
PHYSICAL REVIEW E VOLUME 52, NUMBER 6 DECEMBER 1995

Pore-level modeling of wetting

Martin J. Blunt
Department ofPetroleum Engineering, Stanford Uniuersity, Stanford, California 94305-2220

Harvey Scher
Department of Environmental Sciences and Energy Research, Weizmann Institute, 76100 Rehovot, Israel

(Received 8 June 1995)

The displacement of one fluid by another in a porous medium is influenced by the competition be-
tween advance through the centers of the pore space and flow of a wetting phase along crevices; different
pore filling mechanisms whose threshold capillary pressures depend on the number of filled neighbors;
and the perturbative effects of viscous and capillary forces. We present a three-dimensional pore-level
model that represents these effects, including flow in crevices, and discuss the types of behavior that can
result. Viscous and buoyancy forces introduce a finite correlation length for both the advancing front
and for the trapped nonwetting phase. We use the percolation theory to derive expressions for the corre-
lation length and the shift in trapped saturation for different flow regimes. When cooperative pore filling

is significant, the average finger width is much larger than a single pore length, and percolation theory
cannot predict the trapped saturation, even if asymptotically the fluid pattern is percolationlike. The
type of fluid pattern changes with flow rate because of the competition between flow in crevices and fron-
tal advance. This in turn can lead to a significant decrease in trapped nonwetting phase saturation with
flow rate. This is a mechanism for a reduction in trapped saturation at much lower capillary numbers
than that predicted using percolation theory or from considering mobilization of ganglia.

PACS number(s): 47.55.Mh, 64.60.Ak

I. INTRODUCTION

Soaking up liquid with a paper towel, the rising of the
water table, and waterflooding an oil reservoir are all ex-
amples of wetting in porous media. Depending on the
geometry of the porous medium, the contact angle, and
the flow rate, a wide variety of different wetting patterns
are possible (see, for instance, [1] for a thorough review).
Capillary forces at the pore scale can allow ganglia of the
displaced, nonwetting fluid to be trapped. In
waterflooding an oil reservoir, typically 40% of the oil is
trapped by water. In contrast, a wetting advance in rela-
tively homogeneous media at high Qow rates can leave lit-
tle or no trapped nonwetting phase. In this paper we use
a network model, based on an analysis of the pore scale
physics of Qow, to simulate a wetting invasion. The mod-
el can reproduce the wetting patterns seen experimental-
ly, and is used to study the change in trapped nonwetting
phase saturation with flow rate.

We represent a granular pore space (as seen in soil and
rock) as an array of wide pores interconnected by nar-
rower regions, which we call throats, as illustrated in Fig.
1. We further assume that the pore spaces have an angu-
lar or rough cross section, rather than being smooth
cylinders. The wetting fluid preferentially resides in the
corners or roughness in the pore space, which in this pa-
per we will call crevices. A connected network of cre-
vices acts as a conduit for the Qow of wetting Quid, even
if the centers of the pore space are occupied by nonwet-
ting fluid. A treatment of this behavior is one of the main

topics of this paper.
If the displacement is quasistatic, at the interface be-

tween the fluids, the pressure difference is given by the
Young-Laplace equation

1 1P„=P„—P =y
r&

where nw and w label the nonwetting and wetting phases,
respectively, y is the interfacial tension, and r, and rz are
the principal radii of curvature of the fluid interface.
Displacement proceeds by making small changes in the
capillary pressure, and allowing the Quids to reach
different positions of equilibrium. If we consider the in-
vasion of a wetting Quid, the capillary pressure starts at
some high value and is progressively decreased. The wet-
ting phase preferentially invades the smallest regions of
the pore space first —crevices and throats, rather than
larger pores.

There are two distinct types of advance. The first is
pistonlike, where the fluid advances in a connected front
occupying the centers of the pore space. In the second
the wetting fluid flows along crevices in the pore space
[the corners of the throat in the idealized illustration,
Fig. 1(b)], filling pores in advance of the connected front.

First consider a pistonlike, or connected, advance. For
a cylindrical throat of inscribed radius r, as illustrated in
Fig. 1, the capillary pressure at which this occurs is

2y cosO
cap
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(a) Quid is no longer in contact with the wall of the throat.
This occurs at a capillary pressure [2]

y(cos8 —sin8)
~cap =

r
(3)

(b) Wetting fluid

Non-wetting fluid

FIG. 1. Schematic of a porous medium. (a) The porous
medium is considered to be an array of pores connected by nar-
row throats. (b) We assume that the pores and throats are angu-
lar in cross section, as shown, with an inscribed radius r.

whey'e r is the inscribed radius of the throat and 0 is the
contact angle. The filling of pores is more complex, and
depends on the number of nearest neighbors that are al-
ready filled with wetting Quid. Lenormand and co-
workers [2,3] observed and described these processes.
Figure 2 shows schematically how a pore may be filled
when one or more of its surrounding throats are filled
with wetting Quid. The process is limited by the largest
radius of curvature necessary to fill the pore. This
threshold curvature is dependent on the number of sur-
rounding throats filled with wetting fluid. For a lattice of
coordination number z, there are z such imbibition mech-
anisms, called Ip to I &, which represent filling of a pore
when zero to z —1 connecting throats contain nonwetting
Quid. The capillary pressures are ranked
P„z(Io)&P„z(I& ) ) )P„z(I, &). The Io mecha-
nism can only occur if the nonwetting Quid is compressi-
ble. The I, mechanism is impossible if the pores are
larger than the throats, because in capillary equilibrium
at least one of the attached throats must be occupied by
wetting Quid before the pore is filled.

The second type of filling mechanism is called snap-off
[4]. As the capillary pressure decreases, the radius of
curvature of the Quid interface increases, and the layer of
wetting Quid occupying the crevices of the pore space will
swell. There comes a critical point where further filling
of the crevices causes the interfacial curvature to de-
crease. At this point an instability develops, and the
center of the pore space spontaneously fills with wetting
Quid. For a throat with a square cross section, illustrated
in Fig. 1(b), an instability occurs when the nonwetting

Notice that this pressure is always lower than the corre-
sponding pressure for a pistonlike advance, Eq. (2).
Hence snap-off will only occur if the pistonlike displace-
ment is topologically impossible, because there is no
neighboring pore filled with invading fluid.

The competition between the pistonlike advance in
throats, different types of pore filling, and snap-off lead to
several different types of displacement patterns. The Qow
regime is controlled by the flow rate (which influences the
extent of flow in crevices), the contact angle (which
affects the competition between pore and throat filling
[5,6]), and the geometry of the pore space. The different
types of possible displacement pattern are as follows.

(1) Bond and site percolation. If the flow is very slow
and the invading Quid is completely wetting, the invading
fluid will occupy the crevices of the pore space
throughout the system. As the capillary pressure drops,
the throats will be filled in order of radius, with the nar-
rowest filling first [2,7]. This corresponds exactly to bond
percolation. If the pores are much larger than the
throats, and the displaced Quid is compressible, after all
the throats have filled the pores will fill, again in order of
size, by the Ip mechanism. This is site percolation and is
shown in Fig. 3(a).

