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The planform of weakly nonlinear Bénard-Marangoni convection in a horizontally unbounded layer is
analyzed using a combination of direct numerical simulation, amplitude equations, and qualitative dis-
cussion. It is demonstrated that there exists a critical Prandtl number Pr, such that in fluids with
Pr <Pr. convection sets in as a pattern of hexagonal cells with downward motion in the center (g hexa-
gons), while for fluids with Pr>Pr. conventional hexagonal cells with upward motion in the center (/
hexagons) appear at the onset of instability. For fluids with Marangoni and Prandt]l numbers in the vi-
cinity of the bicritical point (Ma.,Pr,) the hexagonal patterns undergo a secondary instability, leading to
stationary rolls. The stability domain of stationary rolls increases with the distance from the critical

Marangoni number.

PACS number(s): 47.20.Dr, 47.20.Ky, 47.32.Cc

I. INTRODUCTION AND BASIC EQUATIONS

After the pioneering work of Bénard [1], Block [2], and
Pearson [3], surface tension driven convection in a fluid
layer heated from below (“Bénard-Marangoni convec-
tion” or BMC) has received considerable attention and is
now reasonably well understood [4-7], as far as fluids
with high Prandtl number are concerned. In particular,
the universality of the hexagonal planform of weakly
nonlinear convection has been unambiguously demon-
strated both experimentally [4] and theoretically [6,7]. In
contrast, virtually nothing is known about Bénard-
Marangoni convection in Jow-Prandtl-number fluids. The
only experimental study of low-Prandtl-number BMC is
that of Ginde, Gill, and Verhoeven [8], which has been
performed with liquid tin (Pr=0.017). Although this ex-
periment has verified the predictions of linear stability
theory [3], no visual observation was reported about the
planform of convection. On the theoretical side, there is
no prediction for fluids with Pr<<1 that goes beyond
linear stability analysis or asymptotic bifurcation theory
[9,10].

The goal of the present paper is to report direct numer-
ical simulations of the weakly nonlinear Bénard-
Marangoni problem which, for the first time, extend into
the range of low Prandtl number Pr. Moreover, we wish
to present an example where the predictions of a weakly
nonlinear theory, based on amplitude equations, are
directly tested against the results of numerical simulation
of the fully time-dependent three-dimensional hydro-
dynamic problem. After the formulation of the basic
equations we shall, in Sec. II, present numerical evidence
that in the limit Pr—O0 the convective planform is still
hexagonal but, in contrast to BMC at high Prandtl num-
ber, consists of cells with downward rather than upward
fluid motion in the center. In Sec. III we predict, using
amplitude equations, that this type of cell should be ob-
served for fluids with O<Pr<Pr, where the critical
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Prandtl number depends only weakly on the thermal con-
ditions at the free surface expressed by the Biot number.
Section IV contains the results of a series of direct nu-
merical simulations performed in order to test quantita-
tively the weakly nonlinear theory. Finally, in Sec. V, we
wish to explain the reason for the selection of different
hexagon types in terms of simple fluid-dynamical princi-
ples.

Our investigation is based on the following set of di-
mensionless equations

Pr 1{3,v+(v-V)v]=—Vp+Vi, (1)

V-v=0, (2)

3,60+(v-V)=v,+V?0, (3)
with the boundary conditions

v, =v,=v,=60=0 for z=0, (4)

azvx+Maax9=azuy+Ma8y9=v2=0 , (5a)

0,0+Bi6=0 for z=1, (5b)
and with periodic boundary conditions

vix+1,,y +ly,z)=v(x,y,z ),0(x +1_ .,y +1,,z2)=0(x,y,z)
in the horizontal directions. They describe the velocity
v(x,t), pressure p(x,t), and temperature
T(x,t)=Ty—z+6(x,t) in a fluid layer, which is heated
from below and which is characterized by its depth d, ap-
plied temperature difference AT, density p, kinematic
viscosity v, heat diffusivity «, and temperature coefficient
of surface tension y. Space, time, velocity, pressure and
temperature are measured respectively in units of d,
d*/k, k/d, pvi/d?, and AT. Equations (1)—(5) contain
five dimensionless parameters, namely, the Marangoni
number Ma=ydAT /pvk, which measures the strength
of the basic temperature gradient, the Prandtl number
Pr=wv/k, which is a property of the fluid, the Biot num-
ber Bi=ad /A [11], which characterizes the heat loss at
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the free surface, and the aspect ratios /, and ly. The
derivation and discussion of (1)-(5), in which the
influence of buoyancy and surface deflection has been
neglected, can be found, e.g., in Ref. [12].

