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Quantum molecular dynamics simulations of pure samples and of mixtures of isotopic hydrogenic
species (H, D,T) yield important structural, dynamical, and electronic properties that characterize
matter at high compressions (p > 0.25 g/cm®) and moderate temperatures (3000-60 000 K). Quan-
tum mechanical treatments of the electrons, contained in periodically replicated reference cells of N,
atoms, by density functional and tight-binding methods determine the force on the nuclei and the
electronic structure of the medium. The nuclei move according to the classical equations of motion in
response to this quantal force. In addition, pair potentials based on Thomas-Fermi models (Moliere)
extend both the temperature and density range of the more sophisticated models. Comparisons of
the models are presented together with a comprehensive description of the techniques. Examples
over a broad temperature and density range illustrate the basic physics for a hot, dense hydrogen

medium.

PACS number(s): 61.20.Ja, 36.40.—c, 82.20.Wt

I. INTRODUCTION

Dense hydrogen (H) exists in highly diverse and rather
exotic environments [1-6]. For example, the interiors
of brown dwarf stars [5,6] and of gas-giant planets [6,7]
such as Jupiter and Saturn consist primarily of hydrogen
at high compressions (p < 5 g/cm3?) for moderate tem-
peratures (10* K) and exist just below the threshold of
sustained thermonuclear fusion. Models of such objects
rely heavily on the equation of state of hydrogen in these
extreme domains. In the same astrophysical vein, un-
derstanding of the evolution and crystallization of white
dwarfs hinges on quantum mechanical modifications to
the usual classical one-component plasma theory for such
dense stars [8]. For more terrestrial applications, cap-
sules for inertial confinement fusion (ICF), which contain
mixtures of hydrogenic isotopes, experience implosions to
many times solid density (p > 1 g/cm?®) at temperatures
on the order of millions of degrees (~ 1 keV). Experi-
ments [9] to date have reached densities of a few g/cm3;
however, ignition requires compressions of hundreds of
times larger. In addition, impurities of such species as
chlorine provide diagnostics of the physical conditions
within the capsule through spectroscopic observations.
At high densities, the surrounding H atoms greatly dis-
tort the basic atomic character of the impurity, having
profound consequences on such measured properties as
line broadening. Other devices such as pulsed-power
and explosive generators [10,11] also produce materials
at very high densities. The latter device has compressed
hydrogen almost adiabatically to several g/cm3 at very
low temperatures. The experiment also measured the
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onset of electrical conductivity, possibly indicating the
attainment of an atomic metal phase. Finally, sonolumi-
nous cavities [12], spherically compressed by acoustical
waves in liquids, yield very high densities and temper-
atures and may provide an interesting environment for
examining dense plasmas. Therefore, a detailed under-
standing of the properties and dynamics of dense hydro-
gen becomes critical to modeling an extensive array of
objects and devices.

