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Microscopic structure of a pure near-critical fluid confined to a mesoscopic slit-pore
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The adsorption behavior of a near-critical Auid (pore Auid) in a mesoscopic slit-pore is investigated in
grand canonical ensemble Monte Carlo (GCEMC) simulations. In these simulations the chemical poten-
tial p( T) ( T is the temperature) is chosen such that the pore Auid is in thermodynamic equilibrium with
a homogeneous bulk Auid reservoir maintained at the critical density p, . These conditions mimic recent
adsorption experiments [M. Thommes, G. H. Findenegg, and H. Lewandowski, Ber. Bunsenges. Phys.
Chem. 98, 477 (1994)] in which, after a maximum, a sharp decrease of the pore auerage density p~ is ob-
served as T approaches T, from above (i.e., T~ T, + ). The GCEMC simulations offer a microscopic ex-
planation of this effect in terms of the local density p"'(z) of the pore Auid. It is found that the mean
density in the core region of the pore and the mean density of the first layers next to the walls exhibit an
opposite temperature dependence: while the density near the wa11 increases with decreasing temperature
(as is to be expected for sufficiently strong attractive Auid-wa11 interactions) the density in the core region
decreases and falls below p, as T—+T, +. This latter effect dominates in the near-critical region and
causes a net decrease of the pore density. This depletion effect is different from drying which is charac-
terized by a decreasing density in the vicinity of the walls. Depletion depends on the interplay between
the strength of the fluid-wall potential and the width of the pore's cross section. By employing a two-
fluid van der Waals model for the fluid in the core region and the bulk reservoir it is shown that de-
pletion is closely related to restricted density Auctuations in confined Auids.

PACS number(s): 05.70.Jk, 61.20.Ja, 68.15.+e, 68.35.Rh

I. INTRODUCTION

In the vicinity of the critical point (i.e., in the near
critical regime) many properties of a fluid change dramat-
ically. At the molecular level this may often be ascribed
to a power-law divergence of the correlation length g
which is a measure of the range of intermolecular spatial
correlations. Thus, if the critical point is approached
sufficiently closely, g will eventually become comparable
to the system dimensions even though the range of inter-
molecular potentials involved does not exceed a few
molecular diameters [1—3].

Consider, for instance, a Quid next to a solid surface
(i.e., wall) when the thermodynamic state of the fiuid per-
tains to the near-critical regime. This situation has re-
cently received a lot of interest because of its relation to
adsorption or wetting phenomena at solid-Quid interfaces
[4—6]. In a seminal paper Fisher and de Gennes investi-
gated the density profile of a semiinfinite near-critical
fiuid adsorbed on a single planar wall [6]. From an
analysis of the density profile Fisher and de Gennes con-
jectured that under these circumstances the surface ex-
cess concentration I varies as t ' ~'(v —P-=0. 3) in the
limit t~0 where t =(T —T, )iT, (T, T, actual and criti-
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cal temperature, respectively).
While g may increase without limit in the semi-infinite

model just described, a limit is posed to its growth if the
system is confined in one or more dimensions, a situation
which arises, for example, if a Quid is adsorbed in col-
loidal or porous adsorbents. Here it is conceivable that a
near-critical regime exists in which g would exceed the
size of microscopic or mesoscopic spaces to which the
system is confined so that its criticality will be affected by
confinement. The impact of confinement on criticality
has been investigated by Fisher and Nakanishi who con-
sidered an Ising magnet confined in one dimension by an
external potential (slit-pore geometry) [7,8]. They find a
shift of the critical point as well as of the entire coex-
istence curve of the confined magnet with respect to a
corresponding bulk system. Critical-point shifts of this
sort have also been reported by Thommes and Findenegg
who determined experimentally the phase behavior of
fluid SF& adsorbed in a mesoporous medium [9].

However, the nature of critical adsorption of Quids in
colloidal and porous adsorbents is still an open question.
For example, I has been measured for a system of SI'6 in
a colloidal (Vulcan 3-G graphitized carbon black) and a
mesoscopic porous medium (controlled-pore glass, mean
pore width around 30 nm) along near-critical isochores
[10,11]. A remarkable behavior is observed: for T)&T,
I increases weakly with decreasing temperature, as ex-
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pected. SufBciently close to T, this temperature depen-
dence appears to be inverted: I decreases sharply, con-
trary to the expected behavior [11].

To understand the temperature dependence of I, an
analysis at the microscopic level is indispensable, which
motivated the present work. As we will demonstrate, the
mechanism underlying the decrease of I in the near-
critical regime is rather complex. Thus, we are tempted
to investigate critical adsorption in suKciently realistic
models which can be employed only in computer simula-
tions. Relevant model systems are introduced in Sec. II.
To mimic the experimental conditions, also to be de-
scribed briefly in Sec. II, as closely as possible in parallel
simulations, the grand canonical ensemble Monte Carlo
(GCEMC) method is most apt. Section III is devoted to
a presentation of the results. In Sec. IV we present a
plausibility argument based upon a simple two-Quid van
der Waals model to interpret our results. The paper con-
cludes in Sec. V with a summary and discussion of our
findings, with particular emphasis on a molecular ex-
planation of the experimental results [11].

