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The classical theory of nucleation and growth of crystals is examined for concentrated suspensions
of hard-sphere colloidal particles. The work of Russel is modified, extended, and evaluated, explicitly.
Specifically, the Wilson-Frenkel growth law is modified to include the Gibbs-Thomson efFect and
is evaluated numerically. The results demonstrate that there is a critical nucleus radius below
which crystal nuclei will not grow. A kinetic coefficient determines the maximum growth velocity
possible. For large values of this coefficient, quenches to densities above the melting density show
interface limited growth with the crystal radius increasing linearly with time. For quenches into the
coexistence region the growth is difFusion limited, with the crystal radius increasing as the square
root of elapsed time. Smaller values of the kinetic coefficient produce long lived transients which
evidence quasi-power-law growth behavior with exponents between one half and unity. The smaller
kinetic coefficients also lead to larger crystal compression. Crystal compression and nonclassical
exponents have been observed in recent experiments. The theory is compared to data from small
angle scattering studies of nucleation and growth in suspensions of hard colloidal spheres. The
experimental nucleation rate is much larger than the theoretically predicted value as the freezing
point is approached but shows better agreement near the melting point. The crystal growth with
time is described reasonably well by the theory and suggests that the experiments are observing
long lived transient rather than asymptotic growth behavior.

PACS number(s): 64.70.Dv, 81.10.Fq, 82.70.Dd

I. INTRODUCTION

It is now widely known that suspensions of colloidal
particles undergo phase transformations analogous to
that observed in atomic and molecular systems [1,2].
These suspensions are pseudo-one-component systems
where the suspended particles are the "atoms" and the
suspending solvent remains neutral, i.e., remains in the
same thermodynamic state throughout any phase trans-
formation of the particles. Crystallization, the disorder-
to-order transition, &om a metastable fluid to a crys-
talline solid has been observed in a variety of systems
such as dilute charge stabilized particle suspensions that
form bcc crystals similar to a Wigner crystal, more con-
centrated charge stabilized particle suspensions that form
fcc crystals, crystallization to close packed structures
driven by attractive depletion flocculation, and sterically
stabilized particle suspensions that exhibit "hard. -sphere"
crystallization [2]. While these studies focus on homoge-
neous nucleation, a number of other studies have inves-
tigated heterogeneous nucleation near cell walls [3,4].

Colloidal suspensions differ &om pure atomic systems
in that the sample volume is fixed by the solvent, and
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crystallization occurs at fixed volume rather than fixed
(osmotic) pressure. The metastable fiuid state, which is
generally created by shear melting the sample [5] rather
than undercooling, is at a higher osmotic pressure than
the 6nal crystalline state or coexisting crystal and liq-
uid state. Because the particles exchange energy and
momentum with the solvent, only particle conservation
should govern the large time dynamics of the system.
This conservation law is expressed as a diffusion equa-
tion for the particle dynamics, where a general diffusion
tensor [6] may be included to account for solvent medi-
ated hydrodynamic interactions. Furthermore, the rel-
atively small number of colloidal particles in a typical
sample (10 mol) and the rapid exchange of energy with
the solvent, means any latent heats evolved or changes
in sample temperature are negligible. A heat equation
should not be required to describe the system dynamics.

Classical nucleation and growth theories [7—9] have
been applied with some success towards understanding
these homogeneous nucleation and crystal growth pro-
cesses [10—13]. Discrepancies between predictions of clas-
sical theory and data have often been attributed to lack
of knowledge concerning interparticle interactions. How-
ever, there are other questions concerning the nature of
the crystal growth that have become apparent recently
[14]. The work of Aastuen et aL on dilute aqueous sus-
pensions of charge stabilized polystyrene particles [10]
made direct observations of crystal growth, finding the
evolution of crystal sizes to be directly proportional the
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time elapsed after shear melting. This work was in-
terpreted using the classical Wilson-Frenkel growth law.
Subsequent work by others on nonaqueous suspensions
of charge stabilized silica particles [13,15] implicitly as-
sumed a linear growth law (interface limited growth)
in application of the classical theory. However, recent
low-angle light-scattering studies on model hard-sphere
systems in the solid. -liquid coexistence region below the
melting volume &action [16,14] have suggested growth
proportional to the square root of the elapsed time (dif-
fusion limited growth), while other similar studies on
smaller radii particles suggest growth exponents vary-
ing between diffusion and interface limited growth for
samples quenched into the equilibrium coexistence region
[17].

These different crystal growth exponents are similar
to those values found in models for pure atomic systems
where crystallization is dependent on the diffusion of heat
or impurities away &om the interface [18]. For less than
unit "undercooling" the growth process becomes diffu-
sion limited with a growth exponent of one half. For
greater than unit "undercooling" the growth becomes
interface limited and the exponent is unity. Variations
&om these two limits are essentially produced by relax-
ation &om initial conditions to one limit or the other
[19]. We expect to find similar behavior in suitable mod-
els for crystallization in colloidal suspensions. The parti-
cle motion itself is diffusive in the solvent, and there is a
volume &action difFerence between the equilibrium liquid
and crystal in the coexistence region. Thus a dimension-
less undercooling can be defined as the difference between
the metastable Quid and Quid &eezing volume &actions
divided by the difFerence between the coexisting crystal
and Quid volume &actions. A metastable Quid with a
volume &action between these liquid and crystal values
corresponds to an undercooling less than unity, while vol-
ume &actions greater than the crystal value correspond
to values greater than unity.