Since we have presented a detailed historical develop-
ment in an earlier paper [13], we concentrate on brief de-
scriptions of some of the important models for treating
hot, dense hydrogen. The earliest simulations centered
on the one-component plasma (OCP). This purely classi-
cal model [14,15] consists of point ions of charge Z;e mov-
ing in a uniform background of negative charge so that
the total system exhibits electrical neutrality. A cou-
pling constant ' [= Z;e%/(r,kpT;)] characterizes many
of the properties of the system by a simple ratio of the
thermal energy of the ions (kp7;) at an average ionic
temperature T; to the average Coulombic repulsion be-
tween ions (Z;e?/r,) at a representative separation given
by the ion sphere radius 7, [=3/(47p;)] for a given ionic
number density p; with kg, the Boltzmann constant. De-
spite the wide applicability of the OCP, certain regimes
present problems, especially at high densities in which
the atomic charge clouds overlap and at moderate tem-
peratures with only partial ionization. Extensions based
on two-component models and screening [4] extend some-
what the range of validity; however, in these regimes, the
electrons display distinctly quantum mechanical behav-
ior. These effects are best introduced by a direct solution
to the Schrédinger equation.
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Several quantum mechanical approaches have evolved
over the past ten years, basically dividing into two
groups. The first treats a single atom but perturbs the
atomic potential by effects of the surrounding medium.
The description of the medium ranges in complexity from
simple potentials [16] to elaborate interactions [17] based,
for example, on a hypernetted chain. In turn, molecu-
lar dynamics (MD) calculations, incorporating an effec-
tive ion two-body potential derived from this “dressed”
atom picture, determine properties such as diffusion and
viscosity. The other approach represents all the inter-
actions within a sample of N, atoms on an equal foot-
ing. Early calculations [18,19] dealt with static ensem-
bles to determine basic electronic and radiative proper-
ties. The next step involved an integrated scheme for
treating the electronic and nuclear motion. Both quan-
tum Monte Carlo [20] and molecular dynamics [21-26]
simulations incorporate the two types of motion. In the
MD procedure, a quantum mechanical (QM) treatment
of the electrons yields a force on the ions, which then
move according to the classical equations of motion. The
QM approaches cover a wide variety of schemes, includ-
ing semi-empirical methods such as tight-binding [13,25],
Thomas-Fermi [24], Hartree-Fock [21] and density func-
tional [22,23,25]. These treatments have been applied
principally at very high [24] or very low temperatures
for weakly to highly compressed hydrogen systems. Re-
cently, the quantum molecular dynamics (QMD) meth-
ods [22,23,25] have been extended into the intermediate
regime in order to test the range of validity of many of
the approximate approaches. .

In fact, this intermediate regime for hydrogen and its
isotopes shall occupy our primary attention. We con-
sider compressions of over a factor of fifty, representing
a transition from molecular liquid (p=0.0625 g/cm?®) to
very dense atomic fluid (p < 5 g/cm?) and temperatures
from near thermal (T = 0.1 eV) to tens of thousands of
degrees (T; < 10 eV). The denizens of this regime range
from molecules to atoms to positive and negative ions.
Due to this diversity, exploration of this realm must take
place at the most sophisticated level in which all types of
interactions receive equal treatment. The physical situa-
tions examined here reside in the great variety of objects
and devices mentioned above, making an understanding
critical to refinement, improvement, and scaling [27]. To
this end, we describe simulations of hydrogen using QMD
techniques within a finite-temperature density functional
approach. The formalism is discussed in Sec. II, followed
by a detailed examination of hydrogen over a range of
temperatures and densities in Sec. III. Unless otherwise
noted, atomic units (a.u.) apply throughout (1 hartree
= 2 Ry).

II. FORMALISM

We consider as a model of a hot, dense medium a col-
lection of N, nuclei and N electrons in a cubic reference
cell of length L. The time-dependent (TD) Schrédinger
equation governs the interactions and evolution of such a
system. However, to perform such calculations on reason-
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able size samples would require immense computational
resources. Path integral techniques have been applied to
equilibrium simulations of protons and electrons [28], and
in principle, require less computational investment than
the solution of the TD Schrédinger equation. To date,
most applications have covered only small systems and
classical interaction potentials [29]. To obtain a more
tractable problem, we make the Born-Oppenheimer ap-
proximation by which the nuclear and electronic motion
decouple. We divide the evolution of the system into two
stages. For a fixed nuclear configuration, a fully quantum
mechanical treatment applies to the electrons. From an
elaborate electronic structure calculation, we determine
the force of each nuclei. This force in turn is used in the
classical equations of motion to advance the nuclei [30].
Repeating this procedure for each time step systemati-
cally advances the system. We shall in the following sec-
tions describe in detail the basic parts of this quantum
molecular dynamics scheme.