II. COMPUTATIONAL ASPECTS AND RELEVANT
MODEL SYSTEMS

In a series of key experiments, Thommes and Fin-
denegg investigated sorption of a pure fiuid (SF6) in a
controlled-pore glass (CPG) which is a mesoporous medi-
um consisting basically of cylindrical pores of a mean
pore width of around 30 nm [11]. The surface excess
amount I is measured as a function of temperature along
near-critical isochores using a volumetric technique. The
experimental setup consists of a reference cell of fixed
volume containing the Quid at the density of the isochore
to be considered and an adsorption cell with variable
volume in which a bulk fluid reservoir is in contact with
the CPG material. The pressure difference between the
two cells is monitored by a sensitive differential pressure
transducer. Measurements start at a temperature well
above T, at which the Quid density in the adsorption and
reference cells is adjusted by varying the volume of the
former until EP=O. As T is now lowered, a pressure
difference AP between the two cells builds up due to sorp-
tion of Quid by the substrate. At each temperature the
original density of the bulk reservoir is restored by
changing the volume of the adsorption cell until again
AP =0. Changes in the surface excess amount are given
in terms of volume changes of the adsorption cell (see
[9,11]for details).

The most striking effect observed experimentally under
these conditions is the already mentioned sharp decrease
of I if T~T, + [11]. The microscopic structure of the
fluid associated with this phenomenon is the focal point
of the remainder of this article. To address it we view
SF6 in the bulk reservoir and in the pores as open subsys-
tems in thermodynamic equilibrium with each other.
This renders GCEMC simulations computationally sensi-
ble in which the condition of thermodynamic equilibrium
is automatically observed by fixing chemical potential p
and temperature T as input parameters to the same value
in both subsystems [12—14]. Since depletion was found

where the subscripts refer to fluid-fiuid (FF) and Quid-

wall (FW) interactions, respectively; the superscripts
denote interactions between Quid molecules and lower'"
and upper' ' wall, respectively. We take

N —1 N

Upp= y y upp(r;J), (2)
i =1 j=i+1

where

u pp( r; ) —4Epp

' 12 6

is the Lennard-Jones (LJ) (12,6) potential. epp is the well

depth, o the molecular "diameter" and r;~
= ~r; —rj ~

denotes the distance between molecules i and j located at
r; and r. , respectively. In corresponding bulk reservoir
simulations (Sec. III A) U is given by the first summand
and on the right hand side of Eq. (1). Similarly,

N

UFw —g upw(zi )
1

where z "'=
~z;

—z'"' denotes the distance between mole-
cule i and wall k located at z'"'/s, =+0.5.

We consider two different model potentials to ascertain
the effect of their analytic form on the microscopic struc-
ture of the adsorbed Quid. Model A, which is often used
in MC simulations of adsorption [15], assumes the walls
to consist of X, solid atoms smeared" over a single
square plane of area s . If these atoms are supposed to
interact with each fiuid molecule via the LJ (12,6) poten-
tial, one has

u pw (z ) 2&apwdq cT
A (k) 2 cT

ZI

+ u „w(z,'"'),

10 4
C7

(k)
l

(5)

where c„~ denotes the well depth d, =TV, /s and the
solid atoms are of the same size as a fluid molecule.
Equation (5) results from Eq. (3) by averaging u pp ( r;J )

not only with the porous glass but also with a colloidal
graphite substrate [11],it was conjectured that it should
not depend on details of the pore geometry. In the simu-
lations it is then convenient to employ a model of a
mesoscopic slit pore in which a Quid of N structureless
spherically symmetric molecules is confined between two
plane-parallel walls separated by a distance s, along the z
axis of the (Cartesian) coordinate system. The walls are
perfectly smooth in the transverse (x,y) directions, that
is, they lack entirely any distinct crystallographic struc-
ture. This is not unreasonable in view of the experimen-
tal situation where the silicate structure of CPG bears no
particular resemblance to the molecular structure of SF6
which may be perceived as a spherically symmetric mole-
cule.

According to its geometry the configurational energy
of our pore model can be written as a sum of three terms,
namely,

U = UFF+ UFw+ UFw
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u„„(z,'"')= .
(k) 0i

to render the pore volume V=s, s unambiguous [12].
u„w is a typical short-range potential. However, it ig-
nores the fact that in experimental systems the (three-
dimensional) walls are composed of a large number of
crystallographic planes separated by some distance 5
which is determined by the crystallographic structure
and the lattice constant. Thus, we introduce model B, for
which

u Fw(zi )—u Fw(zi )

3

z,'"'+0.61o.

The second term on the right hand side of Eq. (7)
represents the field exerted by an infinite number of crys-
tallographic planes on a Quid molecule approaching the
walls' surfaces where 6=a. is assumed for simplicity. On
account of the additional term ~(z "') uFw incorpo-
rates long-range attractive Quid-wa11 interactions.