It is known from linear stability theory [3] that for
Ma, ~79.606 (at Bi=O0) the quiescent solution
v=p=0=0 of the governing equations becomes unstable
with respect to infinitesimal spatially periodic perturba-
tions with wave number k=1.99. While the threshold
Ma_(Bi) and the critical wave number k£ (Bi) of this
Bénard-Marangoni instability do not depend on the
Prandtl number, the nonlinear evolution following the
primary instability is strongly influenced by this parame-
ter, as will be shown below. In what follows we shall
confine our attention to the weakly nonlinear regime,
which is mathematically expressed by the condition
e=Ma—Ma,)/Ma, << 1.

Parmentier, Regnier, and Lebon [13] have also per-
formed work similar to the present one, in which the ex-
istence of g hexagons in low-Prandtl-number convection
has been predicted using amplitude equations.

II. NUMERICAL EXPERIMENTS
FOR Pr— o AND Pr—0

A useful key to the understanding of Bénard-
Marangoni convection comes through elucidation of the
limits Pr— « and Pr—0, in which the governing equa-
tions can be greatly reduced to the following two concep-
tually simple models.

Infinite Prandtl-number convection, which is an ap-
proximation to the behavior of very viscous fluids like sil-
icone oil, is characterized by small Reynolds number
Re=wvd /v (v is a characteristic velocity) and by the
smallness of the viscous diffusion time d2?/v in compar-
ison to the thermal diffusion time d2/k. This results in
the hydrodynamic part of the problem being governed by
the linear Stokes equation instead of the nonlinear
Navier-Stokes equation (1) (cf. Refs. [6] and [7]). Thus,
the infinite Prandtl-number model takes the form

=—Vp+Vv, (6a)
3,0+ (v-V)0=0v,+V% , (6b)

supplemented by (2), (4), and (5).

Low-Prandtl-number fluids such as liquid metals (mer-
cury, gallium, tin) or semiconductor melts are character-
ized by high heat diffusivity and low viscosity. They
differ from high-Prandtl-number fluids in that the Peclet
number Pe=uvd /k is small in the weakly nonlinear re-
gime rather than the Reynolds number and in that the
thermal equilibration proceeds much faster than viscous
decay of perturbations. As pointed out by Thual [14] for
Rayleigh-Bénard convection, the limit Pr—0 (or k— «)
can be described by the simplified zero-Prandtl-number
model

v+ (v-VIv=—Vp+V3v, (7a)
0=v,+V?%0 . (7v)

The derivation of these equations requires a scaling of the
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physical quantities, which differs from the scaling leading
to Egs. (1)-(6). Indeed, taking the limit Pr—0 in Eq. (1)
does not yield a meaningful result because the scales of
time and velocity used for the derivation of the governing
equations become singular in the zero-Prandtl-number
limit k— 0. As detailed in [14], d, d%/v, v/d, pvz/dz,
and (v/k)AT are now the appropriate scales of space,
time, velocity, pressure, and temperature, which lead to
the equations given above. The zero-Prandtl-number
model comprises the full Navier-Stokes equation, imply-
ing the possibility of small-scale velocity structures and
even turbulence. The rudimentary heat equation (7b) de-
scribes the instantaneous deformation of the temperature
isolines due to the interaction of the vertical velocity
component with the mean temperature gradient. From
the mathematical viewpoint, zero-Prandtl-number con-
vection is a Navier-Stokes flow with a linear nonlocal
feedback mechanism. Indeed, the velocity field immedi-
ately creates a temperature perturbation governed by Eq.
(7b) which, on account of the Marangoni boundary con-
ditions, Eq. (5a), acts back on the flow field.