A. Molecular dynamics

Once the quantum mechanical forces F, on each ion
are determined, the particles are advanced temporally by
solving the classical equations of motion

Moo = Fa, (1)

where m,, is the mass of the ath nuclei and #,, is its accel-
eration. We solve these equations by a standard velocity
Verlet technique [30], which yields third-order accuracy
in the positions and second-order in the velocities. Re-
peating the two-step process of quantum mechanical eval-
uation of the forces for a fixed nuclear configuration and
of moving the nuclei according to classical MD, we evolve
the system in time by determining positions and veloci-
ties at each step. The collection of these coordinates and
velocities forms a trajectory from which various bulk and
thermodynamical properties can be extracted. Most of
these properties arise from the association of various au-
tocorrelation functions through Green-Kubo formulation
[30-32].

All of our simulations employ constant density and vol-
ume. Since we employ a finite sample in a basic refer-
ence cell, we also invoke periodic boundary conditions
by which a particle exiting the cell through one side is
replaced by one entering on the opposite side. This con-
vention preserves constant density within the cell. We
do consider both microcanonical and isokinetic ensem-
bles. In the former, the system remains free to adjust
to an average equilibrium ionic temperature T;, and the
total energy should be conserved. The degree to which
energy conservation obtains provides an excellent diag-
nostic of the MD parameters, especially the time step.
For the isokinetic ensemble, we fix the temperature at a
prescribed value T;. We maintain this balance through
a simple velocity scaling procedure [30]. At designated
time steps, we scale the calculated velocities as

T, 1/2
Vnew — [TK] Vold» (2)




6204

with the average kinetic temperature Tx given by

N,

1 a
T = = S a2 3
K 3kBNai:ZImvz ()

and determined from v,q49. We primarily focus our at-
tention on a hydrogen medium at a prescribed temper-
ature and density in order to consistently compare var-
ious models and regimes. For this case, the isokinetic
form provides the most efficient choice while producing
reliable properties since a given initial condition requires
only a single trajectory run. We start the sample in a
high symmetry state such as body-centered cubic (bcc) or
face-centered cubic (fcc) and associate with each nucleus
a random velocity consistent with a Maxwell-Boltzmann
distribution at T;. Successive application of the Verlet
algorithm evolves the system in time. The resulting col-
lection of positions, velocities, and forces of the nuclei at
each time step defines a trajectory. In turn, Green-Kubo
formulas, based on autocorrelation functions, relate the
trajectory information to microscopic properties of the
system such as diffusion and viscosity. While autocorre-
lation functions provide the basis of many such proper-
ties, we shall focus on only a few representative quantities
with the understanding that the same trajectories can be
employed to calculate related properties.

One of the important properties of interest is diffusion.
The self-diffusion coefficient D, for species s can be de-
termined either from the mean-square displacement or
velocity autocorrelation function [30] as

D, = o (mi(t) = m:(0) ),
D=3 [ it w0, (@)

0

where 7 designates a particle of the species of type s and
the angular brackets denote an average over the particles
of species s. For binary mixtures, the mutual diffusion
becomes important and has the form [33,34]

Dy = kpT [C_l + C_z]

mao mi

/ T Zudt, (5)

where
(J(¢) - J(0))
(@)

with the interdiffusion current defined by

J(t) =c2 Zvu (t) —c1 Z v;2(t), (7)

Z15(t) = (6)

and m; and c;, the mass and molar concentration, re-
spectively of species i.

We can glean insights into the structure of the medium
by determining the pair correlation function g(r), which
gives the probability of finding a particle at a distance
r from a reference particle [30]. Similar pair correla-
tion functions can be constructed for binary mixtures in-
volving the same (g11,g22) or different species g12. This
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function gives an average description of the relative po-
sition of particles in the medium. The basic nature of a
medium, whether liquid or solid, arises from considera-
tion of the translational-order parameter p(k,t) [30] with
k the magnitude of a reciprocal lattice vector for the ini-
tial lattice. By monitoring this function over time, we can
ascertain the nature of the simulated medium. Related
to the pair distribution function by a Fourier transform
is the structure factor S(k), which gives the Fourier com-
ponents of the density fluctuation of the medium.