To enable a quantitative discussion below, it is useful
to introduce the parameter

7Tdg 0 eFw
2

2

which is a measure of the relative strength of Quid-wa11
interactions. For the results in this paper we choose
d,*=0.782717 (f =1.2295, EFw/E„F=1.0) (see Table I,
Sec. III B). Henceforth we follow common practice and
express quantities of interest in terms of the LJ (12,6) pa-
rameters OFF and o. or appropriate combinations of the
two [13]. These dimensionless quantities are denoted by
an asterisk. Vfe use periodic boundary conditions and
the minimum image convention in all three (bulk reser-
voir, Sec. IIIA) or x,y (slit-pore, Sec. IIIB) directions

over x and y while holding r; (the position of a fiuid
molecule) fixed and by adding a hard-wall background
potential

0 (k) ~P

[13]. The simulations employ the Taylor-expansion algo-
rithm recently proposed by one of us [14] to reduce sub-
stantially the computational effort required to generate a
numerical representation of a Markov chain of
configurations. Computational efFiciency is a particularly
important aspect as far as simulations in the near-critical
regime are concerned. Due to (physically significant)
large Auctuations, averages are prone to inacceptably
large statistical errors for typical run lengths of ~10
GCEMC steps normally employed in computer simula-
tions of non- (i.e, sub- or super-) critical thermodynamic
states. The aspect of statistical accuracy was noted and
investigated in depth by van Megen and Snook, who fo-
cused in particular on the pore average density obtained
in GCEMC simulations of a near-critical Quid confined to
a smooth-wall slit pore [16]. By applying statistical tests
to the particle-number distribution and taking into ac-
count in particular its "skewness" (defined in terms of the
second and third moments of this distribution) as a mea-
sure of statistical accuracy, van Megen and Snook esti-
mate an error of 1 —2% for their pore average density if
it is averaged over 2X10 configurations (p. 633 in [16]).
They also concluded that results for simple" averages
like density, energy, pressure, etc. , are indep ndent of
simulation cell volumes V if V* ~ 125 (p. 631 in [16]). Be-
cause of the system sizes used in the present work and the
typical length of a GCEMC simulation which exceeds the
ones reported by van Megen and Snook by a factor of 5

(see Table I), a smaller statistical uncertainty of ~ 1.5%
is expected for the results presented below. This applies
particularly to results for states in the immediate vicinity
of the critical point (T*~ 1.50) which are based on 3 —5

independent runs starting from different (random)
configurations. Although to our knowledge van Megen
and Snook's careful and detailed study is the only previ-
ous one dealing with near-critical phenomena in phases
confined to smooth-wall mesoscopic slit pores, further
comparison with their work is prevented because they
studied adsorption along one isotherma/ path instead of
an isochoric path. However, the more general remarks
concerning appropriate conditions for GCEMC simula-
tions in the near-critical regime still apply to our work.

TABLE I. Technical details of Monte Carlo simulations employing the Taylor expansion method

[14].

Ensemble Grand canonical

Starting configuration
Number of equilibration steps
Number of steps between subsequent averages
Total number of MC steps
Side length of simulation cell in the x-y plane s*
Side length of simulation cell in z direction s,*

Side length of displacement cube d„*
Surface density d,* of the walls
Radius of primary zone sphere r,*
Thickness of secondary zone cylindrical shell
hr*=r& —

r& in the x-y plane
Radius of neighbor list r&
Potential cuto8' (pressures, energies, etc.) r,

random
3.5X 10
2%-3X

10.0X 10
7.9925

20.0
0.05—0. 13
0.782 717
1.8
0.7

2.70
3.5o.
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More recently, Recht and Panagiotopoulos have em-
ployed the Gibbs ensemble MC method to investigate
artificial shifts of the location of the critical point in bulk
Lennard-Jones and square-well Quids caused by the inev-
itable microscopic dimension of the simulation cell [17).
From their detailed study these authors concluded that
for the three-dimensional Lennard-Jones Quid no sys-
tematic dependence of the critical-point location exists if
the simulation cells contain more than 200 molecules.
This situation is quite different if instead of the continu-
ous three-dimensional Lennard- Jones Quid a discrete
two-dimensional near-neighbor lattice gas is considered.
For the latter model Mon and Binder report a shift of T,
to higher values with decreasing size of the simulation
cell for both Gibbs ensemble MC and GCEMC [18].

1.38
1.40
1.425
1.45
1.50
1.60
1.70
2.00

14.94
15.11
15.33
15.55
16.00
16.90
17.81
20.63

0.149
0.159
0.180
0.195
0.228
0.303
0.372
0.577

0.365
0.364
0.364
0.365
0.367
0.369
0.365
0.368

TABLE II. Chemical potential p, pressure P, and bulk reser-
voir density pb as functions of temperature T from GCEMC
simulations of the homogeneous bulk reservoir I.ennard-Jones
(12,6) Auid. p( T~ T, + ) is obtained in a trial-and-error fashion
for a near-critical isochoric path subject to the condition
pq(T)= (N)/V—=p, (see Sec. IIIA).