We have numerically solved the governing equations
for both limiting cases using a pseudospectral method
with Fourier series in the horizontal direction and Che-
byshev polynomial series in the vertical direction. De-
tails of the infinite-Prandtl-number code are given in Ref.
[7]; details of the zero-Prandtl-number code, which
differs from the former code by the presence of vertical
vorticity, will be reported elsewhere. With a vertical
resolution of 32 collocation points both codes reproduce
the critical Marangoni number Ma_~79.606 (at kK =1.99
and Bi=0) to at least three significant digits. For a hor-
izontal resolution of 128X 128 collocation points we can
perform either large-aspect-ratio simulations (e.g.,
I,=1,=20) for weakly supercritical Marangoni numbers
(e.g., Ma=80) or small-aspect-ratio simulations for high
Marangoni numbers [7]. The advantage of a fully numer-
ical simulation is that no a priori restriction is imposed on
the pattern apart from the finite aspect ratio.

As an additional diagnostic we can perturbatively com-
pute the deflection of the free surface from the velocity
field obtained in the code with nondeflecting surface. To
zero order in the surface deflection h(x,y,t) the normal
velocity obeys the boundary condition v,=0. The first-
order surface deflection is related to the zero-order veloc-
ity and pressure by the linearized normal stress boundary
condition

pgh —oAh =p—2pva,v, (8)

(see, e.g., [15]) where v, and p are dimensional quantities
and g and o denote the acceleration of gravity and the
surface tension, respectively. Introducing Fourier-
transformed quantities h\, P, and D,, the horizontal wave
number k, and measuring the surface deflection in units
of d, Eq. (8) can be recast in the following form

h=f(k)23,0,—p), 9)
where p and 7, are nondimensional variables and

f(k)=pkv/(pgd>+odk?) for the finite-Prandtl-number
scaling and f(k)=pv?*/(pgd3+odk?) for the zero-
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FIG. 1. | hexagons vs g hexagons in Bénard-Marangoni con-
vection: Surface temperature fields for Ma=80 evolving from
random initial conditions in a fluid with (a) infinite Prandtl
number and (b) zero Prandtl number. Aspect ratios are
I,=1,=20, spatial resolution is 128 X128X32, Bi=0. Solid
lines correspond to positive, dashed lines to negative values of
surface temperature.
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Prandtl-number scaling. When the zero-order velocity
and pressure fields are known at the free surface, as is the
case in our numerical simulation, the first-order surface
deflection can be explicitly computed from Eq. (9). No-
tice, however, that in addition to Ma, Bi, /., and I, the
parameters g and o have to be specified in order to make
quantitative predictions for A. Since a systematic study
of the influence of gravity and surface tension is outside
the scope of the present paper, we only use 23,v, —p as a
qualitative diagnostic for the shape of the free surface.

In Fig. 1 we plot two surface temperature fields that
have evolved from random initial conditions under
infinite Prandtl number [Egs. (2), (4), (5), and (6)] and un-
der zero Prandtl number [Egs. (2), (4), (5) and (7)]. The
hexagonal pattern of the infinite-Prandtl-number case
[Fig. 1(a)] has already been described in detail in Refs.
[6,7] and is reproduced here for the purpose of compar-
ing it with the result of the zero-Prandtl-number convec-
tion, plotted in Fig. 1(b). Apparently, the latter flow is a
hexagonal lattice of convective cells as in the infinite-
Prandtl-number case. However, cold fluid flows down-
ward in the center of the cells in contrast to the infinite-
Prandtl-number case [Fig. 1(a)] where the cells are
formed by warm upflowing fluid. The deformed fluid sur-
face is found to be convex over the downflowing (cold) re-
gions as is expected in surface tension driven convection.
“Inverted” hexagons of the type plotted in Fig. 1(b) are
known to exist in gases. They have been termed ‘g [gas]
hexagons” in contrast to the more familiar ““/ [liquid]
hexagons” [16]. Our simulation demonstrates that the
existence of g hexagons is not necessarily related to non-
Boussinesq effects, which are responsible for their forma-
tion in gases. Convective cells with downward flow in the
center have been predicted for low-Prandtl-number BMC
in laterally bounded domains by Rosenblat, Davis, and
Homsy [9] and later by Dauby et al. [10] using bifurca-
tion theory. The present result appears to be the first ful-
ly numerical verification of these predictions.