In this paper the classical theory presented by Russel
[13]for the nucleation and growth of hard-sphere colloidal
crystals is corrected and extended to study the dynam-
ics of the crystal growth for suspensions of hard colloidal
spheres. In the first part of the next section we revise
the classical nucleation results presented by Russel to
apply to the hard-sphere potential, rather than the trun-
cated Lennard-Jones (inverse twelfth power) potential.
Then we introduce collective diffusion within the crystal
and metastable liquid and use the Wilson-Frenkel growth
law, along with particle conservation and pressure equi-
libration at the crystal-liquid interface, to determine the
motion of the interface. This set of equations is solved
numerically to determine crystal size, density, depletion
zones, etc. , as a function of elapsed time. Results of
these simulations are presented in the following section
along with a comparison to recently published experi-
mental data.

II. MODEL AND SIMULATIONS

In this section we adapt the classical theories of nucle-
ation and growth to suspensions of hard colloidal spheres.

Russel [13) has presented a siinilar development, which
we will follow closely except for the calculation of the
excess Gibbs' &ee energy and the equation of state for
the metastable Quid. Ru.thermore, we will numerically
calculate the crystal radius as a function of time rather
than assuming a linear growth (constant growth velocity
given by the Wilson-Frenkel law) for all undercoolings.

A. Nucleation

The classical theory of homogeneous nucleation [7] ex-
presses the excess Gibbs &ee energy of a crystallite in
terms of bulk thermodynamic quantities as

AG'(r) = 4mr'&g .+ (&. —&y)P. (r/a) .

(r*/a) = 8vrpg, a'/[3$, (pg —p.)] (2)

and the value of the excess &ee energy at this point is

This differs &om the form employed by Russel [13],
which was adapted from the excess &ee energy given
by Cape, Finney, and Woodcock [23] for a soft inverse
twelfth power potential. We utilize the above form be-
cause the growth law also is expressed in terms of chem-
ical potentials, and a single expression for the chemical
potential difference can be employed in the same form
for both nucleation and growth formulations. However,
given the above form for LG, we follow Russel and ex-
press the equilibrium rate of nucleation by

The first term on the right-hand side represents a con-
tribution &om the surface energy of the crystal. It is
given by the surface area in terms of the crystal radius,
r, times the interfacial tension, py „averaged over all
possible orientations of the interface. The equilibrium in-
terfacial tension for hard spheres has been calculated by
several difFerent groups. McMullen and Oxtoby [20] cal-
culate an upper limit py, = 0.425kT/a2 for the low-order
crystal planes. Curtin [21] finds pioo ——0.165kT/a~ and
'xiii = 0.157kT/a in a close packed crystal for the low-
order planes denoted by the Miller index subscripts. Fi-
nally, Marr and Gast [22] find xiii ——0.15kT/a . In these
expressions the hard-sphere radius is given by a and the
thermal energy by kT. We will assume that the surface
tension holds in the metastable region for the nonequi-
librium growth process and use the value p = 0.16kT/a2
in subsequent calculations. The second term is the bulk
energy of the crystal below that of the same volume of
metastable Quid. It is given by the product of the difFer-
ence in bulk chemical potentials of the crystal (p, ) and
metastable liquid (py) phases times the number of parti-
cles in the crystal expressed in terms of the crystal radius.
The particle volume &actions of the solid and metastable
fiuid phases are given by P, and Py, respectively.

The position, r', of the maximum value of LG, the
"barrier to nucleation, " gives the size of the critical nu-
cleus as
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(4)

where D, (Py) is the self-difFusion constant of a particle in
the metastable 6uid phase and P is a constant assumed
to be of order unity. This rate is simply a Boltzmann
probability for being at the barrier to nucleation times a
kinetic coefBcient for crossing the barrier.

Expressions for the chemical potential in the stable and
metastable regions may be found following the method
outlined by Russel [13]. The Helmholtz free energy per
particle takes the form

A/kT = f z(p)(dp/p) + c.

Here Z(P) = II/nkT is the ratio of the (osmotic) pressure
II to the product of the thermal energy and the particle
number density n. This reproduces the pressure II =

(BNA/B—V)z ~ if the constant c is independent of the
sample volume V. Since the constant in Eq. (5) must be
independent of P = Nvo/V, it must also be independent
of the number of particles ¹ Here vo is the volume per
particle. Then the following expression for the chemical
potential p follows &om its definition in terms of the
Helmholtz free energy, p = (BNA/BN)z v. as

II/nkT = Z(gy) = 2.17/(0.738 —P, ). (8)

Por coexisting crystalline solid and metastable Quid
phases with Py ) 0.494, equal pressures enforce the fol-
lowing relation between solid and liquid volume &actions

Q, = 0 307$.f /(Qy —1.05$y + 0.550).

There are other more recent approximations [26] for the
metastable Quid, but a preliminary testing of these re-
sults produced essentially the same results. Neither Rus-
sel nor van Duijneveldt and Lekkerkerker [27], who have
made similar calculations, used approximations for the
metastable Quid in their calculations. Rather, they used
an analytic approximation for the equation of state of
the hard-sphere glass. This equation of state was given
by Woodcock, as well, and is valid for volume &ac-
tions greater than that for the kinetic glass transition
(Py ) 0.58). The equation of state for a face-centered
cubic crystal of hard spheres has been determined by
computer simulation by Hall [28] and is approximated
well by the following equation:

I /xT = /z(d)(zd/y) + z(d) y, .

To evaluate the above expression for the chemical po-
tential requires explicit values for the hard-sphere equa-
tion of state. Then the critical nucleus size and nucle-
ation rate may be evaluated using these results. Wood-
cock [24] has produced equation of state data for the
metastable hard-sphere Quid phase with Py ) 0.494.
These data are Gt well by the Carnahan-Starling equa-
tion [25] and by the following simpler analytic expression
in the metastable region:

II/nkT = Z(gf) —0.904/[(Qy —0.731) + 0.0160]. (7)

When the Quid volume &action is equal to the &eezing
value (Py = 0.494), this relation gives P, = 0.546, the
melting value for the coexisting solid phase in computer
simulations [29].