Pb

III. RESULTS

A. Criticality of the bulk reservoir

To mimic the experiment subject to constraints of (a)
thermodynamic equilibrium between bulk reservoir and
adsorbed fiuid in the adsorption cell and (b) adsorption
along isochoric paths by varying T—+ T, +, we begin by
determining p =@(p„T~T, + ) in a trial-and-error
fashion for a number of temperatures by varying p at
T =const in individual GCEMC runs. The results for a
series of temperatures listed in Table II deviate from the
mean p =0.365 by less than 1.0%. This value is in close
agreement with p,'=0.36 given by Hansen and Verlet
[19].

To test consistency of our results, the pressure P

(9)

is computed via Clausius virial theorem [20], where
P=(k~T) ' and P„„is a correction due to the potential
cutoff (see Table I) which may be computed analytically.
An explicit expression is presented in [21] based upon the
assumption of a random distribution of molecules j

around any reference molecule i given a su%ciently large
cutoff. Results listed in Table II are plotted versus T in
Fig. 1. It turns out that the temperature dependence of P
can well be approximated by a straight line as one would
expect, for instance, for a van der Waals Quid along an
isochoric path. Fitting the van der Waals equation of
state

P= k~T —ap
1 —pb

'
by a linear least-squares procedure to the data in Table
II, the straight line in Fig. 1 is obtained. The fit also per-
mits us to compute the van der Waals constants a and b
and with them critical values of temperature T,*=1.38
and pressure P,*=0.134 are estimated which are well
within the range of values reported for the LJ (12,6) fiuid
[19,22 —24]. In addition, we analyze structural charac-
teristics of the Quid manifested in the radial pair correla-
tion function g' '(r) which is defined as

(N(r))
g r

4vrr b, rp

0.4—

0.2—

0.1
1.2

I ~ I r I ~ I i I i I i I i I i I

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

FIG. 1. The pressure P* as a function of
temperature T* of a homogeneous bulk Quid
from GCEMC simulations in which the chemi-
cal potentials p(T) have been chosen accord-
ing to the condition p *(T) =0.365 =—p,*.
p *(T) is the average density obtained by
averaging over the entries listed in Table II.
The solid line represents a fit of the van der
Waals equation of state to the simulation data
(see Sec. III A). Also shown is the location of
the critical point obtained from the fit (X) at
the intersection of the horizontal and vertical
lines.
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B. Microscopic structure of the pore Quid

Having determined p(p„T~T, +) for the bulk fiuid
reservoir, we are now in a position to proceed with paral-
lel CxCEMC simulations for the pore Quid. Since we in-
tend to investigate the confined Quid s microscopic struc-
ture, the local density

(i) (N(z) )
p z

s b,z
(13)

where (N(r) ) is the number of molecules in a spherical
shell of radius r and thickness Ar centered on a reference
molecule. Angular brackets denote an ensemble average
over a sufFiciently large number of (statistically uncorre-
lated) configurations (see Table I) considering each mole-
cule in a particular configuration as a reference molecule
which is subsequently included in the averaging process.
By standard textbook arguments one can furthermore
show that in the grand canonical ensemble [25]

pP 'i~T=1+p f [g' '(r) —1]dr

(12a)

where o.& is the variance of the particle-number distribu-
tion which is a direct measure of particle-number Quctua-
tions. Thus, the characteristic divergence of the iso-
thermal compressibility ~T—+ ~ at the critical point can
be attributed to diverging particle-number (i.e. , density)
Quctuations but also to long-range spatial correlations,
i.e., a limiting behavior of [25]

limg
' '(r) ~ lim exp( —r/c) 1

t~O 1+r] 1+q

(12b)

where g and v denote critical exponents. Plots of g' '(r)
in Fig. 2 reveal the expected long-range correlations in
the near-critical regime: for a thermodynamic state
representative of the near-critical regime g' '(r) appears
to be shifted slightly but significantly to values larger
than 1.0. As expected from Eqs. (12a) this shift is the
more pronounced the closer T is to T, and is detected for
temperatures T*~ 1.60. Thus, in the model system these
lower-temperature states belong to the near-critical re-
gime. However, it is noteworthy that this temperature
range appears to be extended compared with experimen-
tal systems. Even though long-range correlations seem
rather weak and are superimposed to short-range correla-
tions (caused by intermolecular interactions) for r (4.0,
the "tail" in g' '(r) indicative of the fiuid's criticality ap-
pears to decay nearly negligibly within the range of inter-
molecular separations accessible. Via Eq. (12a) a "tail" in
g' '(r), however small, gives rise to the characteristic
divergence of ~T in a suKciently large system. If, on the
other hand, the temperature is well outside the near-
critical regime, g' '(r) exhibits only short-range correla-
tions which do not exceed the third neighbor shell
(r*=—3.0) because of packing characteristics of fiuid mol-
ecules at the relatively low density p*=0.365. This can
also be seen in Fig. 2 where g' '(r) does not have any tail
at T*=2.00.
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FIG. 2. The radial pair correlation function g' '(r) as a func-
tion of intermolecular separation r* for a homogeneous bulk
fluid at p*=0.365=p,*. (a) T*=1.36=T,' (o); T*=2.00 (~).
(b) The same as (a) but on enhanced scales to demonstrate the
fluid's criticality. In addition, results for T*=1.45 (0) and
T*=1.60 ( ) are also shown in (b).