(a) =

FIG. 2. Planform selection in zero-Prandtl-number convec-
tion: Surface temperature field of (a) initial condition and (b) the
final stationary state for Ma=80. Aspect ratios are
I, =47/V3=7.26 and l,=47=~12.6, spatial resolution is
64X 6432, Bi=0. Solid lines correspond to positive, dashed
lines to negative values of surface temperature.
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In order to verify the robustness of g hexagons, we
have performed several zero-Prandtl-number simulations
using deterministic initial conditions and a domain that
allows for a perfectly hexagonal cell. First we have used
the initial condition plotted in Fig. 2(a), which favors nei-
ther g hexagons nor / hexagons. As shown in Fig. 2(b), a
stationary g hexagon is formed as a result of the non-
linear evolution affirming the generality of the previous
numerical results. In a second simulation we have com-
pared the flow evolving from a g hexagon with the flow
evolving from an [/ hexagon when both initial conditions
have the same total kinetic energy, slightly higher than
the kinetic energy of the stationary state in Fig. 2(b).
While the amplitude of the g hexagon decreases slightly
and settles at its stationary value, the amplitude of the /
hexagon decreases rapidly to a very small value without
the tendency to settle at a metastable state. Finally, as a
result of small numerical perturbations and of the pri-
mary instability, the flow reorganizes into a g hexagon,
grows, and attains the stationary state of Fig. 2(b). The
stability of g hexagons is not changed if the foregoing
computations are repeated with nonzero values of the
Biot number.

After having identified two different types of hexagons
in BMC, it is natural to expect that there exists a finite
Prandt]l number Pr, at which g hexagons are transformed
into ! hexagons. There is, in principle, no conceptual or
technical difficulty in determining Pr, entirely within the
framework of direct numerical simulation as will be
shown in Sec. IV. However, we can demonstrate that a
weakly nonlinear analytic theory is capable of providing
a first approximation to this value with less computation-
al expense.

III. AMPLITUDE EQUATIONS FOR ARBITRARY
PRANDTL NUMBER

Near threshold of convection, a perfect hexagonal pat-
tern can be approximated by a superposition of three
cosine functions (see, e.g., [6]). The temperature field can
be written as

3
0(x,y,z,t)=g(z) 3 &;(t)cos(k; x,), (10)

i=1

where x; denotes the horizontal coordinates (x,y) and
the k; all have the same length |k;|=k, and form a hor-
izontal tristar

3
> k;=0. (11
i=1
The (positive definite) function g(z) is obtained from the
linearized equations (1)-(5). Using this expansion, one
may derive amplitude equations for £;, which was first
shown in Ref. [17]. Up to cubic order they read

E\=T& + AEEF —[BUE I+ 1&1M)+ClE 1% 1E, (12)
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and cyclic in &,,£;. Here, B,C>0 and Ex<¢ due to a
different scaling. The coefficients A4, B, and C result from
the eigensolutions: of the linearized hydrodynamic equa-
tions (1)—(5) and can be found numerically for the case of
BMC as demonstrated in Refs. [6,18]. For finite Prandtl
number it turns out that A is composed of two parts:
A=Ay+ é A, ,

where A, stems from the nonlinearity of the heat equa-
tion (3) and A4, from that of the Navier-Stokes equation
(1). For closed upper surface (Rayleigh-Bénard convec-
tion), A vanishes for symmetry reasons and the cubic
terms in (12) usually select rolls. For a nonzero quadratic
term, stability analysis shows that at onset (e=0) hexa-
gons are always the preferred stable planform, namely, /
hexagons for 4 >0 and g hexagons for 4 <0. It is clear
that the condition 4 =0 yields the Prandtl number for
the transition from g hexagons to / hexagons:

(13)

A, (Bi)
Pr.=—

=B (14)

We evaluated (14) numerically for several Biot numbers.
We used a finite-difference method to obtain the z depen-
dence of the eigenfunctions for the linearized problem
and to compute the coefficient 4. This is a straightfor-
ward extension of the algorithm used for infinite Pr and
described in detail in [6]. The results are shown in Fig. 3.
For the situation in the experiments, where the Biot num-
ber tends to zero, we obtain Pr,~0.22. Note that
Pr=0.017 in the liquid-tin experiments of Ref. [8] is well
below the critical Prandtl number predicted by our
theory. It is very likely that Ginde, Gill, and Verhoeven
[8] would have made the experimental discovery of g hex-
agons in Bénard convection if they had performed a visu-
al observation of the fluid surface, which unfortunately
was not done due to the high technical complexity of the
experiment.