B. Density functional

Since the general features of our approach are discussed
in extensive detail in several comprehensive texts [35] and
review articles [36], we shall give only a brief description
of the basic formulation and concentrate on the specific
details. In order to introduce finite electron temperature
(Te > 0) effects into the density functional formulation,
we follow the basic derivation of Mermin [37]. The func-
tional becomes

Qleps] = Elths] —

where S is the entropy and E[t);] is the usual Kohn-Sham
functional at T, = 0 adjusted by a density of

n(r) = 3 filbi(r)? ©)

TS, (8)

with f; determined by the Fermi distribution function.
For an ideal Fermi gas, the entropy becomes simply

S = —kg Z[fi Inf; + (1 — f;)In(1 — £;)]- (10)

By employing the Mermin free energy 2 as the conserva-
tion quantity, instead of the total energy, the forces arise
simply from [38]

Fo=-V.Q. (11)

The standard Kohn-Sham (KS) total energy functional
E[4;] in atomic units (a.u.) for a set of doubly occupied
orbitals {¢;} has the form

E[¢:] = Ts[n] + Ex[n] + Eext[n] + Exc[n] + Eion. (12)

The first term represents the kinetic energy functional,
the second gives the Hartree functional, which character-
izes the Coulombic interaction energy of a classical charge
distribution, the third term corresponds to the energy
due to the interaction with an external potential, usually
the electron-ion interaction, and the fourth term gives
the contribution from exchange and correlation effects.
We also make the local density approximation (LDA).
Finally, the ion-ion term Ej,, involves a simple Coulom-
bic interaction among the nuclei.

Minimizing the energy functional with respect to vari-
ations of the density and subject to the constraint
J n(r)dr = N leads to equations for the orbitals of the
Kohn-Sham form
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(=597 + Vo) + Varlr) + Vaclr) | () = vt
(13)

where the exchange-correlation potential results from the
formal functional derivative of E,. with the density mod-
ified by Eq. (9). Since terms in the equations depend
on the density and therefore the orbitals, these equa-
tions must be solved iteratively. We separate the func-
tion €4 into exchange and correlation contributions with
the exchange part, based on the free electron gas, tak-
ing a form proportional to the cube root of the density.
For the correlation term, we employ the Perdew-Zunger
parametrization [39] based on the Ceperley-Alder Monte
Carlo calculations [40].

The remaining term to specify involves the interac-
tion with an external potential. For an all-electron cal-
culation, this form becomes simple, being the interaction
of an electron with the bare nuclei (3 Zq|r — Ro|™1).
However, in most practical situations, such all-electron
representations become intractable. The strategy em-
ployed rests with a treatment of the valence electrons ex-
actly and with a representation of the core electrons by
an effective pseudopotential. We have used the Troullier-
Martins pseudopotential [41] extended to nonlocal form
by the Kleinman-Bylander prescription [42]. We should
note that even for hydrogen we have found the pseudopo-
tential form valuable. Using a small cutoff radius affects
only slightly the basic properties and effectively removes
the cusp condition, significantly reducing the number of
plane waves needed for convergence.

We solve the KS equations for a representative super-
cell of length L of N, nuclei and N electrons, replicated
throughout space to represent the extended medium.
Within the reference cell, the atoms may assume any
configuration from crystalline to disordered. Invoking
Bloch’s theorem, the one-electron orbitals become the
product of two terms: (1) a simple plane wave that de-
pends on k and (2) a function that exhibits periodic be-
havior with respect to the image cells. We expand this
cell-periodic function in a plane-wave basis [36] in terms
of the reciprocal lattice vector G and obtain a matrix
representation of the KS equations for a given k vector.
Since we generally employ spatial cells of extended size,
we can accurately perform the matrix-element integrals
at a single point, k=(0,0,0) or I" point in k space. Tech-
nically, the order of these matrix equations is infinite. In
order to place them in a more tractable form, we trun-
cate the plane-wave expansion at a finite cutoff value E_,
(= %chutlz). We must, of course, successively increase
G .4t until convergence in certain properties, for example,
the total energy, is attained. .

