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Temperature and entropy production operator in Fourier heat conduction
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The Hamilton-Lagrange formalism of the field theory of irreversible nonequilibrium thermody-
namics has been developed in the last few years. Consequently, we have a good opportunity to
introduce the canonical quantization for the parabolic differential equations, such as Fourier heat
conduction. This procedure might tell us how quantum features arise in the system under consider-
ation and how we may get to the quantum field theory of irreversible processes. We introduce the
temperature and the entropy production operator in the case of the heat equation, and we show
that the eigenvalues of the entropy production operator are discrete and real quantities.

PACS number(s): 44.10.+i, 05.70.Ln

I. INTRODUCTION

The Hamilton-Lagrange formalism is widely used in
the difFerent disciplines of physics [1—3]. This mathemat-
ical method enables us to gain a deeper insight into the
physical processes. However, the Hamilton formalism of
fields was developed only for those theories where the
operators in the field equations were self-adjoint. There
were several attempts to construct a Hamiltonian varia-
tional principle for thermodynamics in which the equa-
tions of motion contain non-self-adjoint operators, too,
such as the first time derivative operator. Nowadays, we
know of a few successful results [4—14] that are difFerent
in some ways but all of them based on Hamilton's prin-
ciple. Prom these methods, we get back the equations of
motion; however, the goal of our investigation is to obtain
more than just the field equations, e.g. , the attainment
of quantization. We have worked out a possible descrip-
tion of nonequilibrium thermodynamics in an essentially
complete form of the Hamilton-Lagrange formalism for
those cases where we restricted ourselves to convection-
and source-&ee systems, and we have obtained constant
coefficients in the difFerential equations [4—7]. In this pa-
per, we would like to show how we are able to obtain
the first steps towards the canonical quantization for one
of the simplest cases of the irreversible processes, the
Fourier heat conduction. In the microscopic theory of
irreversible processes, Prigogine [15] handled the entropy
as an operator in order to introduce the concept of irre-
versibility into the extension of the formalism of classi-
cal and quantum mechanics. Presently, there are some
works on the problem of discrete quantities in thermody-
namics [16,17]. In this paper, we attain the temperature
and entropy production operator in the field theory of
heat conduction using the usual quantization procedure
[1S-22].

II. THE LAGRANGIAN AND THE
HAMILTONIAN OF HEAT CONDUCTION

We start kom the Lagrange density function

1 .2 142
L = ~ + ——,(&&)

2 c

where A is the heat conduction coefIicient and c is the
specific heat capacity. The dot denotes the partial time
derivative and L is the Laplace operator. y is a field
quantity that is defined. in this way:

AT = —y ——Lp

where T is the temperature. From Hamilton's principle
we get the Euler-Lagrange equation for p

A2—y+ —LAy = 0.
~v

If we take into account Eq. (2), we get back the Fourier
heat equation

T ——dT =O.A

cv
(4)

In the following, we would like to calculate the La-
grangian of the system. For this we calculate p in Fourier
series,

v =): (CA, cos kx + Sl, sin kx), (5)

where the coefFicients CA, and Sy are the function of time,
V is the volume, and A: is the wave number. The time
derivative and Laplacian of y can be calculated,

(Cg cos kx + Sg sin kx),

&p=) —k'
k

(CI, cos kx + Sq sin kx). (7)

The Lagrangian of the system is obtained by the inte-
gration of a Lagrange density function over the volume

2

L = I, dV = — C'„'+8", + —,I ' &A, + ~„'2k- v
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Prom the Lagrange formalism we obtain the canoni-
cally conjugated quantities

After these, let P&, Cy„P&,and SI, be operators(c) (s)

that obey the following commutation rules:

P~ ——Cy,(C)

P~ ——Sg„(s)

[P„' ', C,] =ha„,

[Pq ), S)] = h8k),

(17)

(18)

&om which it is easy to express the Hamiltonian of the
field. The Hamiltonian is

&om which we get the commutation rules of C&+, C& and

S&, S& . Moreover, C&, C& commutates with S&, S&
because these are independent coordinates,

. BI BLH=C . +S
OC BS

) -
~

1P(&)

) -
~

1P(&)
(2

1 A 4 2 1 (s)2 1 A 4——kCI, + Pq ————k Sq
~

2 c2 2 " 2 c2 )
1%2——k'C'

~2c2 )

C„C~+—C~+C„=—k'hb'g),
cv

A
S, S+ —S,+S, = —k'h, bI,).

&v
(20)

We have to examine the property of these operators.
If 4' is the eigenfunction of 'R,

q2 2c2 )

which can be devided into two sums. Now we can say
that we have obtained the Hamiltonian of the system
which is the function of time only.