Explicit expressions for the chemical potential of solid
or liquid phases as a function of volume &action are de-
termined by substitution of Eqs. (8) or (7) into Eq. (6),
respectively. The unknown constant, c, is determined by
requiring that the fluid at Py = 0.494, the freezing value,
have the same chemical potential and pressure as the
solid at P, = 0.546, the melting value. The difFerence in
chemical potentials between the liquid and crystal phases
is found to be

Ap(Qf ) (j68)/kT —[pg(Ijkg) Ijf (Ijkf )]/kT ——11.137 —0 904/(0 5.51 —1.4. 6$y + @~) —1.643 ln[py]

+0.821 in[0.551 —1.462$y + P&]
—9.492 arctan[7. 91(gy —0.731)]

+2.17/(0.738 —P, ) —2.940 in[0.738 —P,] + 2.940 in[/, ]. (10)

To complete the evaluation of the nucleation rate,
expressions for the self-difFusion constant are required.
Russel [13] has developed the following approximations
from the published literature [30—33]:

and

D,'/D 0(1 —py/3. 7) (1 —pg/0. 64)

D, /Do ——(1 —Py/2. 7)(1 —Pg/0. 58).

Equation (11) approximates the "short time" self-
difFusion where mobility is reduced by hydrodynamic in-

teractions with force &ee neighbors. Russel has enforced
two limits in his approximation: D, /Dp = 1 —1.83gy
as Py -+ 0 and D, ~ 0 as Py ~ 0.64 at random close
packing [31]. At long times the translation of a par-
ticle produces a distortion of the equilibrium structure
which modi6es the self-difFusion with additional retarda-
tion. This approximation satis6es the following limiting
behavior: D, /Do ——1 —2.lory as Py -+ 0 and D, -+ 0
as Py m 0.58 at the glass transition.

Recently van Duijneveldt and Lekkerkerker [27] have
given diferent approximations for the short and long
time difFusion constants as
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and

D, /Dp ——(1 —Py/0. 64) '

D, /Dp ——(1 —Qy/0. 58)'r, (14)

respectively. The short time expression satisfies the low-
density limit and yields results similar to Russel's. The
long time expression results from a fit to the data of van
Blaaderen et aL [34] and Bartsch et aL [35] for volume
&actions less than the freezing value and from forcing the
diffusion constant to zero at the glass transition. Because
this form results from a fit to data, it is probably more
accurate than the one given by Russel. It is not clear
if any of these approximations are valid on the crystal
growth time scale or for the nonequilibrium conditions
associated with crystallization. In the absence of more
detailed information we have these approximations avail-
able for use.

B. Growth

Gibbs [36] noted that the surface tension on a small
crystal in equilibrium will lead to a lower melting temper-
ature than that for bulk crystal. This "Gibbs- Thomson"
correction is included in many theories of crystal growth
[37]. For hard-sphere systems, however, temperature is
not a relevant parameter, and surface tension leads to
a larger pressure exerted on small crystals compared to
large ones in the same metastable Quid. Thus larger "un-
dercooling" or compression is needed to stabilize smaller
crystals. This effect is included through a pressure bal-
ance at the crystal-liquid interface as

II(P, ) = II(gy) + 2py ./R,

where the left-hand side represents the pressure in the
crystal and the right-hand side gives the pressure in the
Quid plus a pressure increment due to surface tension for
an assumed spherical crystal of radius A.

Once a stable crystal has been nucleated, it will grow.
The classical Wilson-Frenkel growth law is given by
[8,7,13]

dR/dt = n[D, (gy)/2u]

x(1 —exp[Ay/kT + (8mpy, a /3$, R)/kT])
(16)

This theory assumes the growth of crystallites by the ad-
dition of individual molecules (colloidal particles) from
the melt. As defined in Eq. (10), b, p, is the difFerence
in chemical potentials between the metastable liquid and
the crystal in the immediate vicinity of the interface. The
term following the chemical potential difference in the ex-
ponent has been added to account for the increased &ee
energy of a finite-sized crystal with surface tension. This
term is included to be consistent with Eq. (2). When a
crystal has the size of a critical nucleus, this term cancels
the chemical potential difference term, giving zero growth
velocity. This is consistent with a critical nucleus being in
unstable equilibrium with the metastable Quid. For suHi-

Ogy/Bt = V' Df (Py)VQy, (17)

0$~/Ot = V. D;(P.)Vrti, .

This diffusion in either phase should be governed by a
collective or mutual diffusio'n constant, and D repre-
sents such a constant for each phase as a function of the
volume &action for that phase. For hard spheres, exper-
imental results indicate that D~ is nearly independent
of volume &action for small Quctuations in the particle
density [38—40]. Thus, we will assume for the purposes
of our calculations that it is given exactly by the dilute
solution value Do. We have no experimental determina-
tion of a mutual or collective diffusion constant for the
crystal phase. For simplicity we assume it to be approx-
imately given by the dilute solution value Do, as well.
This may be an overestimate because the compressibility
of the solid phase is reduced compared to the liquid and
hydrodynamic drag forces are about the same as Quid val-
ues [41]. The self-diffusion constants do depend on vol-
ume &action, as evidenced by the approximations given
in Eqs. (11)—(14). For the small volume fraction ranges
sampled during crystallization, however, we will assume
the value to be essentially constant (whatever the value
is). With these approximations the equations governing
the crystal growth are written in the dimensionless form
as

P, Z(P, ) = PyZ(gg) + 4vrK/3X,

dX/d~ = 8[1 —exp(Ap/kT + 4vrK/3$, X)], (20)

8$, /B~ = V' P„

Bgy/B~ = V' Py. (22)

ciently large radii crystals this surface energy term is neg-
ligible, giving the standard Wilson-Frenkel law. D, (P~)
is a self-difFusion constant applicable on the scale of the
interparticle separation. Russel divides the diffusion con-
stant by the particle diameter to find an estimate of the
kinetic coeKcient in units of velocity. van Duijnevelt and
I ekkerkerker [27] use the particle density to set the length
scale and find essentially the same values for the volume
&action range of interest. The prefactor o. is unknown
but dimensionless and assumed. of order unity. As men-
tioned above, it has been assumed that growth velocities
were constant in tiine and Eq. (16) was used to estimate
magnitudes [13,15]. This assumption need not be true,
as we will show by explicit numerical calculation.

