k given by

k = (i/3/A)(1 —3Poa /fA)'i (5 2)

for f ) fl, = 3poa / sA At vol.ume &actions, f, less
than that of the Lifshitz line, fr. , k = 0. The length
D = 27r/k is a measure of the domain size in the mi-
crophase separated structure. An alternative measure
used by Strey and co-workers [12—14] is d = 2'/v. given
by Eq. (4.13). The alternative is less general than 2ir/k
in the sense that it is restricted to the form of the cor-
relation (4.12) and therefore to the Teubner-Strey form
(4.10) or (5.1). With increasing f, D monotonically de-
creases &om D = oo at f = fl„asymptotically approach-
ing D ~ 2mA/~3, roughly the length scale of surfactant
molecules. Figure 2 shows a plot of A: as a function of
f and compared with experiment [14]. The parameters

TABLE I. Parameters determined by comparing Eq. (5.1)
with the fit parameters from Ref. [13]. Each sample consists
of DqO —CSHi8 —C4Ei. Volume fractions were calculated from
the concentrations p in weight fractions using known densities
of three components assuming ideal mixing. a = 2 A in all
cases.

p (wt%%uo)

52
57
65

0.519
0.569
0.649

An (10 cm )
5.00
4.18
3.78

o (ksT A. ')
0.106
0.101
0.098

A (A)
4.35
4.35
4.12

used for the plot (A = 44 A, Po = 01 A. , and a = 2

A) are in accord with the estimates discussed in Sec. II.
Similar behavior has been observed in many SANS ex-

periments on three-component microemulsion systems.
Strey and co-workers [13,14] have fit bulk-contrast SANS
spectra of water-octane-C;E~ microemulsion systems into
the Teubner-Strey form [C;E~ is an abbreviation for CH3-
(CHz); i-(OCHzCH2)~-OH]. In Table I, with the fitting
parameter values in Ref. [14], we have taken a = 2 A. and
determined An, o, and A using Eqs. (3.lib), (3.11c),
(4.11), and (5.1) [34]. Each sample consists of DzO-
CSHis-C4Ei with equal volume &actions of water and oil.
The expected theoretical value of Ln is Ln = 6.98 x 10
cm [13]. The values of o. compare favorably to the typ-
ical values of oil-water surface tension o O. lk~T A.

(for water —n-octane, o = 0.126k~T A. z at T = 20'C
[20]). The values of surfactant length scale A are also
reasonable since 2L is expected to be approximately the
length of the surfactant molecule. However, the very
small values of 4, C4Ei being one of the smallest surfac-
tants available, bring k near the microscopic region. We
expect our theory to be more reliable for systems with
larger surfactant molecules.

Table II with Figs. 3 and 4 show the result of Gtting
the SANS spectra of D20—n-octane —Ci2E5 systems &om
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TABLE II. Parameters determined by fitting Eq. (5.1) to
SANS spectra of DqO —n-octane —Ci2Es from Ref. [1]: Samples
1—3; and D20—n-decane —AOT from Ref. [15]: Samples 4—6.
Volume fractions f were calculated from the weight fractions

p reported in Ref. [1]. a = 2 A in all cases. Figures 3 and 4
show the spectra.

10

10

a)

Sample
1
2

3

5
6

f
0.0566
0.121
0.200
0.181
0.237
0.323

An (10" cm ')
7.99
7.98
8.24
6.41
5.96
5.79

cr (kriT A. ')
0.0656
0.0954
0.113
0.0920
0.103
0.111

z (A)
28.3
19.5
14.9
13.0
11.5
9.78

10

10

10 10

Ref. [1] and D20—n-decane —AOT systems from Ref. [15]
(AOT is an abbreviation for sodium bis-2-ethyl hexyl
sulphosuccinate). Again, 4 correlates reasonably with
the approximate size of the surfactant molecule in the
samples. For a given set of oil and surfactant species,
the systematic variations of 0 and 4 seem to indicate an
inadequacy of the minimalist model Hamiltonian (2.1).
Most likely, it is the result of assuming the same value
for J;~ irrespective of whether i and j refer to either sol-
vent (oil or water) or solute (surfactant head or tail).
Nevertheless, this theory, based upon well-defined intrin-
sic lengt scales of the order of angstroms, is remarkabl
successful in predicting the microscopic correlations on
mesoscopic scales.

igure 3 is graphed as a log-log plot to exhibit the onset
of Porod's k scaling [35]. This behavior is a character-
istic of a bicontinuous systems with narrow interfaces.
For the case with largest domains, graph (a), Porod's
scaling holds over an order of magnitude in k.

