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Dynamics of binary liquids in pores
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A computer simulation is performed to study the dynamics of binary liquids in the pores of Vycor
glasses. The pores are modeled with glass walls that form randomly interconnected tunnels. When the
relaxation is probed with a particular wavelength, the time autocorrelation function depends on whether
or not there is a significant periodic or quasiperiodic structure in the distribution of the walls with that
wavelength. If there is not, the relaxation may be fitted as the sum of an exponential term and a nonex-
ponential activated term. If there is, the relaxation shows a long-lasting tail that can be fitted by intro-
ducing an additional constant term in the above fitting function. The relaxation time measured from the
exponential term supports the dynamic scaling with the same dynamic exponent as in the bulk. In the
long length scales, however, the data show a trend of deviation from this scaling in the direction of faster
relaxation. We interpret this behavior as a confining effect of the walls.

PACS number(s): 68.45.Gd, 05.40.+j, 64.60.Ht, 05.50.+q

I. INTRODUCTION

When binary liquid mixtures are embedded in the
pores of Vycor glass [1—5], the glass walls affect the equi-
librium dynamics of the liquid mixture in a profound
way, which is not yet fully understood. If the pore size is
much shorter than the correlation length, the effect is
well explained with a random-field model. Dierker and
Wiltzius (DW) [2] performed a dynamic light scattering
experiment using samples of lutidine-water mixtures em-
bedded in the pores of a Vycor glass of pore size 30 A.
The results for the time autocorrelation function may be
fitted remarkably well as the sum of an exponential
diffusive term and a nonexponential activated term. The
activation term is given by exp( —x ), where
x =in(t/ro)/in(rlro) demonstrates the activated dynam-
ic scaling that Huse [6] predicted for random field Ising
models with a conserved order parameter. Here ~o is the
smallest time scale.

Aliev, Goldburg, and Wu (AGW) [5] explored the op-
posite regime, where the pore size is much larger than the
correlation length, using samples of carbon
disulfate —nitromethane mixture embedded in the pores
of a macroporous glass with pore size as large as 1000 A.
The results for the autocorrelation function show
different patterns of relaxation depending on whether the
samples are isolated or kept in contact with a reservoir.
When the samples are isolated as in the experiment by
DW, although the pores should be large enough for the
mixtures to behave as in the bulk, the relaxation is not
exponential; the data can only be fitted with 1/(1+x ).
While this is a very slow function, the relaxation time
entering in x is shorter than the relaxation time in the
bulk. When the scattering angle is small, this
phenomenon is even more pronounced and the usual q
dependence of the relaxation rate on the wave vector
breaks down. AGW explain this anomalous q depen-
dence in terms of a Brownian particle that diffuses in a
much restricted one-dimensional box. These cannot be

regarded as a result of random fields.
Liu et al. [7] argued that much of the random-field-

like behavior, such as metastability, may also be ex-
plained as a wetting effect in a confined geometry and in-
troduced a single pore model. But the time autocorrela-
tion function has not yet been computed with any model
of glass pores. The purpose of this paper is to compute
the time autocorrelation function treating the effects of
the glass walls in far more detail than is implicit in the
random-field models. The model is constructed in Sec. II.
The results for the time autocorrelation function are
presented in Sec. III. The pattern of relaxation is the
same as that found by DW. In Sec. IV we show that the
results for the relaxation time in the exponential term ex-
hibit a limited form of scaling behavior, but with a not-
able pattern of deviation when the scaling variable in-
volves small wave vectors. This is interpreted as a
confining effect of the glass walls.

II. MODEL

The pores of Vycor glass look like interconnected tun-
nels. The structure is random in the sense that the tun-
nels wind, split into two, etc., all in an unpredictable
fashion, but the tunnel size is distributed rather sharply
[8,9]. Thus we model the glass pores with randomly in-
terconnected tunnels of fixed width. On a square lattice
of 256X256, —", =32 equally spaced horizontal rows are
chosen. Along each of these rows, draw straight lines, 16
lattice spacings long, with random gaps, varying in length
between 1 and 12 lattice spacings. To maintain the
periodic boundary condition, one line or more on each
row may be less than 16. All the lattice sites on these
lines are to be occupied by impurity atoms, which make
disconnected walls.