(2) Invasion percolation. This occurs when the invad-
ing Quid is nonwetting and hence does not occupy the
crevices of the pore space. In this case the advancing
Quid attempts to occupy the widest portions of the
porous medium, and the capillary pressure rises as the
displacement proceeds. At every stage in the process the
largest throat adjacent to a filled pore is invaded. Any
pores connected to filled throats are automatically filled,
since they are larger than the throats. The Quid pattern
then resembles the infinite cluster in a bond percolation
process. This type of advance is called invasion percola-
tion [8—10], and has been observed experimentally [11].
The invasion of a wetting Quid, without Qow in crevices,
when there is a very wide distribution of pore radii, will
also be an invasIa~ percolation process, if the pores are
much larger than the throats. Here the advance is im-
peded by pore filling, and the Quid fills the smallest pore
adjacent to an already filled throat. The fluid pattern,
shown in Fig. 3(b), resembles the infinite cluster in a site
percolation process.

(3) Flat frontal advance. If we consider a wetting in-
vasion where there is no flow in crevices, the Quid ad-
vance is impeded by the pores. If the pore size distribu-
tion is quite narrow, and the pores are only slightly larger
than the throats, the pores fill most readily when sur-
rounded by other filled pores. This leads to the advance
of a flat connected front, and has been observed in micro-
models [2]. This is illustrated in Fig. 3(c), where the fluid
advances as an I3 mechanism followed by a cascade of
more favorable I2 processes that fill a layer of pores with
wetting Quid.
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(4) Nucleated faceted cluster growth. At low fiow
rates, where there is transport of wetting Quid in crevices,
it is possible for the pores to fill by a cluster growth
mechanism. This is analogous to case (3) above, and also
occurs when the pores all have fairly similar sizes and are
only slightly larger than the throats. The filling of a
small number of throats by snap-off allows some pores to
be invaded by one of the I„mechanisms. This allows
more throats to be filled, and can initiate further pore

filling. In this case faceted clusters of filled pores begin to
grow and one of them will eventually invade the whole
network. This process has been described in detail [2,12],
and is shown in Fig. 3(d).

(5) Self-affine growth. When there is competition be-
tween throat and pore filling mechanisms, which occurs
at intermediate contact angles, or where there is a fairly
wide distribution of pore and throat sizes, a distinct wet-
ting pattern is observed intermediate between invasion

(a) 2f' Non-wetting Wetting

(b) Non- wetting -I -- :-.:Wetting

Non-wetting

Wetting

(c) Non-wetting

Non-wetting

Wetting

FIG. 2. Different types of pistonlike advance. (a) Throat filling at a capillary pressure P„„=2ycosO/r. (b) Io. This mechanism
only occurs when the nonwetting quid is compressible. (c) Il, when one neighboring throat is filled with nonwetting Quid. (d) I2,
when two of the adjacent throats are filled with nonwetting Quid. (e) I2, when the two filled throats are opposite each other. In this
paper we will assume that both types of I2 event occur at the same capillary pressure. (f) I3.
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percolation [case (2)] and fiat frontal advance [case (3)].
Macroscopically the wetting front is Oat, with an infinite
finger width, but the advancing interface is self-affine.
Such behavior has received careful theoretical and nu-
merical study [5,13],and has been observed experimental-
ly [14—17].

(6) Nucleated self-affine cluster growth. In analogy to
case (5) above, there should be a regime when crevice
Bow occurs, where clusters of filled pores are nucleated
and grow, but with a rough, self-aSne interface, rather
than a faceted front. This regime has not been observed.

The different types of wetting pattern described here
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FIG. 3. Different types of wetting invasion, simulated using the network model described in the paper. The simulations are run on
a 200X200 square network. Pores filled with wetting fluid are shown at breakthrough. The model parameters used for these simula-
tions and those presented later are listed in Table I. (a) Site percolation. Pores are filled anywhere in the network in order of size.
Flow in crevices provides fluid for filling a pore or throat anywhere in the system. (b) Site invasion percolation. This is similar to
case (a), except that there is no crevice flow and hence we can only fill pores next to the connected front. (c) Flat frontal advance.
Cooperative pore filling mechanisms allow the fluid to advance as a flat front. (d) Nucleated faceted cluster growth. This is similar to
case (c), except that flow in crevices allows pores and throats to be filled anywhere. These act as nucleation sites for cluster growth.
In this figure we are before breakthrough. The largest cluster will continue to grow and eventually will fill the system.
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are equivalent to those observed for diffusion percolation
[18], as described by Ji and Robbins [13]. In diff'usion

percolation, bonds are filled at random with some proba-
bility p. Then all bonds with more than n nearest neigh-
bors are also filled. For n close to the coordination num-
ber of the lattice, the percolation transition is a normal,
second order process. For larger n the percolating proba-
bility becomes infinitesimally small, and the percolating
transition is first order with the growth of nucleated clus-
ters. The full range of behavior for diffusion percolation
has not been studied, and so it is not known if the six
cases 'enumerated above are an exhaustive list of possible
phenomena.

Recently self-affine wetting fronts have received con-
siderable experimental and theoretical attention
[5,13—17], as has the crossover from invasion percola-
tion, to self-affine growth to Aat frontal advance
[5,6, 13,19,20], which is characterized by a diverging
finger width W [6,13]. This paper will not study these is-
sues, but will discuss the effects of transport in crevices
and the influence of viscous and buoyancy forces.

We will present a numerical model for Auid displace-
ment, based on local capillary equilibrium that accounts
for buoyancy and flow in crevices. The model, however,
does not explicitly compute the viscous pressure gradient
in the system. The combined effects of viscous and capil-
lary forces have been studied in network models of
drainage that include an explicit solution for the pressure
field [21—23]. Computing the pressure when the crevice
Aow is significant limits the studies to fairly small two-
dimensional systems [24]. We will use a simple model to
account for the viscous pressure drop due to Aow in cre-
vices, which is similar in concept to the method used by
Oren, Billiotte, and Pinczewski to study spreading films
of oil in three phase fiow [25]. We will show that, in
many cases, viscous and gravity forces introduce quite a
short correlation length into the system, meaning that the
Auid pattern is not clearly in any of the regimes men-
tioned above. For this reason, we will not attempt to find
the asymptotic Aow regimes, when there are no viscous
or gravity forces, for the cases we study.

We will study the effect of the Aow rate on the satura-
tion of the trapped nonwetting phase (the residual satura-
tion). The capillary number, which we define below, is a
dimensionless ratio of viscous to capillary forces. The de-
crease in residual saturation with increasing capillary
number has received extensive experimental and theoreti-
cal study (see Chap. 5 of [26] for a review). The experi-
rnents that investigate this effect are of two types. The
first performs an imbibition at some low Aow rate until
the entire nonwetting phase is trapped. Then the Aow
rate is increased, and the decrease in trapped saturation is
measured. This studies the effects of flow rate on the
discontinuous nonwetting phase. The second involves
irnbibitions at different Aow rates, from which the residu-
al saturation as a function of the capillary number is mea-
sured. Here the nonwetting phase is continuous until the
end of the experiment. In the first type of experiment,
trapped ganglia of nonwetting Auid are mobilized. How-
ever, it is the second type of experiment that is more use-
ful for an understanding of wetting under different physi-