is the simplest quantity to deliver that information. N(z)
is the number of molecules in a thin layer of thickness Az
parallel to the walls and centered on z. In general, the lo-
cal density depends on the (vector) position r of a mole-
cule with respect to the walls. However, because of the
external field's (represented by the walls) symmetry in
models A and 8, p'"(z) depends only on its scalar argu-
ment z [26]. p"'(z) is symmetric with respect to the plane
centered at z*=0.0. Plots of p'"(z) are therefore always
shown only in the lower half of the pore space
(
—0.5 ~ z/s, ~ 0.0) and are averaged over symmetrically

equivalent points in the regimes z ~ 0 and z ~ 0.
We begin by considering model A and choose s,*=20.0

throughout and f =0.984 (eFw/EFF=0. 8) [see Eq. (8)] to
represent a mesoporous material in which the strengths
of Quid-Quid and Quid-wall interactions are nearly equal.
In Fig. 3, plots of p'"(z) are presented corresponding to
these settings and for three selected temperatures,
T' =1.36, 1.45, and 3.00. Regardless of T, p"'(z) exhib-
its an oscillatory structure in the vicinity of the walls that
reQects layering of Quid molecules. Layering is a direct
consequence of fiuid-wall interactions [27] and apparently
does not persist for distances ~z,

' '
~

~3.0 from either



6380 MARTIN SCHOEN AND MATTHIAS THOMMES 52

0.9

0.8—
(a)

0.5—

M 0.4-

0.3—

0.1—

-0.5 -0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1

zls
-0 05 0

0.5

0.45— (b)

W.~ os 0 M $$ S
0 35 ~(~~ ~~%yP+Ql ~ %% $~% ~ % ~-—— ~

G o 0

0.25—

0.2—
-0.35 -0.25 -0.05

FIG. 3. The local density p"' (z) as a function of position z
in a mesoporous slit-pore ls,*=20, model A, f =0.9836). For
reasons of symmetry (see text) only the lower half of the pore
space is shown. (a) T*=1.36—= T,* (O); T*=1.45 ( );
T =3.00 (~). The horizontal solid line represents the constant
bulk reservoir density p*=0.365=—p,*. The vertical solid line
represents the range of the Auid-wall interaction potential (see
Sec. III 8 for a definition). (b) The same as (a) but on enhanced
scales to demonstrate depletion in the core region of the pore.

wall. This is not surprising because for ~z,
'"'

~

~3.6
( ~z,.'"'~ /s, =0.18), u „"w(z,'"') is less than 1.0% of its
minimum value. Thus, it is reasonable to define a wall re-
gion —0.5 ~z/s, ~ —0.32 in which the fiuid's (normal)
structure is dominated by fluid-wall interactions and a
core region —0.32~z/s, ~0.00 in which fiuid-wall in-
teractions are negligible. Note that the envelope of
p"'(z) in the wall region exceeds by far the bulk critical
density p, that is, under the present conditions the fluid is
adsorbed by the walls.

In the wall region the extent of layering (i.e., adsorp-
tion) diminishes with increasing T which is reflected by a
decreasing peak height in p"'(z). This is due to the
higher (average) kinetic energy of fiuid molecules at
higher T which enables them to "escape" the regime of
attractive fluid-wall interactions more easily. In the cor-
responding core region nothing spectacular is observed as
far as thermodynamic states well off the near-critical re-
gime (i.e., T* ~ 1.60) are concerned: the core region den-
sity is constant at p —=p„ that is the core region is homo-

geneous and its properties are therefore identical to those
of the bulk reservoir in thermodynamic equilibrium with
it. This is expected because core fluid properties are
dominated by fluid-fluid interactions.

However, a surprising phenomenon is observed for
states belonging to the bulk near-critical regime (i.e.,
T' & 1.60): the core region appears to be depleted with
respect to the bulk density p, . Depletion is more pro-
nounced the larger the distance of a reference point from
both walls. The entire cross section of the pore is thus in-
homogeneous compared with noncritical states where in-
homogeneity is restricted to the wall region. Depletion
also becomes more pronounced as T, is approached more
closely. This is obvious from Fig. 3(b), where the nega-
tive deviation of p"'(z) from p, in the core region is

larger the closer T is to T, . It is furthermore emphasized
that because of adsorption at the walls, depletion must
not be confused with a drying phenomenon (see also Sec.
V). Instead, depletion should be perceived as a novel
phenomenon pertaining to the bulk near-critical regime.
This is concluded from Fig. 3 and is furthermore corro-
borated by Fig. 4, where p"'(z) is plotted for
T =1.36—= T,' and p = —14.75, —15.00, the latter cor-
responding to a subcritical density pb =0.345.p,'. Thus
depletion is not expected, should adsorption be carried
out in a mesoporous medium along a noncritical bulk iso-
chore where g' is small compared with the pore dimen-
sions and varies comparatively weakly with T (cf. Fig. 4).