Two comments are in order concerning this model for
the walls of the glass. First, the disconnected walls create
many loosely interconnected tunnels. By tunnels we
mean narrow regions bound by two walls, one above and
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one below, with openings at the left and right ends. In
this regard, the model may be regarded as a multi-pore
extension of the single-pore model of Liu et al. [7].
Second, the model is unrealistic in many ways; the walls
are all thin, straight, disconnected, and on horizontal
rows. It is easy to generate more realistic models by per-
forming a spinodal decomposition [9,10], but instead we
wish to address a more dificult problem with a simpler
model. Frisken, Ferri, and Cannell [11]and Lin et al. [4]
emphasized the importance of the adsorption clusters
(layers) in static behavior. These clusters are expected to
relax very slowly, if at all. With the thin and straight
walls distributed as in the model, we have forced this
effect to occur in only a certain number of wave vectors.
The contrast in the relaxation pattern in these wave vec-
tors and elsewhere will provide us with useful informa-
tion about the role of the adsorption clusters in dynamics.

Consider now a binary mixture of A and B represented
by ferromagnetic Ising spins. The spins occupy all lattice
sites except the sites on the walls. The impurity atoms in
the walls remain frozen and impose a field (chemical po-
tential} on their neighboring spins so as to favor one com-
ponent, say, the minus spins, in their vicinity and
effectively to push the plus spins away from them. The
Hamiltonian is given by

H= —J g S;S.+gh;S;,
(ij) i

where S;= + 1 ( A atoms), S;= —1 (B atoms), S;=0 (wall
atoms}, and the symbol (ij ) limits the sum to nearest-
neighbor pairs of spins. The field in the second term is
given by h; =hn;, where h is a constant and n; is one if
spin i is adjacent to a wall and zero otherwise. The time
evolution is governed by the Kawasaki spin exchange dy-
namics, which allows only exchanges of nearest-neighbor
pairs of opposite spins, thus conserving the order param-
eter.

The composition ratio A:B is 50:50 and h =0.8 (with J
and the Boltzmann constant set to unity). We will inves-
tigate the equilibrium dynamic behavior in the one-phase
region at T=1.5Tc, 1.1T&, and 1.05T&, where Tz is the
transition temperature of the pure two-dimensional Ising
model.

quasiequilibrium state. For T=1.1T& and 1.05T&, this
process of thermalization takes more time than the actual
measurements. Once the thermalization is completed, we
take the last configuration as the initial configuration [see
Eq. (3)] and compute the autocorrelation at the delay
times t given by t, =1, t2 =2t, , t3 =2t2, . . . , and
t

& &

= 1024 MCS. This is repeated approximately 1500
times always taking the last configuration of the preced-
ing measuring period as the initial configuration. Taking
the average over these 1500 measurements, we obtain the
final results for each delay time. For each temperature
this takes approximately 1.536 X 10 MCS.

First, we compute the glass structure factor with the
result shown in Fig. 1(b). The wave vector q is given in
units of 2'/L, where L =256. The corresponding wave-
length is A, =L/q. There are two prominent peaks at
q =32 and 64 and two faint peaks at q =13 and 22. The
two strong peaks at q =32 and 64 are the Bragg peaks re-
sulting from the regular placement of the rows of walls
eight lattice spacings apart along the vertical direction.
The two faint peaks come from the quasiregular wall
structure along the horizontal direction; the peak at
q =22 corresponds to the average wall length and the
peak at q =13 corresponds to the average length of the
quasibasic units in each row of walls, namely, a wall and
a gap. The structure factor hardly falls off starting from
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We measure the equal-time static structure factor

S(q) = (p(q )p( —
q ) )

and the equilibrium time-autocorrelation function

g(q, t)=(p(q, t+t0)p( q, t0)/S(q—) ),

(2)