Pr ' '
0.275[_ -
I t—hexagons
0.250 [ 4
0.225[ ]
m
0.200L |

1 L
250 500 750 g

FIG. 3. Critical Prandtl number Pr, for the transition from /
hexagons to g hexagons at threshold (e=0) for several Biot
numbers for purely surface tension driven convection.
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IV. DIRECT NUMERICAL SIMULATIONS FOR
ARBITRARY PRANDTL NUMBER:
A QUANTITATIVE TEST OF THE WEAKLY
NONLINEAR THEORY

After having predicted the existence of a bicritical
point (Ma_,Pr.) at which (for e=0) hexagonal cells
change their orientation, we wish to address the following
two questions: (1) Is the value of the critical Prandtl
number predicted by the weakly nonlinear theory quanti-
tatively correct? (2) Which planform is selected in the vi-
cinity of Pr, for finite values of €?

A. Hexagons

A regular perfect hexagonal lattice is described by (10)
with £, =§&,=£&;=&. From (12) it follows for its ampli-
tudes £ (that we may consider here and in the following
without loss of generality as real valued)

E=TE+ AE*—(2B+C)E . (15)

In the following we want to ‘“‘measure” the coefficients of
(15), especially A, by considering stationary numerical
solutions of the three-dimensional hydrodynamic equa-
tions (1)—(5) for different values of Pr near Pr,. To in-
tegrate the Navier-Stokes equation we used an extension
of the numerical code described in [6] that allows us to
compute the temporal evolution of the vorticity field.
Figure 4 shows the maximum amplitude of a hexagon
pattern as a function of Pr. We used a small-aspect-ratio
layer with periodic lateral boundary conditions having
periodicity lengths I, =4 /k, and Iy=477'/1/3kc, allow-
ing for the emergence of one hexagon with the critical
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wavelength. The integration was continued until the rel-
ative change of the temperature field was less than 107>.
For a stationary solution, (15) may be written as

0=t+7y(Pr—Pr,){—&° (16)

with €=%/(2B+C). Here we assumed that 4 depends
linearly on Pr—Pr, which is justified for Pr in the vicini-
ty of Pr,. To determine the unknown coefficients €, v,
and Pr. from the simulations, we insert the numerically
determined values £(Pr) into (16) and minimize the resid-
ual

R(cy,c5,c3)

= [ {e;+(c,Pr—cy)&Pr)—[EPr)2}2d Pr . (17)
This leads to a linear system of three equations
OR /3c¢; =0 (i=1"--3) determining the desired parame-
ters as €=c;, Y =c,, and Pr,=c;/c,. With this pro-
cedure we determined Pr,~0.29 for Bi=0.1, in reason-
able agreement with the result Pr.(0.1)=0.22. Figure 4
shows also solutions of (16) using the obtained coefficients
(dashed line) for the regions below as well as above Pr,.
Notice that the amplitude of the hexagons would experi-
ence a jump across Pr, (cf. the insets in Fig. 4) if hexa-
gons were stable solutions close to critical Prandtl num-
ber. This, however, is not the case, as will be shown next.

B. Rolls
For Pr in the direct vicinity of Pr,, hexagons are unsta-

ble and give way to rolls, in agreement with earlier results
[16]. Linear stability analysis around hexagons [18]

P e LA A B —
: ¢ hexagons . D—E’_H—EJ

0.025 [ o I
T g B xeeX ]

1 N - ]

0.000 | |
e :
—0.025 [ e5cXT 4
XX EBEIBE" |
pead £ 1

L g hexagons
SN VPPN RN SO 1 I ST R N R
0.15 0.20 025 4 % 0.35 0.40 045  py
0.289 0.294

FIG. 4. Hexagon amplitudes obtained by numerical integration of the Navier-Stokes equations in a small-aspect-ratio domain for
€=0.01 (squares) and £=0.0075 (crosses) with Bi=0.1 and Ma, ~80. Minimization of (17) yields the coefficients of the amplitude
equation (16). We determined Pr, for the transition from / hexagons to g hexagons as Pr, =0.294 (for £ =0.0075) and Pr, =0.289 (for
€=0.01). The dashed lines show the hexagon amplitudes reconstructed from (16). Insets illustrate the jump of & in the vicinity of
Pr.. Sketched are the curves £2—% and y(Pr-Pr, )¢ the intersection of which [cf. Eq. (16)] defines the amplitude of the (possibly unsta-
ble) hexagon.
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FIG. 5. Spatiotemporal evolution of a
large-aspect-ratio system for Pr=0.5, Bi=0.1,
random initial conditions, and €=0.13 in the
region (18), where hexagons are unstable.
Eventually, parallel steady rolls are formed.
Note that the system is still exclusively driven

by surface tension. Shown are the contour

lines of the temperature field on the top of the

layer, solid lines correspond to positive, dashed

lines to negative values. The time is measured
in units of the vertical heat diffusion.

shows that the size of this region increases with V' e as

7|Pr—Pr,|<Ve, (18)

with 7 =y(C?—2B*+BC)/V'C.