cal conditions. In this case, an explanation invoking the
mobilization of ganglia is unsatisfactory for two reasons.
First, the continuous nonwetting Auid shows an apprecia-
ble shift in residual saturation at capillary numbers one
to two orders of magnitude smaller than for discontinu-
ous fiuid [27—29]. Moreover, Abrams observed in his ex-
periments that once the nonwetting phase is trapped, a
significant decrease in residual saturation cannot be
achieved by a subsequent 100 to 500 fold increase in the
fiow rate [30]. These observations cannot be explained by
any sort of mobilization argument. Second, the capillary
number at which we first see a noticeable reduction in re-
sidual saturation is of order 10 in micromodels [27]
and in consolidated rock [28—31]. An analysis of pore-
level forces predicts that a ganglion the size of a single
pore will be mobilized at capillary numbers around 10
which is the capillary number for which the residual satu-
ration drops to zero for both types of experiments. How-
ever, to explain the fact that the residual saturation be-
gins to decrease at much lower Aow rates, we have to as-
sume that some very large ganglia, of order 1000 pore
lengths across, are mobilized. However, these ganglia
will break into smaller blobs and then, one assumes, they
will not be recovered. Percolation theory has been used
to predict the shift in trapped saturation with viscous and
buoyancy forces [7,32,33] for continuous nonwetting
Auid. During imbibition, viscous forces prevent the for-
mation of large clusters. These large clusters are broken
up into smaller ganglia, and it can be shown that the net
effect is a decrease in residual saturation. However, as we
will show below, these arguments still fail to predict a
significant effect on residual saturation at capillary num-
bers around 10 and lower.

At a very low Aow rate, Aow in crevices allows snap-off
throughout the system and a large fraction of the non-
wetting phase can be trapped. In contrast, at higher Aow
rates, snap-off is suppressed and a connected fluid front
advances which will trap less nonwetting Auid. As we
will show below, since the Aow resistance in crevices is
large, we find that the suppression of snap-off causes a
significant decrease in residual saturation at capillary
numbers of around 10 and above. The observation
that the change in residual saturation with capillary num-
ber is due to changing morphology of the wetting Auid
advance is obvious from the experimental work in two-
dimensional micromodels performed by Lenormand and
Zarcone [2,27]—capillary numbers as low as 10 were
needed to observe imbibition dominated by snap-off
events, while capillary numbers larger than 10 gave a
frontal advance with very little trapping. Zhou and Orr
analyzed trapping on the pore scale under the influence
of both viscous and buoyancy forces, and performed a
series of experiments that measured the residual satura-
tion for difFerent capillary and Bond numbers [34]. Their
results were consistent with a theoretical model that in-
corporated the effects of crevice Aow on the displacement
pattern.

In Sec. II we present a numerical network model that
accounts for different pore filling mechanisms and Aow in
crevices. Then we define capillary and Bond numbers
and express the model parameters in dimensionless form.
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In Sec. IV we show example results in different Aow re-
gimes and define a finger width. In Sec. V we derive the
correlation length due to viscous and buoyancy forces us-
ing percolation theory, when there is no crevice Aow. We
will show that the predictions of percolation theory are
limited to displacements with a small finger width, where
cooperative pore filling is not significant. In Sec. VI we
discuss crevice Aow and the transition from connected
advance to a displacement dominated by snap-off as we
decrease the capillary number. We also derive the
viscous correlation length when there is significant cre-
vice Aow. In Sec. VII we discuss the change in residual
saturation with Aow rate.

Non-wetting
fluid

Wetting fluid

II. NUMERICAL MODEL

The porous medium is modeled as a cubic or square ar-
ray of pores connected by throats. The throat radii r are
selected at random uniformly from A, to 1, where
0~ A, ~ 1. Other distributions of radii would be possible.
In order to be able to reproduce all types of Auid ad-
vances, we specified the threshold radii for filling by each
of the I„mechanisms separately. These in reality are
controlled by the pore size, its shape, and the shape of the
connecting throats, as well as the contact angle. The
mean radius of curvature for filling by an I„mechanism
is computed as follows:

R„=RO+g 3;x;, (4)

where the x, are random numbers chosen uniformly from
0 to 1, and the 3; are input parameters. Ro, the radius of
curvature for the Io mechanism, is chosen such that it is
consistent with the pores being larger than any of the sur-
rounding throats:

Ro=max(r, , Aoxo),

where r,. labels all the surrounding throats, xo is a ran-
dom number between 0 and 1, and 3o is an input param-
eter. The critical capillary pressure for pore filling, when
the pore has n adjacent unfilled throats is

P — V
CRp

n

The capillary pressure for pistonlike filling of a throat,
which is connected to a filled pore, is 2y/r, while the
capillary pressure for snap-off is ylr. From a compar-
ison of Eqs. (2) and (3), this represents a flow with a con-
tact angle of zero. However, in a dimensionless form of
the equations (outlined in Sec. III), we can represent fiow
at any contact angle implicitly through the relative values
of the different pore filling parameters.

We assume that the pressure drop across regions of the
network completely saturated with invading Auid is negli-
gible, but that the pressure drop along narrow wetting
layers in the crevices of the pore space is significant.
Consider that a pore or throat is filled, and that the Auid
is provided by Aow along a crevice of length l, as shown
schematically in Fig. 4. The fiow rate is Q. The relation-
ship between the pressure gradient and flow rate is

FIG. 4. Crevice transport. Fluid to fill pores and throats is
supplied ahead of the connected front by Aow in the corners of
the pore space.

Po= Pcap

313P„@gal1+ y'

(9)

where Po is the capillary pressure at the beginning of the
crevice, equivalent to the inlet pressure in our model, and
P

p
is the local capillary pressure where the element is

being filled —either pistonlike throat filling, throat filling
by snap-off, or pore filling.

We consider Auid injection from one face of a rectilin-
ear system. Fluid leaves through the opposite face and
there are periodic boundary conditions on the other
faces. If the injected fluid is wetting, it will have a lower
pressure than the Auid it displaces. The wetting phase
pressure at the inlet is progressively increased, corre-
sponding to a decrease in capillary pressure. The capil-

r' dP
Pp dx

where p is the Auid viscosity and r is the local radius of
curvature in the corner. P is the pressure in the advanc-
ing (wetting) phase. We assume that the pressure in the
nonwetting phase is zero. P is a dimensionless conduc-
tance factor. Equation (6) is a generalized form of
Poiseuille's law for fiow in corners. P depends on the
geometry of the pore and the boundary condition at the
phase boundary. For instance, for a square crevice and a
Auid with a contact angle of -ero, finite element calcula-
tions have shown that P=109 if there is no slip at the
nonwetting/wetting fluid interface and 290 if there is no
fiow at the interface, while for a triangular crevice P
varies from 15 to 32 depending on the boundary condi-
tion at the fiuid interface [35]. We assume that locally
the interface is in capillary equilibrium and hence
P = P„= y /r—; then—

4
y dP

(8)
happ dx

This expression can be integrated to find
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Po= (10)

where p is the Auid density, g is the acceleration due to
gravity, and h is the height.

III. CAPILLARY AND BOND NUMBERS

The competition between pore and throat filling and
flow in crevices and bulk advance, together with the per-
turbative effects of viscous and gravity forces, lead to
several different length scales. Possibly the most subtle
effect is that of viscous forces on the Aow.