(3)

~~~mr~ g(QQQ

where p(q, t ) =+exp(iqr, )S, is the concentration fiuctua-
tion and the ensemble average includes the average over
different initial times denoted by t0. The time will be
given in units of Monte Carlo steps (MCS). In one MCS,
each nearest-neighbor pair is chosen once on average and
an exchange is attempted. For each temperature, we
thermalize the spin configuration for a long time until the
equal-time structure factor shows no persistent pattern of
change, which we take as a sign of an equilibrium or
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FIG. 1. (a) Spin structure factors (arbitrary units). (b) Glass
structure factor (arbitrary units). The wave vector q is given in
units of 2m. /L, where L =256 lattice spacings.
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about q =35, which is due to the small walls and gaps in
the small length scales.

As Fig. 1(a) shows, the four peaks of the glass structure
factor reappear in the spin structure factor. This sug-
gests that the composition Auctuations along the horizon-
tal direction have the same pattern as the wall structure.

is is because adsorption clusters of species 8 coat the
a s. e presence of such adsorption clusters (layers)

was observed in two previous experiments [4 9].
Fi urigure 2 shows g(q, t ) as a function of q after the long-

J ~

est delay time t» that we have measured. We find here
again the q-dependent signature of the wall structure
The two peaks at q = 13 and 22 are now quite noticeable,

Thus
suggesting that the adsorption clusters relax ver sl 1 .x very s ow y.

n o wo ynamlcus the walls have divided the atoms into two d
groups: t e semifrozen atoms in the adsorption clusters
and the free atoms elsewhere, as observed by Frisken and
Cannell [12] for binary liquids in gel.

In Fig. 3 we attempt to fit the same data as a function
of time in the form of

I I I I I I I I
I

10
I I I I I I I I

100 1000

g(q, t ) = ADexp( t/rD )—
+ A &exp[ —[1n(t)/ln(rz )] j, (4)

where the first exponential term represents the fast modes
of relaxation due to the free atoms and the second nonex-
ponential term the slow modes [6] due to the semifrozen
atoms. This works quite well in the regime of small q,
i.e., when the system is probed with a wavelength larger
t an the length scales of the periodic or quasiperiodic
structures of the walls. The fitting turns out to be reason-

because the delay time was not extended long enough. It
definitely does not work when the wavelength matches
the periodicity of the walls along the vertical direction or
t e quasiperiodicity along the horizontal direction. The
ormer is the case at q =32, 64, . . . and the latter ap-

FIG. 3. Time autocorrelation function as a function of delay
time t (in units of MCS) at T=1.1T th le arge open symbols
represent the computed data points and the small filled circles
the best fit; the lines connect the computed data points. The
symbols represent q =10 (circles), q =32 (diamonds), q =20
(squares), q =30 (triangles), and q =40 (stars).

proximately at all q )40. In these cases, g (q, t) exhibits a
long-lasting tail that cannot be fit with E . (4). If

e at the tall has a nonvanishing asymptotic limit,
then the data can be fit by introducing an additional pa-
rameter C to Eq. (4). Since the data are taken at finite
times, this does not necessarily mean that ( t = Oo

, i only means that the relaxation slows down as if it
were approaching a finite asymptotic limit. Figures 4—7
s ow the results for the fitting parameters. The results
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FIG. 2. Ti. Time autocorrelation function (unitless) as a function
of q after the longest delay time t&1 = 1024 MCS.

FIG. 4.. Ratio of the activated amplitude versus the activated
amplitude plus the nonactivated amplitude.
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FIG. 5. Nonactivated relaxation time. FIG. 7. "Nonrelaxing" constant term.

for A„/(A„+An)and „rhswothat the activation
term becomes more and more important as q increases
and also as T decreases. The results for C show a pattern
similar to g(q, t

&& ), as expected.
It is dif5cult to determine the fitting parameters accu-

rately because with y alone one cannot distinguish
different combinations of A~ and AD very sharply nor,
for a given A z, different combinations of ~z and C.
Rather surprisingly, ~D is quite different in this regard.
The results for ~z are less sensitive to the choice of these
combinations and prove more reliable, except at very
small q and very large q. This is because at very small q
there is not much relaxation even when the delay time t