To ascertain the influence of intermolecular interac-
tions on the depletion phenomenon, we begin by investi-
gating the effect of the analytic form of the fluid-wall po-
tential and employ model B, which is known to provide a
more realistic representation of the walls [28—30] as far
as models of specific experimental systems are concerned.
The major difference between models 3 and B is an addi-
tional attractive contribution proportional to (z "')
present only in the latter (see Sec. II). Plots in Fig. 5 re-
veal that depletion occurs in both models while the fluid
is still adsorbed by the walls. In fact, by adjusting f
properly the extent of depletion can be made nearly the
same for both models (see Fig. 6). Because of the addi-
tional attractive contribution, f must be smaller for mod-
el B. Since we refrain from engaging in a quantitative
comparison between experiment and simulation and wish
to focus solely on qualitative aspects of the depletion
phenomenon, we conclude from Figs. 3—6 that the some-
what simpler model, 3, suffices under the present condi-
tions.

Since, on the other hand, the relative strength of the
fluid-wall interaction does affect the extent of depletion
(see Fig. 6), it seems worthwhile to investigate the
influence of f on it in more detail. Therefore, we present
in Fig. 7 the average pore density p =(X)/s s, as a
function of f for two different temperatures
T*=1.36=—T,* and T'=1.60. Both data sets can be well
approximated by linear least-squares fits and reveal
markedly different slopes. The latter seems plausible be-
cause at T*=1.60 the (relatively small) wall region is
predominantly affected by variations in f, leaving the
core-region density at p„„(z)—=p, =const. On the con-(&)

trary, both core and wall regions are affected simultane-
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where ( N (z „p12)) is the average number of molecules in
an annulus of radius p, 2, width hp&2, and height hz
around a reference molecule located at z&. To achieve
normalization [i.e., limz g' '(z1,P12)=1 for noncriti-

~i2
cal thermodynamic states] the average density of the an-
nulus

ously at T = 1.36 (see Figs 3 and 5). Due to their
different slopes, a value f;„„,=1.201 exists at which the
two fits intersect. Based upon the value of f;„„„two
classes of systems are discernible. For f (f;„„„de-
pletion is expected as p decreases with T~T, +. The
corresponding plots in Fig. 8 indicate that in the core re-
gion p"'(z) does not approach p„but a distinctly smaller
value, which turns out to be smaller the smaller f is.
From the form of p"'(z) we conclude that for sufftciently
low values of f, drying at the walls is superimposed and
enhances depletion. The form of p'"(z) in the presence of
drying (f =0.0615, see Fig. 8) is qualitatively similar to
results obtained by density functional theory for weak
fiuid-substrate interactions [31] and by integral-equation
methods [32]. However, models in which drying dom-
inates strongly are regarded as inappropriate with respect
to the experimental situation [11]. For f )f;„„,the tem-
perature dependence of p is inverted, that is p increases
as T~T, +. This latter class does not exhibit depletion
as can be seen in Fig. 8: instead p'"(z) approaches p,
from above. Thus, the relative strength of the Quid-wall
interaction should not exceed a certain threshold for de-
pletion to occur in the near-critical regime of thermo-
dynamic states. The precise value of the threshold de-
pends on details of the model and on s, in particular.
Thus, depletion depends on a subtle interplay between s,
and f;„„,[33].

Finally, we wish to delve a little bit deeper into the mi-
croscopic structure of confined near-critical Quids by con-
sidering the in-plane pair correlation function

(N(z1, P1z) )
g (Z1,P12)— A&)2n p1zb p1zhzp (z1 )

zi +hz/2
(14b)
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needs to be incorporated in the denominator of Eq. (14a).
Thus, g' I(zI,P1z) is a measure of transuerse structure
(i.e., structure parallel with the walls) whereas p"'(z) pro-
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IV. DEPLETION AND RESTRICTED DENSITY
FLUCTUATIONS

The GCEMC simulations discussed in the preceding
sections provide clear evidence that under favorable con-
ditions depletion in the core region of a mesoscopic pore
occurs if the critical point of a pure bulk Quid is ap-
proached from above. Nakanishi and Fisher investigated
order parameter profiles for an Ising magnet in a mesos-
copic slit pore with attention to the example of phase sep-
aration in confined binary fiuid mixtures I8]. They found
that near criticality the order parameter at the center of
the pore (midpoint value) is negative with respect to the
bulk value. However, in Nakanishi and Fisher's work the
critical point is approached from below. Thus, to under-
stand depletion if the critical point of a pure Auid is ap-
proached from above, we present here a plausibility argu-
ment that suggests a simple mechanism. Let us consider
a composite system consisting of an infinitely large bulk
reservoir in thermodynamic and mechanical equilibrium
with a Quid confined between two parallel walls. The dis-
tance s, between the walls is assumed to be sufficiently

large that a core region may be defined in which the Quid
is homogeneous at the bulk density, provided T is high
enough. Since depletion occurs only in the core region,
we simplify our argument by considering only the core
region explicitly, ' the remainder of the pore, namely, the
walls and the fiuid adsorbed by them (i.e. , the wall region)
is treated only implicitly: the wal1 region may act upon
the core fiuid as a mean external field if g is large enough
that the field may be transmitted across an appreciable
portion of the core Quid by means of density fiuctuations.