Conventionally a capillary number that measures the
ratio of viscous to capillary forces in the system is defined

lary pressure at the inlet Po necessary to fill an element
anywhere in the network is calculated using Eq. (9). P„„
is found using the expressions quoted previously for pore
and throat filling. l is the minimum distance from the
element to the inlet, where the path length through com-
pletely filled tubes or throats is zero. These pressures are
stored in a sorted list. The element that has the highest
capillary pressure is the next to be filled. Once the ele-
ment is filled, l is recomputed for the whole network. If
the number of filled throats adjacent to any of the pores
has increased, the pore filling capillary pressures are up-
dated to represent different I„mechanisms.

The model represents the competition between the ad-
vance of the connected phase and Aow in corners, but
makes several approximations. We ignore any pressure
drops in the displaced phase and in the portions of the
network completely saturated by the wetting Auid. We
will show that, below a viscous correlation length, this is
a good approximation, but on the large scale, particularly
when the Auid pattern is percolationlike, the effects of
pressure drops in the centers of pores and throats are
significant. We also use a simple method to compute the
pressure drop for Aow in corners. This is a reasonable as-
sumption in regions of low wetting phase saturation,
where the nonwetting phase is well connected and the
flow rates in each crevice are approximately constant.

The model allows for both compressible and in-
compressible displaced Auid. Displacement proceeds as
described above for compressible Aow. If the displaced
Auid is incompressible, an element is only filled if there is
a connected pathway to the outlet of pores and throats
filled with displaced Auid.

We can model cases where crevice Aow is not allowed,
by only allowing pores adjacent to already filled pores to
be filled. In this case we do not need to account for
throats explicitly, since all the throats adjacent to a filled
pore will be also filled, and no throats may be filled unless
they are adjacent to a filled pore. This simplifies the
model considerably.

Density differences between Auids are also included.
We assume that the principal Aow direction is vertical.
Then we add an extra term to Eq. (9) to accommodate
buoyancy forces:

as follows.

pg
cap

where q is the volume of Auid injected per unit time per
unit area. The ratio of buoyancy and capillary forces is
measured by a Bond number, defined by

(p„p„„—)gr'B=
y

(12)

where r is a representative pore size.
The multiphase Darcy law for the Aow of wetting and

nonwetting phases may be written

9'nw

Kk,
V(P„+p„gh ),

p
Kk,„ V(P„„+p„„gh) .

Pnw

(13)

(14)

Then the ratio of a typical viscous pressure drop between
two pores separated by a distance d to a capillary pres-
sure, when the relative permeability k„ is of order 1 is
pqdr /yK. The permeability E and a typical pore size are
related by K =6r, where 6 is a small parameter
representing the connectivity of the medium. If we con-
sidered the porous medium to be a regular cubic array of
cylindrical tubes, radius r and spacing d, then, using
Poiseuille's law, we would find 5=err /8d We .define
a =d /r, the ratio of a pore-throat length to a typical ra-
dius, which will be in the range 5 —10. Hence 6 is approx-
imately 4X10 —1.6X10 . Real porous media have
tortuous Aow pathways, and we would expect 5 to be
lower than this. For instance, for a random close packing
of spheres of radius R, K =2.7X 10 R [36,37]. A typi-
cal pore radius is likely to be smaller than a grain radius,
but in more consolidated media, with poorly connected
Aow pathways, the permeability may be very low, even if
some of the channels are quite large. For most porous
media we expect 5 to be of order 10 . a/5 is a dimen-
sionless measure of the Aow resistance in a single pore.
The ratio of viscous to capillary pressures at the pore
scale is (a /5)X„or up to 1000—10 000 times larger than

p
. Hence when viscous and capillary pressure drops

are of the same magnitude in a single pore, the conven-
tional capillary number will be around 10 or even
smaller. For instance, this implies that oil ganglia a few
pore spaces across wi11 be mobilized by viscous forces at
capillary numbers of around 10 —10,which is rough-
ly in accord with experimental data [28]. Typical fiow
rates in oil reservoirs range from around 1 m/day to 1

m/year, except near wells. Natural acquifer flows are
about as slow, but during pumping Aow rates up to 100
m/day can be achieved. If we consider the Qow of water
and air (p=10 kgm 's ', y=70 mNm ') this gives
capillary numbers in the range 10 —10 ' . Even lower
capillary numbers may be typical for the slow Aow of
viscous oils, while for nearly miscible gas injection into
oil reservoirs, with interfacial tensions of 0.1 mNm
and lower, capillary numbers of order 10 and above are
possible.
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The ratio of the buoyancy pressure to the capillary
pressure over a single pore throat of length d is

(p —p„)gdr ly or a8. If we consider oil and water with
a density difference of 100 kg m, an interfacial tension
of 40 mNm ', a =10 and a typical throat radius of 20
pm, we find a8 approximately equal to 10 . For air and
water the density difference is ten times larger, and a8 is
of order 10

We can rewrite Eq. (10) in dimensionless form in terms
of the capillary and Bond numbers. To do this we make
an important approximation. We assume that, on aver-
age, the Row is uniform throughout the network, and that
the Aow in a crevice that is supplying Quid for pore or
throat filling Q =qd . Then

pd
pd— CRP

[1+3aN„(P„)x(]'~

where u is a crevice resistance factor,

Rd3a= =Pa
p

3

and the dimensionless pressures p are measured in units
of ylr, where r is a typical throat radius (unity by
definition in our simulations), and x& and k are dimen-
sionless distances measured in units of the interpore
length d. k is the height of the element. x& is the
minimum length of crevice necessary to reach the inlet,
where the distance through completely filled elements is
ignored. By assuming that Q =qd for each crevice, we
are able to identify a capillary number for our simula-
tions.

IV. FI.QW REGIMES AND FINGER WIDTH

Figure 3 shows example two-dimensional results from
the numerical model for different input parameters, illus-
trating some of the Row regimes discussed above. Table I
lists the model parameters for these and the other figures.
The simulations presented in this paper are intended to
cover the range of behavior seen experimentally, al-
though we will not attempt to represent any single experi-
ment or porous medium exactly.

We measure the finger width at breakthrough, when
the wetting Auid first spans the system. I.et us label a
grid block by coordinates i, j, and k in the x, y, and z
directions, respectively. The principal How direction is in
the vertical z direction. The simulation contains X by
N by N, grid blocks in total. We take a horizontal slice
through the system at some fixed value of j and k. Then
moving in the x direction, we count the number of times
there is a filled pore next to an unfilled pore. However,
for incompressible Aow, we ignore unfilled pores that are
trapped by wetting Quid. We repeat this for all possible
values of j and k. 8' is defined as the total number of
filled and trapped pores divided by the total number of
filled/unfilled transitions. Cooperative pore filling may
lead to very large values of the average finger width, even
if, on even larger scales, the system is percolationlike.

In a two-dimensional square network, if all the I3
events are less favorable than any I2 event, we will see a
fiat frontal advance [6] or a faceted cluster growth [12].
This is because when I3 occurs it will inevitably launch a
cascade of cooperative filling events until the wetting
front is smooth. By construction, the numerical model

TABLE I. Parameters used in the simulations presented.