At each step, we solve the KS equations self-
consistently, using a quasi-Newton method with Broy-
den [43] updating of the Jacobian by which only rele-
vant parts are changed and stored. In addition, to en-
sure that each step provides an improvement, we include
backtracking and auto-restarts. For each self-consistency
step, we must diagonalize the matrix, using a precondi-
tioned version of the Lanczos method. The technique
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closely resembles the generalized Davidson approach [44]
in which all manipulations of the Hamiltonian matrix re-
main linear. Finally, for the MD calculations, we need
the force experienced by each nuclei. We determine this
force by differentiating the total energy expression. For
plane waves, the Pulay corrections due to changes in the
eigenvectors with position remain zero, a considerable
advantage of this basis.

C. Semiempirical potential

While the density functional local density approxima-
tion (DF-LDA) method described in the previous section
allows a sophisticated treatment of the basic electron
and ion interactions, the computational time necessary
to evolve long trajectories for large samples of atoms be-
comes prohibitive. Therefore, to test sample-size effects
and the accuracy of thermodynamic and bulk properties,
we have developed a semiempirical potential based on a
tight-binding (TB) prescription [45,46].

In the tight-binding formulation, the Hamiltonian gov-
erning the atomic motions has the general form

H=K;+Y (Yn|Hrsln) + _ ¢(Rs;). (14)

>

The first term represents the kinetic energy of the ions
while the second gives the electronic energy calculated
from a sum over the occupied eigenenergies of a TB
Hamiltonian Hrg. The last term, a pairwise potential,
provides for the ion-ion repulsion as well as a double-
counting correction. In order to produce an effective
model of the hydrogenic medium, we must construct a
suitable representation of the TB matrix elements. We
begin with a two-function basis on each atomic site con-
sisting of 1s and 1s’ orbitals. Fits to diatomic and bulk
properties produce the desired functional forms for these
matrix elements. The details of the construction and
table of parameters for our hydrogenic TBss’ potential
appear elsewhere [26]. The main reason for exerting all
this effort to generate a ss’ potential stems from the need
to model a dense, broad eigenspectrum that will be pop-
ulated at high temperatures. Finally, we determine the
force acting on a given nucleus by simply taking the neg-
ative of the coordinate derivative of the TB potential.

For MD calculations at low temperatures, a simple
double population (spin degeneracy) of the lowest-lying
energy levels serves to establish the energy and force in
the TB approach. However, as the temperature increases,
excited and continuum states become populated. In or-
der to include this effect, we employ an approximation
based on local thermodynamic equilibrium (LTE). In this
case the electron temperature T. equals the ionic tem-
perature T; derived directly from the MD ionic kinetic
energy (3, mav2). We then use this temperature in a
Fermi-Dirac distribution

fl€n, T) = {1 + eXP[‘IB(fn - 6F)]}_17

where ¢,, represents an eigenenergy of the TB Hamilto-

(15)
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nian and 8 = kpT.. The Fermi energy ep must be deter-
mined iteratively subject to the constraint that the total
number of electrons remains constant:

ZZ/fn(en,T)dezN.

Once €5 is determined, the FD distribution fixes the oc-
cupation numbers, which are inserted into the form of
the TB energy. Since the force depends on this energy,
these excited and continuum levels become folded into its
calculation.

(16)

D. Pair potentials

We also consider modeling the dense media by a simple
pair potential. Forms for such potentials abound; how-
ever, we select the Moliere expression [47], which falls
within a category of models based on the Thomas-Fermi
electronic screening function. Since this function poorly
represents the actual atomic charge distribution at large
distances, a finite truncation is introduced to make the
Moliere form more physical. The potential in atomic
units is given by

#(Ri;) = (R,i,) ;Ea(Rﬁ)» (17)
where
Eo(r) = (AaZ12,) exp [—ba (é)] , (18)

with Z; the nuclear charge on the ith species and ap =
0.885[Z./% + Z3/*|=2/3 in bohr. The following numerical
coefficients are selected to give the best fit to the Thomas-
Fermi (TF) function: A;=0.35, A2=0.55, and A3=0.10;
b;=0.3, bp=1.2, and b3=6. For isotopic hydrogenic sys-
tems, we take Z; and Z» to be unity. The potential has
several shortcomings: the most notable being its lack of
molecular binding, which applies to the standard TF for-
mulation as well. Therefore, its principal applications
should pertain to high densities and temperatures.
Having pursued a lengthy sojourn through formalism,
we launch into a description of the basic results of these
detailed quantum molecular dynamics simulations.