Let us now subject bulk and core Quid to a gedanken
experiment in which we lower T along the critical iso-
chore starting from a sufFiciently high value so that
p„„=p„„II,=p, ,„I„and g„„=gb„I„. Eventually a thresh-
old temperature To will be reached at which
g„„=0 (s, ). The two subsystems are now separated and
the temperature is lowered by dT, that is, T'= To —dT
while maintaining p„„=p, b„&k

=const Since
g„„=0 (s, ) an inspection of Eq. (12a) reveals that
&T„„(sc T b„&k because density Auctuations are
suppressed in the core. What impact may the different
compressibilities have? To answer this question one
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FIG. 8. The effect of the relative strength of the fluid-wall in-
teraction potential f on the local density p' I(z) (model A,
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demonstrate the effect in the core region of the pore.

FIG. 9. The in-plane pair correlation function g"'(zl, p») as
a function of intermolecular separation p» (model

f =0.9836, T*=1.36—= T,*) for molecules located in the con-
tact layer () and in a Virtual layer centered on z*=0 (0 ) (see
Sec. IIIB). (b) The same as (a) but on enhanced scales to
demonstrate the eFect of the core fluid's criticality.
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1 9PP =p ——rt
1 ——'r 83

(15a)

where r =rb„lk=p/p, b„lk=1 or r =r„„=p/p, „„and
t =T, b„lk/T' or T, „„/T', respectively. Similarly, one

(a)

1.6—

1.2—

needs to establish an explicit relation between ~T and
other thermophysical properties, such as pressure P, for
instance. Obviously, this program requires knowledge of
an equation of state for bulk and core Quid. According to
the results of Sec. III A it seems natural to adopt the van
der Waals equation for the bulk Quid. Unfortunately, no
such simple equation of state is available for the core
Auid a priori. However, if one realizes that T Tp at
which bulk and core Quid were in the same thermo-
dynamic state by definition, it seems permissible to em-
ploy the van der Waals equation for the core Quid at T',
too. However, the molecular parameters a and b for the
core Quid may differ from those for the bulk Quid because
different compressibilities at the same T and p imply
different critical points on account of confinement, in ac-
cord with other theoretical [8] assertions. In other
words, at T' & Tp the Quid in the core region is viewed as
being effectiuely different from the bulk ffuid. To proceed
we rewrite Eq. (10) in a slightly different form as

has from Eq. (15a)

BP 1 9paT'=pp =p
2

— r—t
p lv T (1—

—,'r)
(15b)

&0, (16a)

according to the foregoing discussion where we have also
employed rb„&k

= 1. Likewise one finds

—9
core bulk ) 8Pc,bulked bulk core core

—
—,'(1 —r„„)])0, (16b)

which must be positive because the right-hand side of Eq.
(16a) is a positive quantity. Now suppose the subsystems
are reconnected. Because of the pressure difference,
matter must flow spontaneously from the core region into
the bulk reservoir until the condition of mechanical sta-
bility P„„(p„„,T') =Pbu, k(pbu, k, T') at p„„&pb„,„ is re-
established. This suggests depletion as a phenomenon by
which mechanical stability in a composite system is main-
tained if the correlation lengths of its constituents be-
come different, an idea which we submit for further ela-
boration by one of the well-established theoretical ap-
proaches to critical-point phenomena.

Since we have made the transformation Tp~T' along
the critical isochore of the bulk fiuid and because dT is
infinitesimally small, we simplify Eqs. (15a) and (15b) for
the core Quid by expanding the first terms in brackets in a
Taylor series around r„„=1, which yields

—I —j.
P(+T, core +T,bulk)

4Pc, bulk l. bulk rcore core ( core ) I

0.8—
V. DISCUSSION AND CONCLUSIONS

0.4—

t I l~ I I I0 s t «~ i & I r I

0.5 1 1.5 2 2.5 3 3.5 4

1.15—

1.05—
CD

~ Oei,
~ ggO

0 ~cP ~
~ 0 v'1 ~ 0 +~ ~ v ~ rv v~ v v y ~ 0 ~

~ ~ g ~ 00 0 ~
~ ~ Wp O" 0 ~

0.95—

0.9—

0.85 —'

2 2.5

J

3.5 4

FIG. 10. (a} Same as Fig. 9(a), but for T*=2.00. (b) Same as
(a), but on enhanced scales to demonstrate the noncritical char-
acter of the wall Quid.