Because the crystal in the coexistence region is more
dense than the metastable Quid or the final Quid density,
crystal growth will produce a depletion region in the im-
mediate vicinity of the crystal-liquid interface. As a re-
sult of this reduced particle density, particles will diffuse
into this region &om the metastable Quid. If the addi-
tion to the crystal results in a nonuniform crystal density,
then the crystal will also relax to uniform density via dif-
fusion. These diffusion processes are represented by
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In deriving Eq. (19), note that P = 4z asn/3. The result-
ing dimensionless variables are w = Dot/I, X' = B/I, and
V' = lV'. The paraxneter b = alD, (gf)/2aDo, as stated
above, is assumed constant and we must assume some
fixed value for Py. In this work we will use the initial
value of the metastable Quid. This results in values that
give reasonable agreement with data in the range 0.05
to unity. The parameter K is given by (2pf, a2/kT)a/l.
The particle radius is given by a, and l is any convenient
length used to scale space. This length may be identi-
6ed with the particle radius a or a dimension set by the
nucleus number density. We find it convenient in what
follows to identify t with the initial nucleus size.

These dimensionless growth equations are solved nu-
merically in one dimension assuming spherical symme-
try with growth in only the radial direction. A one-
dimensional adaptive grid (having 50—60 points, typi-
cally) is referenced to and follows the interface. The grid
spacing increases geometrically with increasing distance
&om the interface. This is done to accommodate the
larger spatial variations in particle volume &action in the
immediate vicinity of the interface and to optimize the
speed of the computation. Each grid point has an as-
sociated particle number and volume. Thus the particle
volume &action, osmotic pressure, and chemical poten-
tial may be calculated and used to update grid values
based on the equations of motion. During one time step
a sequence of calculations is made. First, the number
of particles associated with each grid point is updated
by difFusion, except across the metastable liquid-crystal
interface. Then the Wilson-Frenkel law is used to esti-
Inate the new interface position, which typically still lies
between the last crystal and first liquid grid points. We
employ a two-step procedure. First, the Wilson-Frenkel
law is employed to calculate the number of particles that
undergo liquid-to-solid conversion. Then the interface is
moved, changing the volume (and volume fraction) asso-
ciated with the two grid points adjacent to the interface,
until the osmotic pressures calculated from Eqs. (7) and
(8) satisfy Eq. (19). If the interface position moves out-
side the range de6ned by the grid points adjacent to the
interface, the time step is reduced recursively until an
acceptable move can be made. In any case, the time step
is always suKciently small that numerical stability of the
difFusion process is maintained [42]. If the new interface
position becomes too close to one or the other interface
grid points, the grid is shifted to recenter at the interface
and the grid values are updated.

In addition to the dimensionless paraxneters b' and
K, there are three other parameters to consider in this
growth model. The initial volume fraction, Po, is as-
sumed uniform throughout space and is used to de6ne a
dimensionless undercooling, E = (Po —Pr„„,)/(P~, xt-
Px„„,), where the volume fraction of the liquid at freez-
ing and the crystal at xnelting are given by Px„„,and

,xt, respectively. The crystal nucleus is placed at the
origin and has a radius relative to the particle radius
given by //u. Thus we will identify the scale parameter /

with the nucleus radius. Finally, the metastable Quid oc-
cupies the volume between the crystal and a larger spher-
ical shell with reduced radius I /l (N ) x~s/I where N

represents the crystallite density. Zero particle Qux is en-
forced at the origin and on the outer boundary shell at
I/I. Having an outer boundary with a zero flux condi-
tion mimics a 6nite nucleus density where growing crys-
tals eventually compete with one another for that Quid
volume &action in excess of the 6nal equilibrium value.

III. H.ESUITS

10.00—

0.00

0.52 0.54 0,56 0.58

FIG. 1. Reduced nucleus radius as a function of the
metastable Quid volume fraction. The upper curve results
from an evaluation of Eq. (2) including the Gibbs-Thomson
efFect. The lower curve is an evaluation of Eq. (2) with
equal osmotic pressures on the crystal and Quid. The sym-
bols are the minimum crystal sizes observed in small angle
light-scattering experiments, as described in the text.

First, the expressions for nucleation of hard-sphere
crystals, presented in the previous section, are evaluated
and compared with data. The surface tension is assumed
to be 0.161cT/a2 in all evaluations. Figure 1 shows the
critical nucleus radius normalized by the particle radius
as a function of the metastable Quid volume &action. The
upper curve is an evaluation of Eq. (2), when the chem-
ical potentials are determined subject to the constraint
that critical nucleus and metastable liquid pressures are
governed by Eq. (19), which includes a pressure incre-
ment due to surface tension. The lower curve corresponds
to the assumption that the crystal and liquid pressures
are equal, producing the result given in Eq. (9). The
inclusion of the surface tension results in an increase in
the crystal volume fraction of approximately 0.002 over
that without. The resulting change in chemical potential
is more dramatic, with the result that the upper curve
is approximately twice the value of the lower. The data
shown are from the small angle light-scattering studies
of Schatzel and Ackerson [14] where the smallest mea-
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sured crystal size (determined as described in that pa-
per) is given as a function of volume &action. The min-
imum measured sizes are larger than the predicted criti-
cal nucleus size at the same volume &action, although at
larger volume &actions they are only marginally greater
than the values determined with inclusion of the Gibbs-
Thomson eÃect. These data need not correspond to the
critical nucleus size but do represent an upper limit on
size. In all cases the crystal size is expected to diverge at
the &eezing point, where the chemical potentials become
equal.