Although possible in principle, it is not an easy task to
establish the full set of coupled amplitude equations for a
small Prandtl number and to compute all coefficients for
the case of BMC. This work is currently in progress.
Here we shall continue the discussion for a large-aspect-
ratio system (low Pr) by performing again direct numeri-
cal solutions of the basic equations. Now we fix the la-
teral geometry to a unit cell with a rather large aspect ra-
tio I, =I,=16m/k,, allowing for the occurrence of 8 crit-
ical wavelengths in each direction. In this way we are
able to obtain a rather complete picture for the formation
of several typical structures in the e-Pr plane. We fixed
the Biot number to Bi=0.1 leading to Ma,~80. For
small € and for Pr inside the range (18) we obtain stable,
eventually parallel rolls (Fig. 5). For larger (smaller) Pr
outside (18) we obtain stable / (g) hexagons in agreement
with the results of Sec. II. From our numerical experi-
ments we estimate the coefficient 7 of (18) as

7=0.9. (19)

Figure 6 summarizes the behavior of the system in the vi-
cinity of the critical Prandtl number.

V. PHYSICAL INTERPRETATION

Although we have obtained theoretical evidence for the
existence of two different types of hexagons in Bénard-
Marangoni convection, the seemingly naive question as to
why g hexagons (and not / hexagons) are selected for
Pr <<1 still remains unanswered (as far as physical rather
than purely mathematical understanding is desired). We
shall attempt to answer this question by providing some
physical arguments that highlight dominant nonlinear
effects that are markedly different in low- and high-

0.1
€ rolls
g-hexagons /-hexagons
O ! + o
0 0.25 0.5 Pr

Pr,

FIG. 6. Phase diagram in the Pr-¢ plane. Black (white) cir-
cles correspond to transitions from / hexagons (g hexagons) to
rolls as determined by direct numerical simulations. The bold
parabola show the transition between rolls and hexagons ac-
cording to the weakly nonlinear theory [Eq. (18) with #=0.9].
Thin lines are drawn to guide the eye. The transition curve
€(Pr) is shifted upwards due to the Pr dependence of the cubic
coefficient that is not included in (15).
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Prandtl-number convection.

According to linear stability theory [3] the fluid be-
comes unstable with respect to rolls with arbitrary hor-
izontal orientation and, consequently, to any linear super-
position of them, including both g and / hexagons, respec-
tively. In order to explain which type of hexagon will be
selected, we must examine the nonlinear effects. Our ex-
planation consists of three steps. First we reformulate
our problem in terms of production and dissipation of
kinetic energy. Second, we illustrate the distinct dom-
inant nonlinear effects for Pr << 1 and Pr>>1 using a sin-
gle pair of rolls as a simple prototype. Finally, we consid-
er a single axisymmetric convective cell as an approxima-
tion to a hexagonal cell and we argue that the nonlinear
effect for the high-Prandtl-number BMC (low-Prandtl-
number BMC) acts in such a way that / hexagons (g hexa-
gons) intensify the thermocapillary production of kinetic
energy and are therefore favored in the evolution.

The balance between energy production due to surface
tension and energy dissipation by viscosity is expressed
by the evolution equation

dE
dt

for the total kinetic energy E =(p/2) f v2dV, which is
obtained by multiplying Eq. (1) with v, integrating it over
the fluid volume V, and making use of the Marangoni
boundary conditions [Eq. (5)] at the free surface S. The
unstable evolution of a quiescent layer starts with a
growth of linearly unstable modes resulting in an ex-
ponential increase of the energy. This growth is slowed
down by nonlinear deformation of the velocity and tem-
perature fields and finally stops when the stationary state
is reached. From the observation of stable g hexagons we
can conclude that for Pr <<1 the energy production rate
in the stationary g hexagon must be higher than in the /
hexagon; the latter is not able to overcome viscous energy
dissipation in a stable manner. The same argument holds
in the case of Pr>>1 with the role of g hexagons and !/