In this article we analyze the microscopic structure of
a Auid confined to a model slit pore for a number of ther-
modynamic states along a near-critical isochore of a
homogeneous bulk Quid reservoir in equilibrium with the
confined phase. To foster a quantitative discussion, it is
convenient to distinguish between wall and core regions
based upon the range of the Quid-wall interaction poten-
tial. The wall region is characterized by layering, that is,
p'"(z) is an oscillatory function of position with respect
to the walls, indicating that the Quid is adsorbed by the
walls. Layering is affected by both the relative strength
of the Auid-wall interaction potential and its analytic
form. In the core region the impact of the different form
of the Quid-wall potential on details of the Quid s micro-
scopic structure can be compensated for by adjusting f
properly. If T is sufficiently larger than T, of the homo-
geneous bulk reservoir, the core region appears to be
homogeneous, too, i.e., p,",,',(z) =p, =const. In the near-
critical regime T*(1.60, however, the core region ap-
pears to be depleted with respect to the bulk reservoir,
i.e., p,",,',(z) &p, . This effect is more pronounced the
closer Tis to T, .

From the density profiles p"'(z) in Figs. 3 and 5, we
are now in a position to give a microscopic rationale for



52 MICROSCOPIC STRUCTURE OF A PURE NEAR-CRITICAL. . . 6385

04

0.38—

0.36—

0.34—

0.32—

FIG. 11. The pore average density p~ as a
function of temperature T* for mode1 A at

f =0.9836 ( ~ ), model B at f =0.86065 (o ),
and f=0.7377 (A) obtained by numerical in-

tegration of p'"(z). At T*=3.00 the three
data points fall on top of each other. Also
shown is a cubic spline ( ) to the results
for model A to guide the eye. The solid hor-
izontal line represents the constant density

p =0.365 -=p,* of the bulk reservoir.

0.3
1.2 1.4 1.6 1.8 2 2.2

T"
2.4 2.6 2.8 3 3.2

the experimentally observed temperature dependence of
the surface excess I along the critical isochore of the
bulk reservoir. According to the microscopic definition

S

I (T)=I [p"'(z; T) p, ]dz =s—, fp (T) p, ], —
0

the temperature dependence of I ( T) along the (bulk) crit-
ical isochore is identical to that of the pore average densi-
ty p~(T). In Fig. 11 p~(T) is plotted as a function of T
for models A and B and three different values of f. At a
sufticiently high temperature of T*=3.00,
p~(T)—=0.365-=p, regardless of f and the form of the
fiuid-wall interaction potential. As T is lowered, p (T)
increases until a maximum is reached. The increase is
caused by stronger adsorption at the walls due to lower
(average) kinetic energy of fiuid molecules while the core
region density remains constant at p =—p, because T is still
sufticiently higher than T, to prevent depletion. Howev-
er, as T is lowered further, p (T) eventually decreases
and reaches a value at T*= 1.36—=T„which is
significantly lower than p, in all three cases displayed in
Fig. 11. According to Figs. 3 and 5, this decline of p~(T)
is a result of depletion in the core region which competes
with a still increasing tendency of the walls to adsorb
more Quid molecules. Therefore, depletion must not be
viewed as drying at the walls. Since the volume of the
core region exceeds by far the volume of the wall region
at s, =20, the "negative" contribution to pz(T) from the
core region overwhelms the "positive" contribution from
the wall region below a certain temperature threshold so
that the net effect causes p ( T) from GCEMC to exhibit
a temperature dependence strikingly similar to its experi-
mental counterpart (see, for instance, Fig. 3 in [11]). We
conclude that the experimentally observed decay of the
surface excess I along the critical isochore as T~T, +
is caused by an increasing tendency to remove molecules
predominantly from the core region. However, details of
the effect depend crucially on an interplay between the
relative strength of Quid-wall interactions and pore size.

The origin of depletion is elucidated by a gedanken ex-

periment employing a homogeneous two-Quid van der
Waals model for core region and bulk reservoir. On ac-
count of confinement of the Quids, compressibilities of
core and bulk phases will eventually become different
below some threshold temperature To as T~T, + along
a near-critical isochore. Within the framework of the
van der Waals equation of state, different compressibili-
ties in two Quids maintained at the same p and T implies
different critical points. In other words, at T (To the
core Quid is e+eetiuely difFerent from the bulk Quid. A
shift of the critical-point location inevitably affects the
temperature and density dependence of the pressure in
the core Quid. Hence, depletion is a phenomenon by
which mechanical stability between core and bulk Quids
is maintained at T & To. Besides confinement, a
sufficiently close approach of the bulk critical point is in-
dispensable in order for depletion to occur. Only if the
bulk Quid is sufficiently critical does g reach a value com-
parable to the dimensions of the pore (i.e., s, ). From this
point of view, depletion is a phenomenon driven by the
criticality of the bulk Quid. The effect should, in princi-
ple, be independent of pore geometry and may be of
significance whenever fluids in contact with mesoporous
and colloidal materials approach their critical point.
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