Figure 2 shows the reduced nucleation rate density
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FIG. 2. Logarithm of the reduced nucleation rate density
as a function of metastable fluid volume fraction (a) with the
Gibbs-Thomson efFect included and (b) without. The solid
and dashed curves represent from top to bottom results for the
difFerent self-difFusion constant given by Eqs. (11), (13), (12),
and (14), respectively. For all curves P = 1. The symbols are
data taken from Ref. [14].

presented in Eq. (4) for the difFerent self-diffusion con-
stants given in Eqs. (11)—(14). Figure 2(a) includes the
Gibbs-Thomson surface pressure efFect and Fig. 2(b)
does not. All curves set P to unity. Inclusion of the
Gibbs-Thomson eÃect means that relatively larger nuclei
radii are required. This greatly reduces the probability
that nuclei will be formed. The data are taken directly
from Schatzel and Ackerson [14] and put into dimension-
less form for presentation here. The data agree reason-
ably well with the equal pressure theory using the long
time self-difFusion constant given in Eq. (14). The dis-
crepancy is largest as the &eezing point is approached,
where the experimental nucleation rate density is much
larger than predicted theoretically. It is often found that
classical nucleation rates require rather large corrections
through the parameter P [9]. Even with this &eedom of
adjustment, the equal pressure form gives the best de-
scription of the data because the dependence of the rate
on volume &action is weaker than the rate including the
Gibbs- Thomson efFect.

Before comparing the data of Schatzel and Ackerson
[14] with the growth theory, we first look at the more
general features of the model. Five parameters charac-
terize the growth model and produce a large parameter
space to explore. We simplify this exploration as follows.
First, the spatial scaling parameter l is taken to be the
initial nucleus size. Thus the dimensionless crystal radius
is X = R/l = 1 at ~ = 0. Second, the finite nucleus den-
sity, which determines the dimensionless position, L/t, of
the outer boundary, influences the growth dynamics only
at large times as the system approaches equilibrium. For
these general investigations of the model, we take this
boundary position large enough that little efFect due to
Gnite nucleus density is seen. For example, the outer
boundary at L/I was placed at 250, 100, and 80 (and
also 800) for undercoolings 0.115, 0.885, and 1.27, re-
spectively. Third, to study the asymptotic growth be-
havior, the parameter K is set to zero. This eliminates
any early time dependencies due to the Gibbs-Thomson
efFect. Once the asymptotic behavior is established, this
assumption can be relaxed. Finally, the growth is ex-
plored as a function of undercooling L &om 0.115 to
1.88, and the dimensionless growth velocity b &om 0.001
to 10.

For large values of b, when the crystal volume &ac-
tion is nearly uniform and near the equilibrium value,
asymptotic growth laws are evidenced. Figure 3 presents
the instantaneous growth exponent rl = d log[A']/d log[a]
as a function of the reduced time w for largest dimen-
sionless growth velocities, h = 10, and a range of un-
dercoolings. A time-independent value for g indicates a
power-law growth as X w". It is seen that the early
time growth of the crystals represented in Fig. 3 is not
power-law growth but approaches this behavior asymp-
totically at large times. Similar to results for atomic
systems the value of g approaches unity for undercool-
ings greater than unity and one half for undercoolings
between zero and unity. For undercoolings near unity
the approach to the Gnal asymptotic value is slow. The
run at A = 1.08 approaches rI = 2/3 before breaking
off and approaching unity at larger times (not shown).
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FIG. 3. The instantaneous growth exponent g as a function
of reduced time v for undercoolings A = 1.88, 1.08, 0.885, and
0.115 from top to bottom.

At unit undercooling, some growth models are shown to
have il = 2/3 [18].

Figure 4 shows the large time linear power law
growth for undercoolings greater than unity,
1.08, 1.27, 1.46, 1.65, and 1.88. Also shown as lines is
the predicted growth law behavior based on the Wilson-
Prenkel equation with K = 0, a crystal volume frac-
tion equal to the initial metastable Quid value, and a
metastable Quid volume &action in the depletion zone
adjacent to the crystal interface consistent with Eq. (9).
It is seen that the Wilson-Frenkel law gives a good rep-
resentation of the growth in this limit. For quenches into
the coexistence region giving diffusion limited growth,
the proportionality constant in the growth law increases
by nearly an order of magnitude in going from L = 0.115
to 4 = 0.885. This is predicted by the diffusion lim-
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ited model of Frank [43], but the absolute values of these
numbers are approximately half those values predicted
by Frank theory.

Figure 5 shows values of the volume &action of a grow-
ing crystal at its center, P, (0), and at the interface,
P, (A), as well as the liquid at the interface, Py(A), and
at the outer boundary, pf(L/I), as a function of w for
two different dimensionless growth velocities, b = 10 and
0.001, and an undercooling A = 0.885 (an initial vol-
ume fraction for the metastable Huid equal to 0.54). It
is observed that pf(L/I) remains constant and equal to
the initial undercooling value until the largest time val-
ues when it begins a decrease to the equilibrium Quid
value. The crystal and liquid interface values are time
dependent but maintain a fixed separation with respect
to one another, because the osmotic pressure is equili-
brated across the interface (K = 0). The initial nucleus
with the same volume &action as the metastable Quid has
a lower osmotic pressure and is compressed immediately
at the surface. This compression eventually is felt at the
center of the crystal and also creates a depletion zone
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PIG. 4. Reduced crystal radius X as a function of reduced
time v' for undercoolings A = 1.88, 1.65, 1.46, 1.27, and 1.08
from top to bottom. The solid lines indicate the predicted re-
sults from the Wilson-Frenkel grow law evaluated as described
in the text.