III. RESULTS AND DISCUSSION
A. Tests

We have checked the techniques and programs against
a variety of other calculations. Simulations using simple
pair potentials validated the classical MD and trajectory
analysis programs. For single species, we obtain excellent
agreement with the Lennard-Jones (LJ) spline results of
Erpenbeck [48] and He-He findings of Younger [21], who
employed the analytical expression of Aziz and Slaman
[49]. The latter calculations explored the realm of high
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densities (p < 8 g/cm3) and temperatures (T; < 5 eV).
In addition, truncated LJ forms, representing Ar/Kr sys-
tems near the triple point, provided excellent benchmarks
for mixtures [33,34].

We have tested the LDA programs in a variety of ways.
First, we started H, at nonequilibrium distances and
quenched the system by gradually drawing out energy.
We found that the system in the 7;=0 limit attained the
proper equilibrium separation of 1.42 bohr. Second, we
obtained excellent agreement for pair-correlation func-
tions and diffusion coefficients with other results for the
alkali liquid metals, Li and Na, in the regime between
melt and boiling [50]. We employed a microcanonical
ensemble for the Li simulations and found total-energy
conservation to better than 1 part in 10* with no percep-
tible drift. The alkali metals provide an excellent check
of the hydrogenic systems since they consist of a single
electron outside of a tightly closed shell. Finally, we have
compared to other LDA calculations of H, principally at
low T; to excellent effect as discussed in more detail be-
low.

B. General parameters and analysis

Before delving into a detailed description of dense hy-
drogen, we briefly delineate some basic parameters, com-
mon to many of the calculations, and present an example
of the trajectory analysis procedure.

1. Potential and forces

For H in the DF-LDA, the pseudopotential has an ex-
act form (1/r). However, to converge the total energy
for the exact case requires a substantial plane-wave ba-
sis with E.,; exceeding 100 Ry. Such large bases imply
large computational times. The slow convergence in basis
arises from the difficulty in representing the cusp condi-
tion at the nuclear sites. We circumvent this difficulty
by generating a Troullier-Martins pseudopotential for H
with a cutoff inside a radius r. that removes the offending
cusp constraint. Fortunately, the properties under inves-
tigation remain fairly insensitive to the choice of r.. We
have examined cutoff radii between 0.3 and 1.6 bohr. As
long as the pseudopotential truncation remains compa-
rable to the effective interaction range, crudely approxi-
mated by twice the ion sphere radius r,, we observe little
difference in the properties compared to the exact 1/r
form. For example, in the diatomic molecule, the pseu-
dopotential model (r.=1.4 bohrs) yields a force constant
and equilibrium internuclear distance that lie within 4%
and 2%, respectively of the all-electron (1/r) result for
a box of length 12.5 bohrs. Changing E,¢ from 36 to
64 Ry resulted in a change in the third significant figure
for these quantities. We recall that the internuclear sep-
arations in the diatomic correspond to nearest-neighbor
distances (~ 2r,) far smaller than those encountered in
the bulk simulations in this paper, and therefore, the
molecule provides a useful guide for selecting the trunca-
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tion parameter.