Figure grid size Compressible' Crevice Aow' Ao —Aq aB aN„~

200X200
200x200
200x200
200X200
512X512
512X512

64x 64x128
64x 64x 128
64x 64x 128
32X32X64

3{a)
3(b)
3(c)
3(c)
5(a)
5(b)
6
6
6
7

8

9(a)
9(b)
9(c)
9(d)
9(e)
10,11,
12,13

512X 512
128X 128
128X 128
128X 128
128X 128
128X 128

32X32X32

Y
Y
Y
Y
Y
N
N
N
N
N

for 8'(10 and 64X64X
with at least two runs for

N
Y
Y
Y
Y
Y
N

Y
N
N

N
N
N
N
N
N

128 for 8 ) 10
each value of c.
N
Y
Y
Y
Y
Y
Y

00810
00216
00216
00216
00216
00216

20003 3
2 00 0 1.4 1.4
000246

0 0001 0
0 0 1.7
0 0 1 ~

7x10-'
0 0 1 7X10
0 0 1 7X10
0 0 1.7x10-'
0 0 17—

1.7x10-'

1000 0 0
1000 0 0

1 0 0 100 0 0
000 200 0.99 0
00810 0 0
00810 0 0

200000 0 0
2000 1.4 1.4 0 0
2 0 0 0 2.4 2.4 0 0
2000ccforc 0 0

between 0 and 2

'Yes {Y)or no (N).
For two-dimensional simulations only Ao —2 3 are defined.
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always allows for some overlap between I3 and lz, and
this is evident in Figs. 3(c) and 3(d), where the fiuid front
is not completely Aat, but shows some roughness. Some
sites become pinned, and in an infinitely large system this
will force the pattern to look percolationlike beyond
some finger width W [13]. Hence, strictly speaking, Fig.
3(c) is asymptotically invasion percolation, while Fig. 3(d)
is site percolation, but with a finger width clearly larger
than the system size (200 in this case). In three dimen-
sions it is possible for pinning to generate a self-aKne sur-
face, where the interface is rough, but the finger width is
infinite [13]. While highly regular experimental porous
media and numerical models may be found that allow
completely faceted growth, it is unlikely that there is ab-
solutely no overlap between I3 and I2 events in any real
system. This will then lead to some form of rough inter-
facial advance with a large (or infinite) finger width.
However, in order to see a truly asymptotic system, the
experiment or numerical model will have to be quite
huge, and on such a scale that viscous and buoyancy
forces will have a significant inAuence. Thus the asymp-
totic regime may never be observed. In this paper we will
not study the asymptotic behavior, but will investigate
How with capillary and Bond numbers representative of
natural systems.

V. CORREI.ATION LENGTHS IGNORING FI.QW
IN CREVICES

In this section we will use percolation theory to ana-
lyze displacements where there is no Aow in crevices. %'e
show that some predictions of percolation theory are not
valid when there is significant cooperative pore filling.
Moreover, all discussion on correlation lengths in this pa-
per is limited to percolationlike displacements, and does
not apply to Aat frontal advance or locally self-alone
growth. Flat fronts have no structure anyway, but
viscous and buoyancy forces will limit the size of the
roughness seen in a self-alone growth. This issue will not
be discussed here.

It is valid to ignore crevice Aow in three circumstances:
(i) the fiow rate is sufficiently high that snap-off is com-
pletely suppressed, which occurs for capillary numbers of
approximately 10 or higher; (ii) the invading fiuid is
not completely wetting, such that it does not naturally re-
side in angular corners of the pore space; and (iii) the
pore space does not have a connected pathway~ " cre-
vices, such as in smooth bead and sand packs. VI
we will discuss Aow in crevices.

In a percolationlike displacement we can define a per-
colation probability p when a fraction p of throats or
pores are filled. The threshold value p, is when a con-
nected pathway of completely filled elements first spans
an infinite system. Corresponding to this is a critical
capillary pressure. Viscous and buoyancy forces impose
a pressure gradient across the system, and hence the
value of p varies with position. This means that infinite
clusters at threshold are no longer seen, and there is a
finite correlation length: below this length the system
looks percolationlike, and above it the effects of viscous
and buoyancy forces are apparent. We will now derive

the correlation length for the different cases of interest,
make predictions based on percolation theory, and com-
pare the results with our simulations.

A. Trapping nonwetting quid

If percolation theory is valid, the point at which the
nonwetting fluid becomes disconnected (the terminal
point) corresponds to its percolation threshold. The
number of trapped clusters occupying s pores, X(s)-s
where the exponent ~ is approximately 2.18 in three di-
mensions [38]. A displacement with a finite finger width
will be percolationlike beyond a distance 8' and will
resemble Bat frontal advance on smaller scales. Thus
only large clusters of size s ~ W (where D is the fractal
dimension of the clusters —2.53 in three dimensions) will
be seen.

To test the percolation argument, we present simula-
tion results for displacements without crevice How with
different finger widths. Figure 5 shows a 512X512 two-
dimensional displacement at breakthrough, where the
finger width is approximately 300. Figure 5(a) shows the
displacement of a compressible Quid, where most of the
surrounded quid is contained in a single large cluster
with relatively little volume contributed by smaller en-
closed regions —we would predict that only large regions
of order the finger width in extent would be trapped. In
contrast, if the nonwetting Quid is incompressible, as
shown in Fig. 5(b), many trapped regions of all sizes are
present and the simple percolation theory argument is
clearly not valid. Figure 6 shows the cumulative size dis-
tribution

M(s) =g sN(s) -s
S

(17)

plotted for three three-dimensional displacements on a
64X64X128 grid: one is an invasion percolation with
trapping ( W=1.6), the other has a finger width of 5.7,
while the third allows some cooperative pore filling and
the finger width is 17. The two cases with the smaller
finger widths give distributions that are consistent with
percolation theory, as shown previously [7]. However,
we see no clear cutoff in the distribution at some size
s ( ~~' . The example with the largest finger width does
not,";ok percolationlike at all. There is significant trap-
ping of nnnwetting phase clusters of all sizes, although
the total number of trapped pores, M(1), does decrease
with finger width.

The fraction of trapped pores is M(1) [Eq. (17)] divid-
ed by the total number of pores in the system. In this pa-
per we will call the fraction of trapped pores the residual
saturation. For a finger width of size 8' percolation
theory would predict M(s) —W ' 2'- W ~~', for
s ~ 8', where we have used the scaling relation
D(r —2)=f3/v. The residual saturation is plotted as a
function of finger width in Fig. 7 for a variety of three-
dimensional displacements. Again, the agreement with
percolation theory is poor —the best-At exponent to the
data was —0.59+0.2, compared with the prediction—P/v= —0.47. Moreover, the data do not clearly follow
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a power law.
The trapping of nonwetting Quid for displacements

with diFerent finger widths is not predicted by percola-
tion theory. The reason for this is that at length scales
below 8'the Quid front is not completely Aat, and this al-
lows some local trapping of small clusters. These small
clusters make the dominant contribution to the residual
saturation. The exact nature of this local trapping de-
pends subtly on the capillary pressures for the diFerent
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FIG. 6. The cumulative trapped cluster distribution plotted
as a function of cluster size on doubly logarithmic axes, for
different finger widths 8' as indicated. Percolation theory pre-
dicts that the graph should be a straight line of slope 2 —~,
which is approximately —0.2. The distributions for the two
plots with smaller finger widths are consistent with percolation
theory, whereas the third case is not.

pore filling mechanisms, and is not easily represented in
terms of just a single parameter.