FIG. 5. Volume fraction values in the center of a growing
crystal (filled triangles), on the crystal side of the interface
(open squares), on the liquid side of the interface (asterisks)
and in the liquid at radius L/l (filled squares) as a function of
reduced time for undercooling A = 0.885. The dimensionless
growth velocity is b = 10 in (a) and 8 = 0.001 in (b).
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in the fluid. For b' = 0.001 the growth is slow. Parti-
cles that difFuse to the crystal interface fill the depletion
zone, raise the osmotic pressure on the crystal, and drive
the crystal density to a value consistent with mechanical
equilibrium with the metastable Quid, before reducing
toward equilibrium values at large 7. For b = 10 the
growth is rapid, particles that difFuse to the interface are
quickly incorporated into the crystal, and the liquid side
is further depleted. The crystal density relaxes rapidly
to nearly the equilibrium values with increasing v. The
same behavior is observed for undercoolings greater than
unity, except that the metastable Quid volume fraction
and the equilibrium crystal volume &action values are
the same.

We now examine the efFect of reducing the magnitude
of the dixnensionless growth velocity, 8, on the growth
process for K = 0. Figure 6 shows the reduced crystal
radius as a function of reduced time for the two difFer-
ent undercoolings, 0.807 and 1.27, and parametrized by

Figure 7 shows the instantaneous growth exponent rl

as a function of reduced time. The volume &action at
the center of the crystal, P, (0), as a function of reduced

time is shown in Fig. 8. Consider first the results for the
smaller undercooling. The larger the value of h the more
rapid the approach to the asymptotic power-law growth.
This is seen explicitly in Fig. 6(a) in the slope of the
growth curves and in Fig. 7(a) where the asymptotic
exponent value of 1/2 is approached. Because there is
a large volume &action difFerence between the growing
crystal and metastable Quid, a depletion zone easily de-
velops in the Quid phase adjacent to the interface, as ma-
terial is incorporated into the crystal. When the depth of
the zone is near the &eezing volume &action, local equi-
librium is attained. Growth is slowed according to the
Wilson-Frenkel growth law, until more material can dif-
fuse into the zone. The growth becomes difFusion limited.
The depletion zone grows with the crystal and the shape
scales with time as shown analytically by Frank [43]. The
growth to a speci6c size takes more time as b decreases.
However, since the incorporation rate of Quid into crystal
is reduced, difFusion is better able to keep up; and the in-
stantaneous growth exponents rise to values greater than
1/2. The maximum value of the growth exponent in-
creases from 1/2 to near unity, as h is reduced. Since
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FIG. 6. Reduced crystal radius X as a function of reduced
time 7 and parametrized by the dimensionless growth veloc-
ity, b = 10, 1, 0.1, 0.01, and 0.001 from left to right. The
undercoolings A = 0.885 and 1.27 are presented in (a) and

(b), respectively.

FIG. 7. Instantaneous growth exponent g as a function of
reduced time w and parametrized by the dimensionless growth
velocity, b = 10, 1, 0.1, 0.01, and 0.001 from left to right. The
undercoolings A = 0.885 and 1.27 are presented in (a) and

(b), respectively.
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the maximum value is reasonably constant in time, the
growth curves in Fig. 6(a) may appear to have power-law
behavior. However, growth with exponents greater than
1/2 must eventually lead to diffusion limited growth. The
density at the center of the crystal shown in Fig. 8(a) be-
gins the decline &om the maximum value roughly when
the instantaneous growth exponent exceeds 1/2, the dif-
fusion limiting value. If in experiments the growth time
is limited by the nuclei density, then this difFusion limit
may not be observed and only larger pseudogrowth ex-
ponent transients observed. In summary, the reduced
values of h give rise to longer time transients to difFusion
limited growth and larger compression of the crystal.

Figure 6(b) presents results for an undercooling of 1.27.
Again, reduced values of b mean greater times for a crys-
tal to reach a specified size. From Fig. 7(b) it is seen
that there is only quasi-power-law behavior, because the
growth exponents are changing throughout the growth
process. The maximum value of the exponents seen in
this figure ranges between 3/4 and unity. This is soxne-
what puzzling because the metastable Quid volume &ac-
tion and the equilibrium crystal volume &action are the

same. There seems to be no reason why Quid cannot be
directly converted to crystal, resulting in a linear growth
law. In fact, it is possible to solve the growth equations
analytically for the case where the crystal and metastable
Quid volume &actions are the same. There is an expo-
nentially decaying spatial depletion zone at the interface,
which maintains the same decay rate (dependent on the
growth velocity) and shape as the crystal radius grows
linearly in time. The crystal size and depletion zone do
not scale in size together as in diffusion limited growth.

The reason we do not observe exponents of unity in
the present model, as b is reduced, is that local osmotic
pressure equilibration compresses the crystal to a higher
volume &action than the final equilibrium value. There
is a difference between the crystal volume &action and
the metastable Quid value similar to that observed in
the coexistence region for undercoolings less than unity.
The growth suffers diffusion limitation, and the instan-
taneous exponents are less than unity. For the largest 8
(= 10) the crystal grows rapidly, and there is little time
to compress to much higher volume fraction. [Fig. 8(b)].
As a result the instantaneous growth exponent evolves
closer to unity than that for the next lower value of b (=
1.0) examined. For this growth velocity there is increased
crystal compression and a resulting larger degree of diffu-
sion limitation, resulting in a growth exponent near 3/4.
This curve in Fig. 7(b) does not display a true maximum
but rather an inQection. As the crystal volume &action
decays to its equilibrium value, the growth exponent be-
comes less diffusion limited and evolves towards unity.
&heather decreasing b leads to larger local maximum val-
ues in the crystal volume &action. However, if the crys-
tal growth were not limited by the outer boundary, we
expect an eventual evolution to interface limited growth
with exponent unity, as the crystal volume &action slowly
decays to the equilibrium value. Thus the reduced val-
ues of h again give rise to larger crystal compression and
longer lived transients to the expected asymptotic growth
behavior.