Th le large scattering cross section at k = 0 indicates
a small value of a2. Values of a2 for the structure fac-
tors graphed in Figs. 4 and 3 range from 10 to 10

400.0
[

300.0

E

200.0

FIG. 4. SANS spectra of D20—n-octane —C&2E5 systems at
varying surfactant volume fraction, f Data. are fram Ref. [1];
(a) f = 0.0566, (b) f = 0.121, and (c) f = 0.200. The cor-
responding solid lines are the result of fitting with Eq. (5.1).
See Table II for the parameter values.

At the same time, A is either positive or negative, with
magnitude typically near 0.1. Renormalization of a2 is
therefore significant, causing a2 —A. See Eq. (4.8). Un-
renormalized mean-field theory, Eq. (3.14), could be used
to fit large structure factors. But the bare a2 would then
be very small. Mean-field theory would thus associate
bicontinuity with near criticality of oil-water demixin .emixing.
In the renormalized theory, and in nature, large struc-
ture factors can occur relatively far &om the oil-water
demixing critical line.

Recently there have been experimental suggestions of
qualitative differences in the domain structures between
short-chain and long-chain surfactant systems [13,36].
Our result (5.2) allows us to examine the behavior of
the mesoscopic domain as we increase the chain length
of surfactant while keeping the volume &action constant.
The relative amphiphilicity of the surfactant increases as
we increase the chain length. k grows &om zero as 4 in-
creases from its value at the Lifshitz line, Al, = 3Prra / f
This trend reverses, however, for 4 ) A~ = 9Pcra /2f
See Fig. 5.

Table III shows the result of fitting the SANS spectra
of C4Ei, CsE2, and CsEs systems [13]. A systematically
increases by 4 A. as we successively add —CH2-CH2-
0-~-CH2-CH2 bonds into the surfactant molecule. Since
the three samples are at different densities, it is not clear

100.0

0.0
0.00 0.02 0.04 0.06

k(A')

0.08 0.10 0.12

FIG. 3. SANNS spectra of DzO —n-decane —AOT systems at
varying surfactant volume fraction, f Data are fram. Ref. [15];
(a) f = 0.181, (b) f = 0.237, and (c) f = 0.323. The cor-
responding solid lines are the result of fitting with Eq. (5.1).
Table II shows the corresponding parameter values.

k

(A)
4.23 0
8.12 0.0537
12.7 0.0360

An
(10 cm )

5.22
5.80
6.38

(ksT A ')
0.106
0.106
0.104

0.520
0.333
0.212

TABLE III. Parameter values determined by comparing
Eq. (5.1) with the fit parameters from Ref. [13]. The solutions
are water and n-CsDis with added C4Ei (sample 1), CsE2
(sample 2), and CsEs (sainple 3). a = 2 A in all cases.

Sample f
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FIG. 5. The position of the structure factor peak maxi-
mum, k, given by Eq. (5.2) with increasing surfactant chain

up from zero at the Lifshitz line and increases with increasing
A for AL, ( 4 ( A~, and decreases for A ) A~. Al. ——12
A. and Ac = 18 A in this case.

VI. DISCUSSION

whether the nonmonotonic behavior of k down the col-
umn of Table III is due to the increasing chain length.
Figure 6 shows a three-dimensional plot of k as a func-
tion of density and chain length with the typical values
of 0 and a: cr = O. lk~T A and a = 2 A. Shown to-
gether are cubic boxes centered at the data points (4, f,
k ) with k calculated by Eq. (5.2) for each of the fit
parameters in Tables I—III. All of the data points seem
to be restricted to the short-chain regime 4 & L~. Ex-
perimental attempts to verify the L ) L~ regime will
be worthwhile.

Its dependence upon k is standard. But the remarkably
simple yet nontrivial connections between its coe events

a2, c~, and c2 and physical parameters such as surfac-
tant chain length and density are new. The comparisons
we have made with existing experimental data on scat-
tering from microemulsions support the theory we have
derived. Further experimentation seems necessary, how-
ever, to fully test the predictions of the theory.