I 4
B. Correlation length

We will now derive the correlation length due to the
perturbative eff'ects of viscous and buoyancy forces. This
has already been discussed for systems where 8'= 1

[7,32,33]. We consider that the nonwetting Quid is about
to become entirely trapped, and that its Row rate is negli-
gible. In this case Darcy's law for the How of wetting
Quid can be written

4
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FIG. S. Connected Quid advance simulated on a S12XS12
network. (a) Compressible How with an average finger width of
approximately 300. Notice that the majority of the surrounded
nonwetting fIuid is in one large cluster. (b) Incompressible Aow.
There is significant trapping of clusters much smaller than the
finger width. This cannot be predicted by percolation theory.

FIG. 7. The trapped saturation as a function of finger width
oq doubly logarithmic axes. The best fit straight line has a slope
of —O. S9, compared with a percolation theory prediction of—0.47. Moreover, since the distribution of trapped clusters is
not percolationlike, we have no reason to expect percolation
theory to predict the change in trapped saturation.
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rVP, r pqr (Pw Pn )gr+
@AC y+cap

=N„p/5+B . (19)

The fractional change in capillary pressure is
equivalent to a shift in percolating probability —p de-
creases in the direction of flow. This in turn limits the
maximum size of a trapped cluster (the correlation
length). g is defined as the correlation length measured in
units of d. The average finger width is W. At the termi-
nal point, when the defender is trapped, we call the shift
in p across a correlation length g, p —p, . From percola-
tion theory g/W-(p —p, ), or (p —P, )=(g/W)
where the exponent v is approximately 0.88 in three di-
mensions and T4 in two dimensions [38]. From Eq. (19)
the shift in p over a length gd is approximately
a g(N„„/5+B). Equating these two expressions gives

—[ Wa (N /5+B ) ]W cap (20)

This is similar to the expression derived in [32,33], ex-
cept here we have included the effects of both buoyancy
and viscous forces together and included the effect of a
finite finger width. Notice that the correlation length is
controlled by the addition of both capillary and Bond
numbers, as shown by Zhou and Orr [34]. This
length will be much smaller than the macroscopic
distance over which buoyancy forces and viscous forces
combined are as large as the capillary force (of order
1/[a(N„ /5+B)]). When g/W is of order 1, the fiuid
pattern does not resemble a percolation cluster at thresh-
old on any length scale. For large finger widths, this may
occur even for representative values of the capillary and
Bond number. We expect Eq. (20) to be correct, even if
the distribution of trapped clusters is not percolation-
like.

Ek„
V[P„—(p„—p„„)gh ] .

p
If the wetting phase is well connected, the relative per-

meability k„ is almost 1. This will be true if the residual
saturation is small, but the relative permeability can be
low, of order 0.1, if the nonwetting phase blocks the
larger flow pathways [29]. Here we will assume that k„ is
approximately 1. If the capillary pressure has some
representative value P„=y/r, and assuming that the
direction of flow is vertical, then

The analysis assumes that the distribution of trapped
clusters can be described by percolation theory. Thus we
only expect this expression to be valid for finger widths
close to 1, or where there is no small-scale trapping of
clusters on scales smaller than W. It has already been
demonstrated that Eq. (22) can predict the change in re-
sidual saturation with buoyancy for trapping in imbibi-
tion, where the finger width is close to 1 [7].

Consider Fig. 8, which shows a two-dimensional, in-
compressible displacement, similar to Fig. 5, but where
Ba =0.001. Since the finger width is approximately 300,
Eq. (20) predicts g- W. This is consistent with the pic-
ture where buoyancy has prevented large clusters from
being trapped. However, we cannot use Eq. (22) to pre-
dict the change in residual saturation, since the small
clusters still remain.

The conclusion of this section is that percolation
theory does not predict the trapping of nonwetting fluid
for systems with a large finger width. This is because on
length scales below W the fluid interface is not complete-
ly flat, and there is some trapping of small clusters. The
exact amount of trapping is dependent on the details of
the pore-level displacement. Even though we expect Eq.
(20) for the correlation length to be valid, we cannot use
it to predict the shift in trapped saturation, because the
cluster size distribution does not follow percolation
theory for large W.

D. Advancing wetting quid

The next case to be considered is where there is no flow
in crevices, and we derive the correlation length for the
wetting phase at breakthrough. Below the correlation
length, the pattern resembles invasion percolation with a

a
~, t

I

F

C. Shift in trapped saturation

S(g= ~ )
—S(g')

S(g= oo )

AS
S (21)

A finite correlation length truncates the distribution of
trapped clusters and leads to a decrease in residual satu-
ration. It is possible to relate the fractional shift in
trapped saturation to the correlation length by [7,32,33]

—(P+ 1)/v

h

~ I

and thus

—[ Wa(N /5+B )]s (22)

FIG. 8. Incompressible Aow as in Fig. 5(b), but where
aB =0.001. The trapping of large clusters has been suppressed,
but the smaller clusters remain.
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finger width 8' and, above it, the pattern will be statisti-
cally homogeneous with smooth changes in average satu-
ration.

We develop the same argument as above. Again the
shift in capillary pressure is dominated by the pressure
gradient in the wetting phase. However, near break-
through, the relative permeability is very small —if the
shift in percolation probability is p —p„ the relative per-
meability scales as (p —p, )', where t, the conductance ex-
ponent, is approximately equal to 2.0 in three dimensions
[38]. Moreover, the local fiux of the wetting phase is
lower than the injected Aux, from which the capillary
number is conventionally defined. Imagine that the speed
of the front is v, and the Aux is q, then, if the saturation
is S, v-q„/S. Just behind the front, where the wetting
phase saturation is of order 1, the Aow speed is approxi-
mately the same. Hence the Aux at the advancing inter-
face q is related to the injected Aux q by q =qS. Again
using percolation theory, the saturation is S—(p —p, )~,

where P is 0.41 in three dimensions. We can now write
an expression similar to Eq. (19):

«~~cap pqS«(Pw Pnw )g«+
yEk„ y~cap

=SR„ /5k„+8, (23)

and, relating the fractional change in P„oevr a length g
with the change in percolation probability and using
V~-(p —p, )

g
—i —i /v ~1/v ~~PaX

5

(t —P)/ v

+a8 . (24)

This expression, without the effect of a finite finger width,
was first derived in a diff'erent manner by Wilkinson [33].
The exponent in Eq. (25) is approximately —0.25, which
means that the correlation length is always fairly small
for typical values of the capillary number. Although we
cannot test Eq. (25) directly, we expect the variation with
finger width to be correctly predicted in this case. We
have assumed that for the purposes of calculating the
Auid conductance, the pattern looks smooth below a
length 8'—this is reasonable, since, even with small-
scale trapping, within a finger, the wetting fluid occupies
a significant fraction of the porous medium.

VI. EFFECT OF FLOW IN CREVICES

We will now demonstrate that a small amount of Aow
in crevices radically alters the displacement pattern. Cre-
vice Aow occurs at low Aow rates, when the invading Auid
is completely wetting (contact angle close to zero), and
when the porous medium has connected crevices (hetero-
geneous soils and consolidated rock). We will assume for
this argument that the invading Auid is completely wet-
ting and that Aow in crevices is impeded solely by Aow
rate.