III. THE QUANTIZATIGN

If we introduce the following expressions:

RC~+@ =
~

a ~ —k'h
~

C~+@,
t'

cv
(22)

with the eigenvalue o. + —k h and C& 4 is an eigenfunc-
tion of Q, too,

(21)

with the eigenvalue a, it can be admitted that C&+4 is
an eigenfunction of 'R,

(12)
'RC„4 =

~
a ——k'h

~

C„@,
(

c (2s)

C+ k (is)

with the eigenvalue o. ——It: h. These show that C& is

a creation operator that increases the state with —k 6
C~

quantum, C& is a destruction operator that decreases the
state with —k 6 quantum.

k
k) (14) IV. THE TEMPERATURE AND ENTROPY

PRODUCTION OPERATOR

We obtain the conserved current J of the field from
the canonical tensor (thermodynamic tensor) [4—7]

the Hamilton operator can be obtained in the simplest
form

R = ) (C„+C„~S„+S„).

J = (pV'Ly —V'(pL(p dV,

and after substituting Eqs. (6) and (7) vre can express it
with the coefFicients CI, and Sg

J = — Cy coskx+ Sy sinkx l C~ sinlx —S~ coslx
k

+ ) k(Cg sinkx —SI, coskx)
k

= ).2k'(S.C. —C.S.).
k

(—l ) (C) cos lx ~ S) sin lx) dV
l



52 TEMPERATURE AND ENTROPY PRODUCTION OPERATOR IN. . . 625

If we take into account Eqs. (12)—(15), we get the
conserved current operator of the field

J' = ) "k(Sa Ci+ Ca Si~) . (26)

We would like to introduce the temperature T as an
operator. When we use the connection between T and
field y, and Eqs. (6) and (7), then the temperature can
be written

We read from Eqs. (12) and (15) that

(C.+ —C. )2Ak2

cv
(S~ —S~ )2Ak2

(28)

(29)
T= —) (Ci, cos kx ~ Sg sin kx)

Ak2
(C~ cos kx + SA,, sin kx).

cv
(27)

and we substitute these into the formula of temperature
(27). Now we obtain the temperature operator that con-
tains the time derivatives of the operators

cv
(Cq+ —C„)cos kx + (Sq+ —Sq ) sin kx + )

It:

(Cq —Cq ) cos kx +. (S„+—S„)sin kx . (30)

C+ = —[C+,Z] = ——k'C+,1

6 ' c (31)

We know that the time derivative of an operator can
be expressed as a Poisson bracket of the operator and the
Hamilton operator

= AV'7 V'7 (39)

This operator is neccessary and important when ex-
pressing the classical entropy production density [23] in
the operator formalism. In this way, this operator can be
formulated

Cq ———[Cq, '8] = —k C„,c

S+ = —[S+,~] = ——k'S+,A
A: h A: &

Sq ———[S„,'8] = —k Sk .
A: g A: &

(32)

(33)

(34)

i.e.,

o=A ) 2

x ) 2

c„k2
(—S& sinkx —C& cos kx)

c L2

i
"—(—S sin /x —C cos lx) . (40)

Using these equations the temperature operator is If we integrate over the volume we get the entropy
production operator of the infinite field

7=) (C„+cos kx + S„+sin kx). (35) . 2c„'k4) A
i
J i2

( k k k A, )' (41)

X=) 2
k

cv—k(S cos kx —C sm kx).

Let us de6ne a new operator A' for the theory

(36)

This operator contains only annihilation operators.
Let 4 be an eigenfunction of Q with the eigenvalue o.

(42)

If we calculate the following integral: It is easy to prove that Z4 is an eigenfunction of 'R

7ZdV = ) k(S C+ —C-S+) (37)
cv

k'h
i

ZC (43)

we recognize the current operator J on the right-hand
side. Now, in this manner we are able to introduce the
inverse of the temperature operator

with the eigenvalue n ——k h. This means that the
entropy production operator decreases the state in steps

t =) c k (S„coskx —C„sinkx).

(38)

(44)

While the system tends to the equilibrium state, the
entropy production decreases with these quanta.
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V'. CONSEQU'ENCES

The present paper shows that the concept of quan-
tization can be introduced into an irreversible process
with the help of a scalar field using Hamilton-Lagrange
formalism. However, this is not simply the quantization
problem of a &ee scalar field because Fourier's heat equa-
tion contains a non-self-adjoint operator and pertains to
a nonconservative field. We go through the mathemati-
cal method step by step and we obtain the Hamiltonian,
temperature, and entropy production operator. The in-
ternal energy operator is equivalent to the temperature
operator 8 = c„7,and this indicates that we have ob-
tained discrete energy levels. The interesting thing is
that we can increase or decrease the energy density in

steps with the Newtonian and/or non-Newtonian work.
We think this may be the key to studying the interac-
tion and overlapping of different (without respect to the
reversible or irreversible) disciplines of physics. We prob-
ably have a good opportunity to link, e.g. , the thermal
and electromagnetic fields. In this way we can speak
about nonequilibrium heat radiation.
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