reaches t ». (The case of T = l. 5 Tc is an exception.

Here the relaxation is fast enough to allow the data to be
fitted down to q =1.) At large q, on the other hand, the
relaxation is very fast and the data cannot reAect the
effects of the exponential term adequately; by the time t
reaches t&, a considerable amount of relaxation has al-
ready occurred. We will analyze the results for ~D fur-
ther in Sec. IV.

Figure 8 shows a typical morphology at T=1.05TC.
The adsorption clusters clogging up the tunnels are quite
noticeable; such overgrown adsorption clusters will be
called plugs, following Liu et al. [7].There is also a small
number of tunnels with adsorption clusters anchored to
one single wall, thus allowing some nonpreferred atoms
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FIG. 6. Activated relaxation time.

FIG. 8. Typical morphology at T = 1.05T&. The large black
dots represent the wall atoms, the gray shade the preferred
atoms, and the blanks the nonpreferred atoms.
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in the tunnel. In such tunnels a plug is either in the pro-
cess of being formed or in the process of being broken up.
The fact that such tunnels constitute only a small fraction
of the total indicates that the plugs remain, once formed,
for a long time, which is the cause of the activated relaxa-
tion. Figure 9 shows the morphology at T = 1.5 Tc. The
plugs are now quite unstable and have turned into less
dominant adsorption clusters of very ragged shape. Al-
though the dynamics is faster than at T =1.05T~, the
presence of the walls still leads to an activated relaxation.
It should be mentioned here that the dynamics of the
pure Ising model itself is activated not only at T =0 [13]
but also at T) Tc [14]. In the presence of the field term,
we find that this remains the case by a significant margin.
For example, at T =1.5Tc and q = 10, the activated re-
laxation time is longer than in the pure system by an or-
der of magnitude.

In the pure system, the relaxation time ~ is a homo-
geneous function of the wave vector q and the correlation
length g. This results in two expressions of dynamic scal-
ing [15]

r(q, T)g '=f(qg)
and

function. Taking the data for T =1.1T&, which appear
in the rniddle portion of the exhibited data, the best fit
gives f(x)-x * and h(x)-x . This is con-
sistent with the assumed value of z, since the two scaling
laws imply f(x)=x 'h(x), which is approximately
satisfied. Here the system is in the critical regime, but
not at the critical limit, where f(x) should behave like
x '. In the hydrodynamic regime of small x and small q,
ontheotherhand, f(x)-x '* . Thiscouldbeinter-
preted either as the same deviation from the scaling when

q is small or as being consistent with the correct scaling
function x

IV. DISCUSSION

Why does the scaling fail when the relaxation is probed
for long length scales~ We attempt to explain this in the
folIowing way. In the presence of the walls, the atoms
lose a great number of paths that connects two lattice
sites. A tagged free atom cannot go through the walls; it
can only go around. Thus the pertinent distance is the

r(q, T)q'=h(qg),

where z is the dynamic exponent. We wish to find out
whether or not the results for ~& support these scaling
laws, assuming z=4 —g=3.75 as in the pure system.
For comparison, we repeat the same computations for the
pure system without the walls. The results are shown in
Fig. 10. The scaling holds approximately in both cases.
But when the walls are present there is a noticeable sign
of deviation for small q; the lone circle far away from the
rest corresponds to q =32. In fact, the results for ~D are
approximately the same as in the pure system except in
long length scales (small q). Let us examine the scaling
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FIG. 10. Scaling plots for systems with and without the walls
using (a) Eq. (5) and (b) Eq. (6).
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minimum distance (also called cow distance, taxi dis-
tance, or chemical distance) [16], which goes around the
walls, rather than the Pythagorean distance, which goes
through the walls. With this in mind, take a lattice site
and consider all the other sites at the Pythagorean dis-
tance of, say, l. What if the distance is now measured
along the minimum path? If l is very small, the chance of
finding the minimum distance different from I is relatively
small. If I is large, on the other hand, the probability is
overwhelmingly large. We believe that this is the reason
for the deviation from the scaling when the scaling vari-