If we assume that the viscous pressure drop dominates,
we ignore the buoyancy term to find

—vt'(]. +v+ t —P)8' X
(25)

~cap ~0
=k(aX„&+a8) .

~cap
(26)

The crevice resistance factor a is typically of order
10 —10, and indicates the large resistance due to flow in
crevices compared with Aow through fully saturated ele-
ments. When a%„ is of order 1, there is a significant
fractional change in capillary pressure over just a single
pore-throat length and there is essentially no Aow in cre-
vices. As the capillary number decreases, more and more
filling by snap-off is allowed.

For a large range of pore filling parameters, the dis-
placement pattern with no crevice Aow is an almost flat
front with some roughness and little or no trapping of the
nonwetting phase. This is in accord with experimental
evidence [2,16,17]. However, even a small degree of
snap-off is sufhcient to destroy Aat frontal advance, and
the cooperative filling mechanisms. For example, Fig. 9
is a sequence of displacement patterns at different capil-
lary numbers. For czN„of order 1 and larger there is no
snap-off, and invasion proceeds by cooperative pore
filling with no trapping of nonwetting Auid. Decreasing
the Aow rate makes the displacement more invasion per-

Across a single pore or throat, for the same Aow rate,
the pressure drop in a crevice is much larger than in a
completely filled element. In the numerical model, we
have only accounted for pressure drops in the crevices,
and ignored them in the filled regions. At very low low
rates, the viscous pressure drops are small in comparison
with the capillary pressure. This means that the wetting
fluid invades the smallest pores and throats throughout
the system. The pressure drop due to Aow in crevices is
negligible compared with the differences in threshold
capillary pressure for pores and throats of different size.
At higher Aow rates, the pressure drops in both filled re-
gions and in crevices increase. In the numerical model,
we continue to assume that the pressure drops in filled
portions of the network are small compared to capillary
pressure differences, but we do account for the pressure
drops in the crevices. As we increase the Aow rate, the
pressure drop due to crevice Aow becomes significant in
comparison to the capillary pressure. This means that to
fill a throat by snap-off away from the connected front re-
quires an injection pressure that may be sufBcient to fill
virtually all the pores and throats by connected, frontal
advance. In this limit, Aow in crevices is suppressed, and
we see a connected pattern. Thus, with an increase in
Aow rate, we see the displacement pattern change from
one dominated by snap-off to a connected frontal ad-
vance.

The Aow in a single crevice that is supplying Auid for
throat and pore filling Q is approximately related to the
injected fiow rate per unit area by Q=qd, where we
have assumed that every throat carries the same average
Aux. Let us assume that P„has some representative
value yl«. Moreover, assume that the crevice fiow is
vertical, where I =h =dk, and k is a dimensionless coor-
dinate, denoting distance measured in units of pore
lengths. Then if the capillary and Bond numbers are
small, Eq. (10) can be written
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colationlike. Snap-off a single pore length in advance of
the front enables more pores to fill by I& and I2 mecha-
nisms than at higher Aow rates. This allows the wetting
Quid to fill the smallest pores adjacent to an already filled
pore, and lessens the impact of cooperative filling. The
transition to Aow dominated by snap-off and a percola-
tionlike fluid pattern is not seen until aX ap is of order
10,which represents capillary numbers as low as 10
typical of many natural Quid displacements. This is con-
sistent with the micromodel experiments of Lenormand
and Zarcone [2], who showed that flow dominated by
snap-off was only seen for capillary numbers of 10 and
lower.

Correlation length with Sow in crevices

g-(aN +aB )cap (27)

Equation (27) applies when the pressure drop in cre-
vices [Eq. (26)] is much lower than that in the connected
front [Eq. (23)]. This is so when

a&cap +aB »aN„+aB, (28)

and, using Eq. (27) for g,

( N + B )
—(t —P)/((+v& »cap (29)

The exponent (t —P)/(1+v) is approximately 0.85. As
we mentioned before, a5/a will always be much greater
than 1—typically in the range 10—100. Thus Eq. (29)
only holds for slow Aows, when aB+aX„„is less than
approximately 0.01.

In the numerical model, we do not account for the
pressure drop in filled regions. This means that the nu-
merical simulations correctly predict the fluid distribu-
tion only up to the correlation length given by Eq. (27).
On larger scales, the effects of viscous pressure drops in
filled regions become significant.

We will now use percolation theory to find the correla-
tion length when there is significant Aow in crevices. We
have already mentioned that, in a single throat, the resis-
tance to Aow is much higher through a crevice than if the
throat is completely filled. However, if the Quid pattern
is percolationlike at breakthrough, the filled regions have
a very tenuous structure, and it is possible that across the
whole system the pressure drop due to Aow in crevices is
lower than the pressure drop through the tortuous path-
way of filled pores and throats. If this is the case, the
pressure drop in crevices, given by Eq. (26), governs the
fractional change in capillary pressure with distance.
Throats will be filled by snap-off in a bond percolationlike
process. The average wetting phase saturation where
filled throats and pores are first connected will be of order
p„and not very small, as with invasion percolation. The
finger width will be of order 1, since crevice Aow will al-
low throats to be filled everywhere and will destroy
cooperative cluster growth processes. Equating the frac-
tional change in capillary pressure over a distance g with
p —p„we find

In contrast, Eq. (25) for the correlation length will only
be obeyed when the pressure drop in the connected front
is lower than that through the crevices, and hence

(t —p)/v

8' +aB, (30)
aÃcapaE„+aB))

and thus, assuming that viscous forces dominate over
buoyancy,

a6
a

. —(t —p)//(1+v+t —p)8 aX„
6

(31)

VII. CHANGE IN RESIDUAL SATURATION
WITH FLOW RATE

When there is no Aow in crevices, the Quid advance is
controlled and impeded by the pores. A narrow pore size
distribution, where the pores are similar in size to the
throats, leads to cooperative growth, and a small residual
saturation. As we saw in Fig. 9, a small degree of snap-
off just ahead of the front causes the pattern to become
invasion percolationlike when alan„ is of order 0.1.
When crevice Aow is significant, when aX„„is of order
0.001, the displacement is controlled by the throats,
which fill first, followed by cascades of pore filling. The
residual saturation in this case is likely to be much larger
than for very high Aow rates, since the throat filling by
snap-off will prevent nonwetting Quid from escaping.
The exact change in residual saturation cannot be pre-
dicted, since it depends on the exact structure of the pore
space and the contact angle, but the network model can
explore representative features.

This change in residual saturation with Aow rate is a
phenomenon that is not described by the two processes
that have been previously described, namely mobilization
of trapped ganglia [28], and the shift in residual satura-
tion due to a change in the distribution of trapped clus-
ters, as predicted by percolation theory [33] [Eq. (22)].

The exponent (t —P)/(1+ v+ t —P) is approximately
0.46. When the Aow is in neither regime, both crevice
flow and the pressure drop in the connected front are
significant. Remember that 8'is itself a function of Aow
rate. If we take a5/a to be around 100, Eq. (31) is true
for WaN„ /5&0. 1, which represents a high flow rate
unless 8'is very large.