As another test of the LDA programs and pseudopo-
tential representation, we present in Table I the total
energy per atom as a function of the ion sphere radius 7,
for H in a bcc lattice with a pseudopotential cutoff of 0.3
bohr, a k-space sampling of 145 points, and a plane-wave
truncation of 36 Ry. We find less than an 1 mRy differ-
ence between 145 and 897 k points in determining the
integration within the Brillouin zone and between an 7,
of 0.3 bohr and the exact 1/r pseudopotential form. Our
minimum in the total energy at 1.675 bohrs agrees with
Barbee and Cohen [51]. In addition, the values of the
total energy per atom in the two approaches differ in the
fifth significant figure. For an r. of 1.4 bohrs at 70 (the
ion sphere radius at the energy minimum) we obtain a
value of —1.0668 Ry/atom within 6 mRy of the Barbee-
Cohen result. Even for an r, value of 1.0 (2.67 g/cm?),
denser than any of the LDA simulations reported here,
we calculate only a 30-mRy difference in the total energy
per atom between values of r. of 0.3 and 1.4. Finally,
for an r, of 1.4 bohrs, the total energies at r0 differ by
less than 1 mRy between E.,; of 36 and 64 Ry. We find
similar results for the other lattices.

In addition, we have tested the sensitivity of the forces
to the plane-wave cutoff, F.,;. Since the MD simulations
operate on the forces rather than the total energy, such
an examination represents a more strenuous test of the
parametric choices. We select as a representative case
a pure H system of 54 atoms at a density of 1 g/cm?
and a temperature of 1 eV with an r. of 1.4 bohrs for
a trajectory of 1000 time steps. At every 10 time steps,
we compare the average force on each atom within the
configuration calculated with E ., of 36 and 64 Ry. We
find a maximum difference of 2% for any time step. This
maximum error occurs usually for only one atom in a
configuration at a given time step with the forces on the
other members given more accurately. In addition, we
encounter this extreme error only a few times during the
simulation. We find similar results for other tempera-
ture and density cases under investigation. Such small
errors in the force guarantee a well-behaved propagation
of the particles in response to the applied field. Given
these findings, we typically choose for our simulations re-
ported in the next sections (unless otherwise noted), an
r. of 1.4 bohrs for which a E_,; of 36 Ry gives excellent
convergence.

We note one final numerical problem encountered in
studying systems at elevated temperatures. For very low
T;, only those eigenvalues up to the Fermi energy be-

TABLE I. Total energy per atom as a function of r, for H
in bcc lattice in the LDA approximation with r.=0.3 bohr,
145 k-point sample, and Ec,+=36 Ry. The value from Ref.
[50] is —1.0605 Ry/atom at 1.675 bohrs.

rs (bohrs) E:ot/atom (Ry)
1.626 —1.0598
1.675 —1.0606
1.724 —1.0604
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come occupied. Thus, extraction of only a few roots
(= N¢/2) from the diagonalization procedure proves nec-
essary. However, as the temperature increases, more and
more eigenstates become populated due to the FD distri-
bution [Eq. (15)]. These states are required for an accu-
rate description of the Mermin functional and the force
as in Eq. (11). Unfortunately, iterative eigenschemes do
not scale linearly as the number of roots required. Higher
roots place a larger computational burden on the tech-
niques. To represent the force to better than 1% accu-
racy, the highest level included in Eq. (9) should have a
population of less than 10~%. We have also found that
this choice of occupancy cutoff enhances the convergence
of the self-consistent field (SCF) step. An often encoun-
tered problem with the LDA occurs for nearly degenerate
levels lying close to the occupancy cutoff. If only some of
these levels are included, then poor convergence can re-
sult due to the oscillations between occupied levels at suc-
cessive iterations. When all states within the degenerate
group are included, the SCF converges rapidly. This em-
pirically determined cutoff in our case guarantees that all
important levels are included. Typically, to fulfill this cri-
terion necessitates the calculation of between 70 and 120
eigenvalues for systems of 50-100 electrons at tempera-
tures ranging from 1 to 5 eV. Therefore, differences in
computational times between high- and low-temperature
simulations can greatly exceed the simple ratio between
the number of roots needed.