Finally, we examine in Fig. S the Gibbs-Thomson ef-
fect on the growth process. In this figure the undercool-
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FIG. 8. Volume fraction. at the crystal center as a func-

tion of reduced time w and parametrized by the dimension-
less growth velocity, b = 0.001,0.01,0.1, 1, and 10 from top to
bottom. The undercoolings A = 0.885 and 1.27 are presented
in (a) and (b), respectively.

FIG. 9. Reduced crystal radius X as a function of reduced
time v and parametrized by K = 0, 0.02, 0.03, 0.04, and 0.05
from top to bottom.
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ing is L = 0.885 and the dimensionless growth velocity is
h = 1. Curves are plotted for K = 0.00, 0.02, 0.03, 0.04,
and 0 05. Using the surface tension value
0.16kT/a2 means K = 0.32(a/E). It is seen that a re-
duced nucleus radius l/a equal to 8.0 or smaller is un-
stable and decays to zero size, while a radius equal to
10.6 or larger is stable and grows. From Fig. 1 it can
be seen that the classical critical nucleus size is 8.8. A
slightly larger critical nucleus radius may be required in
the growth model than that predicted by classical the-
ory, because the initial crystal having the same density
as the metastable Quid is compressed to a smaller radius
to balance the external fluid pressure [Eq. (15)] before it
can grow. If the radius becomes too small, it collapses to
zero size. The uppermost curve corresponds to I/a = oo
or the K = 0 result shown previously. The effect of de-
creasing 1/a from infinity is to slow the growth process
and further delay the onset of the asymptotic power-law
growth behavior. This is another source of instantaneous
exponents that deviate &om the ideal values of unity or
one half.

We now compare the data of Schatzel and Ackerson
[14] with the classical crystal growth model presented
above. The intensity maximum and characteristic wave
vector data show a de6nite crossover in behavior between
the growth and ripening regimes. The crossover time
marks the end of the growth process and the crossover
size gives the (average) maximum size to which crystals
grow. Thus, the crossover size is used to set the outer
shell radius, L, in the theory. The critical nucleus radius
is determined &om the classical theory, and results are
generated with and without the Gibbs-Thomson efFect.
Again l is identified with the nucleus radius and is used
to reduce the data. If the critical nucleus size is used
in the growth model with the Gibbs-Thomson effect, no
growth occurs because the system is in (unstable) equi-
librium. Thus, a slightly larger nucleus size leads to the
observed growth. In the absence of knowing what size to
use, we set K = 0 and keep in mind that larger values of
K generally mean larger "transient" growth exponents.
The data, which represent volume &actions 0.519, 0.523,
0.542, 0.545, 0.556, and 0.559, cluster about three dif-
ferent volume &actions, 0.52, 0.54, and 0.56, which we
examine explicitly. The dimensionless growth velocity, b,
is Gxed by using the long time self-diffusion result given
in Eq. (12) or the short time self-diffusion constant given
in Eq. (13). Either of these functions is evaluated at the
initial metastable Quid volume fraction. These functions
bound a range of possible diffusion constants as Eq. (11)
produces values that are larger and Eq. (14) produces
values that are smaller than those given by Eqs. (12)
and (13). The parameter n is set to unity.

In Fig. 10(a) are shown reduced size, X, versus re-
duced time, v, results for growth calculated with the
Gibbs-Thomson effect and in Fig. 10(b) without. The
solid lines indicate theoretical calculations using values
for self-difFusion from Eq. (12) and the dashed lines for
self-difFusion from Eq. (13). The symbols are data points
determined &om the characteristic wave vector in the
same manner as for Fig. 1. For voluxne &action at 0.52,
the two difFusion constant results bound the data with

or without inclusion of the Gibbs- Thomson effect in de-
termining the critical nucleus size (value of the reducing
parameter l). For volume fraction at 0.54, the results for
the smaller critical nucleus size represent the data better
and may improve with a larger value choice for the 6nal
crystal radius (outer boundary). The fit is not good us-
ing the larger critical nucleus value, because the growth
is more dominated by transients and is never as steep
as the data. It is possible that changing K &om zero
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FIG. 10. Reduced crystal radius X as a function of reduced
time v' for nucleus radii calculated using the Gibbs-Thomson
efFect (a) and without (b). The dashed lines represent cal-
culations assuming the self-diffusion constant in b is given
by Eq. (13) and the solid lines assume the self-diifusion is
given by Eq. (12). The symbols represent data inferred from
Ref. [14j, where the volume fractions represented are 0.519
(closed circles), 0.523 (open circles), 0.542 (closed triangles),
0.545 (open triangles), 0.556 (closed squares), and 0.559 (open
squares).
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would improve the 6t, but this has not been explored ex-
plicitly. For volume &action at 0.56, the program failed
to converge for the larger critical nucleus value. For the
smaller crystal nucleus, the theoretical results are given
for a large outer boundary L/I, . Because the data indi-
cate no increase in crystal radius, it does not discriminate
between results that saturate to this size for values of the
reduced time less than 100. These theoretical results in-
dicate the insensitivity of the comparison between theory
and experiment in this regard. In fact there may be little
growth of nucleated crystals at this volume &action. The
measured crystal size is near the critical nucleus size and
shows little growth. However, the scattered intensity is
increasing, indicating an increase in the number, if not
size, of the scattering centers. Thus this may be purely
a nucleation dominated process, which will be explored
elsewhere [44].

Finally we note that Schatzel and Ackerson [14] com-
pared X, /w with the dilute solution difFusion constant
and with short and long time self-diffusion constants
given by Russel. These data are bounded by the dif-
fusion constants but not represented well by any one of
them. However, we see in the growth model presented
here that the self-diffusion constants give a good repre-
sentation of the data. Evidently, effects associated with
crystal compression, 6nite-size effects, transient decay ef-
fects, etc. must be included for proper description of the
growth process.