One issue not addressed in this paper concerns the na-
ture of the surfactant interfaces that divide oil-rich and
water-rich domains in the microemulsions. In view of
F . 6 we see that some microemulsions can have rel-lg. ) we
atively small domains. Surfactant monolayers in these
cases are relatively easy to bend. The standard interface

d l ~37& ay not work well for those systems since the
and dif-boundaries between oil and water will be murky and i-

fuse. Deem and Chandler analyzed this behavior showing
that microemulsions with long correlation lengths can ex-
ist without relatively narrow interfaces [IO]. A more com-
plete description of this behavior and its relationship to
bending moduli are worthy of future investigation.

Modulated phases and . phase coexistence also merit
treatment within the context of the charge frustrated
Ising model. Analytical expressions for phase bound-
aries will provide thermodynamically testable predictions
of the model. It remains to be seen what experimental
phenomena require extension beyond its most elementary
form involving only one fundamental energy and two mi-
croscopic lengths.
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The central result of this paper is the analytical expres-
sion for the long-wavelength structure factor, Eq. &~ 4.10 APPENDIX

0.3

0.2
k„,(A- )

In this appendix, we show that a Gaussian approxima-
tion to the functional integral (2.14) yields the reduced
spin-1/2 lattice model (2.22).

Expandixxg Eq. (2.15) through quadratic order in P,
gives the Gaussian action

+—) y2 —iz ) sy,
2 2

(AI)

FIG. 6. Three-dimensional plot of the position of peak
xnaximum k as a function of volume fraction f and chain

X —2length b, from Eq. (5.2) with o = 0.1 A. and a = 2
The cubic boxes represent the result of fitting experimental
data points from [1,12—15], soxne of which are shown in Ta-
bles I—III. The centers of the boxes correspond to the points
(6, f, k ) with k calculated by Eq. (5.2).

( 1
Qc = Cexp ——) L;~s;s~.

2
(A2)

where

for small z. With this action, the functional integration
in Eq. (2.14) gives
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g z2Pq2 det v j
The Gaussian kernel L;~ is given in k space by

(A3)
With Eq. (A3), this approxiination gives

1 1
2 i, 1+xbzk2/6' (A9)

z
LA:= 1+PA'k2/6z

' (A4)

The condition of self-consistency for the reduced den-
sity of surfactant, p = pa, is

where 2: = p/z. The integral in Eq. (A9) depends on
the cutofF k . The following manipulations, however, al-
low the extraction of the cutofF-independent part. The
remainder can be 6xed by the normalization condition
(2.4):

1 OlnQ
2p =

N Blnz (A5) 1 a~ " k2dk

i, I + ~/2jg2/6 2~2 I +. ~/2jg2/6

The factor of 2 accounts for the fact that there are two
charged sites per surfactant molecule.

The full partition function Q, Eq. (2.10), must be
obtained for the evaluation of the right-hand side of
Eq. (A5). However, to a good approximation, only the
term lnC from Eq. (A2) needs to be considered in the
absence of broken symmetry. The demonstration is as
follows. From Eqs. (2.10) and (A2),

ln Q(z)= ln C(z)

(
+ ln ) exp P'Rs ———) L,, (z)s;si . (A6)

Is, )

To estimate the second term in Eq. (A6), we use the
mean-Geld theory. The same method illustrated in
Sec. III yields for h; = 0,

ln [Q(z)/C(z)] = (6PJ —zul)m
—m'/12 + O(m'). (A7)

1 OlnC
2p N t9lnz (A8)

In Eq. (A7), m = (s,). This quantity is zero in the
absence of broken symmetry. Therefore, 1n(Q/C) is very
small. Hence, Eq. (A5) is approximately

2x = 1 — — + — . (All)
(6/vr) 4~s a 2 3(3/2) '~2 a

4~ 2' X3/2

As E/a increases, the solution to Eq. (All) rapidly con-
verges to x 1/2. Therefore, we get

2p~ z. (A12)

This result agrees with the low-density limit of the fugac-
ity series in the general grand canonical system. Com-
bining Eqs. (2.8), (A2), (A4), and (A12) yields Eq. (2.17)
with Eq. (2.19).

Nontrivial coupling between the two densities, m and
p, must be considered in the cases of phase coexistence
(i.e. , states of broken symmetry). The reduced spin
Hamiltonian (2.22) and the mean-field treatment de-
scribed in Sec. III must be generalized to cover such cases
[24].

3a' & " da
' k 1+ ~2k2/6)

(A10)

Using Eq. (2.5) for the first terin and taking k oo for
the integral in Eq. (A10), Eq. (A9) becoines
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