=—L [ (v-v)0dS—v [ (Vov):(Vov)dV (20)
ps v

0.4 |
c C .
o |
03 [

pud >
®) 0.2
‘ c 0.1

Rl b b 1]

0 X 2n

FIG. 7. Illustration of the nonlinear redistribution of temper-
ature in high-Prandtl-number Bénard-Marangoni convection:
Sketch of the temperature isolines of a pair of rolls in the (a)
weakly nonlinear and in (b) strongly nonlinear regime. Surface
temperature field (c) of a deformed roll as obtained from direct
numerical simulation of the infinite-Prandtl-number equations
for Ma=2000 (aspect ratios I, =m,[,=1, spatial resolution
512X32X 128, Bi=0). H and C denote cold and hot regions.
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hexagons exchanged. Therefore, the maximization of the
thermocapillary energy production rate — f (v-V)o6ds
can serve as a selection principle.

Consider first the case of high Prandtl number where
the dominant nonlinear effect lies in the deformation of
temperature isolines described by Eq. (6b) while the hy-
drodynamic part of the problem is governed by the linear
Stokes equation (6a). Figures 7(a) and 7(b) illustrate how
an initially symmetric pair of rolls is modified by such
nonlinearity. The redistribution of temperature arises
from an advection of the temperature isolines and, as a
consequence of the source term in Eq. (3), from a growth
of the warm region at the expense of the cold region. The
result of the nonlinear evolution is sketched in Fig. 7(b)
together with the surface temperature field derived from
a full numerical simulation at high Marangoni number
[Fig. 7(c)]. With these two-dimensional considerations in
mind we can proceed to a qualitative analysis of the
three-dimensional problem. Instead of considering a sin-
gle hexagon, it is useful to discuss a slightly modified flow
consisting of a single axisymmetric cell enclosed in a cir-
cular box. This modification allows us to simplify the in-
tegrals in (20). How does the nonlinear redistribution of
the temperature affect the thermocapillary energy pro-
duction in an “I cell” and in a ““g cell,” respectively? Due
to axisymmetry, the first term on the right-hand side of
Eq. (20) can be written as

—2#% fsv a—fr dr . 21

Since large-aspect-ratio BMC is driven by local tempera-
ture gradients, we can use the estimate v, ~ —096/0r in
order to express the integral entirely in terms of the sur-
face temperature. The rate of thermocapillary energy
production is then found to be proportional to
f (36/3r )*r dr. Due the weight factor r appearing in the
integral, the thermocapillary energy production is
intensified when the temperature gradient is advected
outward, as in the / hexagon, rather than inward, as in

(a) @' © ]j

0

(va) | c
(b)‘ > '0'02;H Hq
R N P RS B
0 X 2n

FIG. 8. Illustration of the nonlinear redistribution of vortici-
ty in low-Prandtl-number Bénard-Marangoni convection:
Sketch of the vorticity isolines of a pair of rolls in the (a) weakly
nonlinear and in (b) strongly nonlinear regime. Velocity aver-
aged over the layer depth (c) of a deformed pair of rolls as ob-
tained from direct numerical simulation of the zero-Prandtl-
number equations for Ma= 100 (aspect ratios [, =m,[, =1, spa-
tial resolution 64X32X64, Bi=0). H and C denote cold and
hot regions.
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FIG. 9. Weak turbulence in Bénard-Marangoni convection at low Prandtl number. (a) Surface temperature field evolving from a

random initial condition for Pr=0.5, £=0.5, Bi=0.1. Parallel rolls are unstable due to a skewed varicose instability. (b) Reduced
Nusselt number Nu(¢)— 1 according to Eq. (23). No stationary state is obtained.
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the g hexagon. Thus, the intensification of kinetic energy
production by expansion of the energy-producing temper-
ature gradient constitutes the reason for the preference of
!/ hexagons in high-Prandtl-number convection. Inciden-
tally, we have obtained a perfect lattice of g hexagons in
an infinite-Prandtl-number simulation after we had
artificially changed the sign of the nonlinear term in the
heat equation (3).