XV. DISCUSSION

Hard spheres are one of the basic model systems in
statistical mechanics. Due to the form of the interpar-
ticle interaction, equilibrium properties are independent
of temperature and dependent only on particle concen-
tration. The order-disorder transition is entropy driven.
For volume &actions greater than the melting value, the
disordered metastable Quid has a lower entropy than
the equilibrium crystalline state. (Entropy increases in
a thermodynamically isolated system, as it approaches
equilibrium). While this behavior of the entropy seems
contradictory to standard intuition, it can be established
&om the equations of state for the crystal and metastable
Quid determined via computer simulations. These equa-
tions of state may also be used to evaluate classical the-
ories of nucleation and growth for hard spheres. Due
to the importance of both the hard-sphere model system
and the nucleation and growth of crystals, it is important
to test these ideas with an experimental realization of a
collection of hard spheres. This has been done here.

The growth calculations indicate some general results.
When the system is quenched into the coexistence re-
gion, diffusion limited growth is approached asymptoti-
cally. When the undercooling is greater than unity, inter-
face limited growth is approached asymptotically. Rela-
tively large growth velocities or kinetic coefBcients in the
Wilson-Frenkel growth law produce a faster approach to
asymptotic behavior than small velocities. During this
transient relaxation to asymptotic values, quasi-power-
law growth with nonclassical exponents may be observed.

Inclusion of the Gibbs-Thomson effect produces further
modi6cations of the growth characteristics. The initial
crystal size becomes an important parameter, and the
stability of nuclei can be examined.

The minimum crystal size measured by Schatzel and
Ackerson [14] sets an upper limit on the critical nucleus
size. The theoretical predictions of nucleus size are less
than these measured values and therefore consistent with
experiment. Inclusion of the Gibbs-Thomson effect pro-
duces nucleus sizes approximately twice that calculated
without.

The nucleation rate density predicted by the classi-
cal theory is consistent with the data near melting with
P 1 if the Gibbs-Thomson efFect is neglected. If the
Gibbs-Thomson effect is included, then agreement be-
tween theory and experiment requires P 10io. While
this may seem a large correction, it is similar to that
found in application of classical nucleation theory to
atomic systems [9]. As the freezing point is approached,
the theory underestimates the observed nucleation rate
density. This region is dominated by thermodynamic ef-
fects, and any adjustments to these terms will inHuence
the good agreement between theory and experiment for
the critical nucleus size. It is not clear how to correct the
theory at this time.

The Wilson-Prenkel growth law gives a good descrip-
tion of the data when the self-diffusion results given in
Eqs. (12) and (13) are used to evaluate the kinetic coef-
6cient. While a growth exponent of one half in the coex-
istence region suggests that asymptotic growth has been
achieved, the theory indicates that the observed growth
is in8uenced by a number of factors including 6nite nu-
cleus density, crystal compression, transient relaxation to
asymptotic behavior, etc. Thus the simple estimates of
growth parameters given in Ref. [14] are understandably
inaccurate, and the classical theory of growth does quite
well in describing the data. Furthermore, recent studies
of low-order Bragg scattering &om similar suspensions
indicate that the crystals are compressed as found in our
numerical studies [45]. We hope to apply this model to
these and other small angle studies in future work.

Finally, we make some comments concerning other
models of crystal growth. The crossover &om diffusion
limited to kinetic limited regimes in crystal growth has
been investigated recently in the "phase-field" model of
Halperin, Hohenberg, and Ma [46,47] (their "model C").
This model couples an (nonconserved) order parameter
field to a conserved quantity having diffusive dynamics.
Typically the order parameter represents a measure of
the crystalline order. It is attracted to minima in the &ee
energy surface. These minima are at an order parameter
value equal to unity (crystal state) or zero (liquid state).
Different models for the &ee energy surface have been ex-
amined [18,48]. The conserved quantity for solidification
in a pure material is taken to be the temperature and
for a metallic alloy the impurity concentration. These
two models have been shown to be equivalent mathe-
matically [37]. The long time behavior in these models
shows diffusion limited growth when the undercooling is
less than unity (into the coexistence region) and interface
(kinetics) limited when the undercooling is greater than
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unity. For undercoolings greater than unity, the result-
ing velocity depends on the degree of undercooling and
may go to zero at unit undercooling, if the ratio of the
"order parameter difFusion constant" to the thermal or
impurity difFusion constant is less than a critical value
[18]. Otherwise the velocity jumps to a finite value as
the undercooling becomes just, larger than unity.

It seems that &eezing in hard-sphere systems should
have a phase-Geld description. However, temperature is
not an important control parameter for hard-sphere sys-
tems, and (osmotic) pressure is not a conserved quan-
tity. Fortunately, Caginalp [49I has shown the asymp-
totic equivalence of the phase-Geld equations to various
Stefan and Hele-Shaw type models that have a sharp in-
terface separating crystal and liquid phases. One limit
gives the modiGed Stefan model. This model comes the
closest to the model outlined in this paper, if the con-
served parameter is taken to be the particle volume &ac-
tion or particle number density. Then one condition on
the interface is interpreted as a statement of particle con-
servation as particles difFuse into the interface and un-
dergo a volume change on &eezing or melting. The other

condition gives a linear relation between the interface ve-
locity, the interface curvature (Gibbs-Thompson efFect),
and the volume &action. The Wilson-Frenkel law can be
reduced to a similar linear relation if the argument in the
exponent of Eq. (16) is small such that the exponent can
be expanded to Grst order and this linear term expanded
in terms of the particle volume &action. Then there is
a direct connection between the two models, but it is a
severe approximation. It is not clear at this time if a
phase-Geld model for hard spheres will show, for exam-
ple, a similar compression and expansion of the crystal
during growth.
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