able x involves small q. It has been shown that the walls
have a similar effect in the nonequilibrium domain-
growth kinetics. When a binary system is quenched from
the infinite temperature into the unstable part of the
two-phase region, phase-separated domains begin to
grow. If the domain size is measured in the Phythagore-
an distance, its growth kinetics shows no sign of scaling
[10], but if it is measured in the minimum distance the
growth kinetic does exhibit a scaling behavior [17].

As mentioned earlier, our data are not accurate enough
to determine whether or not this deviating trend from the
scaling also extends to the hydrodynamic regime where x
and q are both small. We see no compelling reason why
the trend should stop in this regime and therefore we as-
sume that the scaling breaks down in the hydrodynamic
regime as well. If so, it means that the relaxation rate
does not depend on q like I -q anymore. We attempt
to explain this in the following way. Since the free atoms
can only diffuse in a highly constricted space between the
adsorption clusters, the diffusion equation is different
from place to place depending on the shape of the space
available for the free atoms. Suppose that the space is
wide open at certain parts (to be called region 1) while it
is so narrowly constructed in some other parts (to be
called regions 2 and 3) that the space is no more than a
one-dimensional channel. The free atoms can diffuse in
any direction in region 1, but only in the horizontal direc-
tion in region 2 and in the vertical direction in region 3.
Now tag a free atom and consider its random motion in
such a confined space. The probability density that it will
have changed its position by r after time t is given by

(7)

where D is the difFusion coefficient and b.(r) is different
depending on r; it is B /Bx +B /By in region 1, B'/Bx'
in region 2, and B /By in region 3. As a result, the
Fourier transform of P(r, t ) is poorly defined. Substitut-
ing P(r, t)=(2n) f d q P(q, t)exp(iq r) in Eq. &7), we

find

BP(q, t )/Bt = —Dg(q)P(q, t ),
where, for a given q=(q„,q ), g(q)=gi=q„+q in re-
gion 1, g= gq

=q„in region 2, and g =g3 =q in region 3.

Taking an average of Eq. (8) over different regions, we
may write approximately for an r-independent P(q, t) in
the form

BP(q, t ) /Bt = —Dg'(q)P(q, t ),
where g'(q) =cigi+c2$2+c3$3-q', with ci+c2+ci =1
and v&2. This may be the reason why the deviation
from the scaling is in the direction of reducing the ex-
ponent below 2.

To compare the results of the present model with the
experimental results of DW and AGW, note that with
v= 1, g=(1—T/Tc) is two lattice spacings at
T = 1.5Tc and 20 lattice spacings at T = 1.05 Tc. Thus
the system is closer to the samples used by DW at
T = 1.05 Tz and to the samples used by AGW at
T =1.5Tc. Our results for the autocorrelation function
are in qualitative agreement with DW but not with
AGW. Surprisingly, however, the phenomenon of ac-
celerated relaxation when q is small is in a qualitative
agreement with AGW. Perhaps this should not be re-
garded as a surprise since the walls should have the
aforementioned confining effect regardless of the pore
size. The same effect has also been observed in a recent
study on a gel model [18]. Work is in progress with a
more realistic glass model, which should be closer to the
samples used by AGW than the present model is.

Now we compare the present model with the random-
field Ising models [19]. In the latter, rare statistical fiuc-
tuations leave regions of aligned fields here and there in a
lumpy fashion. The aligned fields result in aligned spins,
which may be regarded as the random-field analog of the
adsorption clusters. In the present model, on the other
hand, there are aligned fields next to all walls, which re-
sult in the same type of activated relaxation. But the ad-
sorption clusters are much larger and more extended
than in the random-field models, which has two impor-
tant consequences. First, since they occupy so much
space, it is meaningless to compare the correlation length
and the pore size; even if the pore size is larger than the
correlation length, the free atoms presumably do not ac-
tually have enough space to behave like in the bulk.
Second, the adsorption clusters are large enough to break
down the scaling behavior of the pure system in long
length scales. In the random-field models, the details of
the walls are ignored, which one may expect to be
justified if the system is probed in long length scales.
This is not the case, which is quite ironic.
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