-From this section we have shown that for the Aow
rates of greatest interest in this paper —namely when we
see the crossover from crevice to connected Aow for
aN„ in the range 0.01 to 1, neither Eq. (25) nor (27) are
likely to be valid. The numerical model will correctly
predict the displacement pattern up to the viscous corre-
lation length, when the effect of the pressure drop in
completely filled regions first becomes significant. For
the range of Aow rates we will study, this represents
scales of order 10—100 pore lengths. The three-
dimensional simulations of crevice Aow will be performed
on networks of 32 X 32 X 32 pores and in the parameter
range studied are expected to represent the Aow patterns
accurately.
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Both these effe'cts are significant when (a /5)N„ is of or-
der 1. The competition between connected advance and
crevice flow is governed by aN„. Since a is typically
10—100 times larger than a/5 (the ratio of the parame-
ters represents the relative resistance of crevice flow
versus pistonlike advance), this efFect is significant at
lower capillary numbers.

Percolation theory can predict the change in residual
saturation with flow rate when the finger width is of or-
der 1 and there is no flow in crevices —either because the
porous medium does not have connected crevices or
roughness (such as smooth bead and sand packs, for in-

stance), or if the injected Quid is not completely wetting.
In contrast, the competition between snap-off and the pis-
tonlike advance causes a change in residual saturation
only in strongly wetting systems, where flow in crevices
can occur, and when the residual saturations for connect-
ed Quid advance (large aX„') and disconnected invasion
(small acV„') are appreciably diff'erent.

Figure 1O plots the cumulative distribution of trapped
clusters for three-d™ensional simulations at two different
flow rates. This is an extreme example, where the high
flow rate limit is virtua11y flat advance with very little
trapping, while at low flow rates snap-oF traps more than
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FIG. 9. Two-dimensional simulations of fluid advance, illustrating the effect of the flow rate on the finger width. The simulations
are run on a 128 X 128 grid with different values of AN„p. Both filled pores (circles) and throats (line segments) are shown. (a)
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FIG. 10. The cumulative trapped cluster distribution plotted
as a function of cluster size on doubly logarithmic axes, for
different Aow rates o,'N p.

half the pores. There is a sharp transition from percola-
tionlike trapping when aX„=0.05, to significant
suppression of trapping when a%, p

0 17.
Figure 11 shows the fraction of filled pores at break-

through as a function of Aow rate for three diA'erent mod-
els. The first (shown by crosses) is the case described for
Fig. 10, and illustrates the transition from relatively Aat
frontal advance to invasion percolation to normal per-
colation as we lower the capillary number. At the lowest
Aow rates, the fraction of filled pores at breakthrough is
close to the percolation threshold, which is approximate-
ly 0.31 for a cubic lattice. For aX„oforder 0.001—0.1,
the pattern becomes more like invasion percolation over
small length scales, and the fraction of filled pores at

FIG. 11. The fraction of filled pores at breakthrough as a
function of Aow rate aX„p for three different models. The
crosses correspond to the case presented in Fig. 10, where we
have a crossover from normal percolation to invasion percola-
tion to almost Aat frontal advance with increasing How rate.
The stars represent a case where the high Bow rate limit is in-
vasion percolation. The triangles represent a case where the
pore and throat sizes are approximately equal, and there is a
significant degree of cooperative pore filling at all capillary
numbers.

breakthrough decreases (for an infinite system, with an
infinite viscous correlation length, this fraction would
drop to zero). Then sharply, when aN„ is approximate-
ly 0.1, the fraction of filled pores rises to a very high
value, indicating a Aatter Auid advance. The second ex-
ample, denoted by stars, is similar, except that the high
Aow rate limit is invasion percolation with a finite finger
width. That the fraction of filled pores at breakthrough
rises to a fairly high value for alV„& 1 is due to finite
size e6'ects. In the third example, the throats are approx-
imately the same size as the pores. We see a crossover
from percolation with some cooperative pore filling to an
almost Aat frontal advance.

Figure 12 shows the finger width as a function of Aow
rate for the same three examples. The finger width is of
order 1 at low Aow rates in all three cases. The finger
width diverges for cases 1 and 3 for aN„„ larger than
around 0.1, indicating a locally Aat or self-a%ne growth.
Case 2 reaches a finite finger width, indicating locally an
invasion percolationlike advance.

Figure 13 shows the residual saturation plotted against
Aow rate. Since we do not account for ganglion mobiliza-
tion, or pressure drops in connected regions, we do not
see the residual saturation drop to zero for very large
capillary number, as observed experimentally [28]. How-
ever, for the Aow rates representative of natural displace-
ments in porous media —aX„„oforder 1 or less —the
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FIG. 12. The finger width as a function of Aow rate aX„„for
the same three cases as in Fig. 11.

FIG. 13. The residual saturation as a function of Row rate
o.X„„for the three different systems shown in Figs. 11 and 12.

model does give a realistic indication of the shift on resid-
ual saturation with capillary number. The gradual
change in residual saturation at very low rates is caused
by the transition from a Aow regime dominated by snap-
off to a connected, invasion percolationlike advance. For
the first example, there is a sharp decrease in residual sat-
uration as the finger width diverges at around
uX„„=0.1. In the second case, the change in residual
saturation with capillary number is the same as in the
first case for very low Aow rates. Here the displacement
is governed by throat filling, and for both examples the
distribution of throat sizes is the same. However, the de--
crease in residual saturation at around o,N„„=O.1 is not
so dramatic. For the third example, the decrease in re-
sidual saturation is more gradual than in the other cases.
Notice that for all three examples, the model predicts a
noticeable change in residual saturation starting at Aow

rates around ad%, p
0 001 or X

p
of order 10 —10

in the range of many Aows in aquifers and reservoirs.

VIII. CONCLUSIONS

We have presented a network model to simulate wet-
ting invasion in a porous medium, including the effects of
snap-ofF,

'

cooperative pore filling, and Aow in crevices.
We used percolation theory to derive correlation lengths
for flow under the perturbative effects of viscous and
capillary forces, extending previous work [32,33]. We
showed that for displacements with a finger width of or-
der 10 or more, the distribution of trapped nonwetting
phase clusters was not in accordance with percolation
theory, because of the trapping of clusters that are small-
er than the finger width. This means that the derived

correlation lengths could not be used successfully to pre-
dict the shift in trapped saturation with Aow rate and
buoyancy forces.

The competition between crevice flow and pistonlike
transport is governed by Aow rate. The resistance to Aow
in crevices is much larger than the resistance through
completely filled regions of the pore space, and pore and
throat filling well in advance of a connected front only
occurs at very low Aow rates. The nature of the Auid dis-
placement will change from connected advance (locally
resembling invasion percolation, Aat frontal advance or
self-affine growth on scales below a correlation length) to
a disconnected invasion (percolation or nucleated cluster
growth) as the Aow rate decreases. We showed, using the
network model, that an increase in Aow rate may dramat-
ically lower the trapped nonwetting phase saturation.
The Aow rates at which these effects are first significant
are when aN„ is of order 0.001. a is a dimensionless
crevice resistance factor that depends on the structure of
the porous medium, and is typically around 10 —10 .
This introduces significant changes in local displacement
pattern due to Aow rate at capillary numbers larger than
10, in the range encountered in laboratory experiments
and in reservoir and aquifer Aows.
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