Now we turn to the case of low-Prandtl-number fluids,
which can be also understood by the selection principle
formulated above. First we note that the quantity that is
advected by the dominant nonlinear effects is now the
vorticity, not the temperature, since the temperature field
is governed by the linear equation (7b), and the only non-
linear term comes from the Navier-Stokes equation. The
initial vorticity distribution [Fig. 8(a)] is redistributed in
such a way [Fig. 8(b)] that the vorticity concentrates
above the cold regions and forms an intense cold jet
directed away from the free surface. The jet is seen in
Fig. 8(c), in which we have plotted the averaged vertical
velocity obtained from a direct numerical simulation of
the zero-Prandtl-number model at Ma=100 and Bi=0.
How does this nonlinear effect modify the kinetic energy
production in a circular cell when the fluid is flowing up-
ward or downward in the center of the cell? As in the
previous case, this question shall be answered by rewrit-
ing the energy production integral in cylindrical coordi-
nates, however, in terms of the vertical velocity. Denot-
ing the typical vertical bulk velocity by 7,(r) and assum-
ing a large cell aspect ratio (9, <<1,d, <<1,3,~1), we
can derive the relation 6~7, from Eq. (7b). Using
d,(rv,)~7,, which follows from the continuity equation
(2) and performing a partial integration in Eq. (19), yields
the estimate

J

for the thermocapillary energy production in fluids with
Pr<<1. The integral is deliberately written in a form
that highlights the difference from the total kinetic ener-
gy f vfr dr, which lacks the weight factor 1/r. From the
presence of this factor in (22) it follows that the produc-
tion of kinetic energy in low-Prandtl-number convection
is intensified by those isoenergetic redistributions of vor-
ticity that lead to a concentration of the vertical velocity
in the vicinity of the center of the cell. This explains the
dominance of g hexagons in low-Prandtl-number
Bénard-Marangoni convection.

172

z

rdr (22)

VI. CONCLUSIONS AND OUTLOOK

We have predicted that Bénard-Marangoni convection
sets in as a pattern of g hexagons if the Prandtl number of
the fluid is less than Pr, =~0.22. Although the experimen-
tal study of low-Prandtl-number BMC is a highly com-
plex task since liquid metals at low temperature are prone
to surface oxidation (Ginde, Gill, and Verhoeven [8], Bo-
jarevics, Gelfgat, and Gerbeth [19]) new experimental
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studies are likely to appear in the foreseeable future. As
the free surface is convex over the center of a g hexagon
(and concave over an / hexagon) optical methods should
be capable of distinguishing between these two types of
hexagons, thereby testing the correctness of our theoreti-
cal prediction.

Though our study is focused on the weakly nonlinear
regime of BMC, we wish to mention that the stationary
structures summarized in the state diagram of Fig. 6 be-
come time dependent at comparatively low values of €.
In the following we provide a first glimpse at the time-
dependent and possibly turbulent phenomena in low-
Prandtl-number BMC that are currently being investigat-
ed in detail.

Amplitude equations of the form (12) are derived by el-
imination of the enslaved variables [20]. For very small
Pr, the toroidal part of the velocity will not longer follow
the poloidal part adiabatically and may account for
another order parameter, leading eventually to a weakly
turbulent behavior that characterizes pattern formation
in the low-Prandtl-number regime if non-Boussinesq
terms are absent [21]. This order parameter has a large-
scale spatial structure and is therefore suppressed in a
small-aspect-ratio system. From our direct numerical
simulations for large aspect ratio we found that for larger
€ and small Pr, a zone inside the parabola (18) occurs
where the rolls are unstable to a secondary instability
(skewed varicose) rendering the structure time dependent
and leading eventually to a weakly turbulent spatiotem-
poral behavior, as shown Fig. 9(a) where we show the
evolution of surface temperature in the time-dependent
regime. This instability is in qualitative agreement with
previous results for rigid boundary conditions on the top
and bottom of the layer [21] and was first predicted by
Siggia and Zippelius [22] due to the coupling of the
large-scale vorticity to the small-scale temperature field.

To demonstrate the intrinsic time dependence of the
pattern, we computed the Nusselt number that measures
the heat flux through the layer in the vertical direction:

Nu(t)=1—(3,0(x,1)],=0) 5, (23)

where ( ), , denotes the average over the horizontal
coordinates (see, e.g., [23]). The temporal evolution of
the Nusselt number corresponding to the series presented
in Fig. 9(a) is shown in Fig. 9(b). It is obvious that the
pattern will not settle down to a stationary solution but
rather stays time dependent forever.
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