2. Average properties

For the isokinetic ensemble, the total-energy fluctuates
with time much as the temperature in the microcanonical
picture. From this fluctuation, we can gain insights into
the statistical and numerical accuracies of the simulation.
As a test of the choice of parameters in the velocity Ver-
let propagation scheme, we determine the number of time
steps in a cycle of the oscillations of the total energy F
by dividing the trajectory length by the number of cross-
ings of the mean value. For our LDA simulations, we find
generally between 15 and 20 points in a cycle, sufficient
to represent accurately the fluctuations [52]. The TBss'
and the Moliere have closer to 50—60 points/cycle. We
have also performed an analysis suggested by Friedberg
and Cameron [53,30] for determining the run variance
[0({E)run)] in the mean of the total energy. We have
estimated the “statistical inefficiencies” and obtained er-
rors in (E) of much less than 1%. For example, an LDA
simulation of 54 H atoms at T = 3 eV and p=1.5 g/cm?
for 1500 time steps (At =0.36 fs) yields a mean energy
of —46.27 Ry with a run variance (error) of = 0.1 Ry.
Any drift in the average quantities lies within this vari-
ance, indicating a stable, accurate propagation over the
entire trajectory length. As a further test of the basic
procedures, we ran several representative microcanonical
LDA simulations. As with the Li [50], we obtained en-
ergy conservation to within four significant figures over
the entire trajectory. We find similar behavior for other
densities and temperatures. Again, since the TBss’ and
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Moliere simulations employ smaller temporai steps and
larger samples, the variances reach smaller values.

3. Awutocorrelation functions

We take the diffusion coefficient as a representative
property to illustrate the trajectory analysis. A hydrogen
simulation begins with a configuration of atoms in a high-
symmetry state such as bce. The system then evolves in
time according to the particle interactions in an isoki-
netic ensemble with a constant 7; maintained through
a simple velocity scaling scheme. Atomic collisions may
lead to elastic scattering, excitation, ionization, or even
bonding. This evolution produces a trajectory, which
contains the positions, velocities, and forces at each time
step. In order to determine the autocorrelation functions
in Egs. (4), we must perform particle and time averages.
The particle averages pertain at each time step; the time
averages accrue over the entire length of the trajectory.
However, we generally accumulate the time averages only
for a series of contiguous subsets of the total trajectory.
For example, the trajectory has n; total time steps and
contains averages over blocks of ngam steps (nsam < 7¢).
In addition, the time origins at which sampling begins are
usually not statistically independent, especially if they
lie close together. Separating the origins by a correla-
tion time (nmcorAt), which generally corresponds to the
e-folding of the velocity autocorrelation function, over-
comes this limitation. In Fig. 1, we present the veloc-
ity autocorrelation function Z(t) for a sample of 54 H
atoms at T; of 3 eV and a density of 1.5 g/cm® in the
DF-LDA (L = 7.389 bohrs) for a trajectory of 1500 time
steps (At=0.37 fs). We note the precipitous drop at small
times, followed by a long-time oscillation about zero. The
correlation time of 16 steps or 5.8 fs results from deter-
mining the e-folding of Z(¢). The temporal integral of
Z(t) yields the diffusion coefficient. An estimate of the

Z(a.u.)
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FIG. 1. Velocity autocorrelation function Z(t) as a func-
tion of time for pure H at 3 eV and 1.5 g/cm® in the LDA
with N,=54.
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error in the diffusion coefficient [30] arises from a simple
formula [ncor /Nant]%. For this simulation, an error of
about 2% results. We can pursue this analysis further by
considering the mean-square displacement (MSD) auto-
correlation function as given in Fig. 2 for ng,, =400 and
Ncor=20. At small times, the curve exhibits the quadratic
temporal behavior associated with a perturbative expan-
sion of the Einstein relationship. For longer times, a
characteristic linear form emerges, denoting a diffusing
fluid. The diffusion coefficient comes simply from the
slope of the MSD as given by Eq. (4). In the long-time
region, we invoke a linear least-squares fit to the MSD
and obtain a departure from linearity of less than 2% for
variations in the sample and correlation times, consistent
with the findings from the velocity autocorrelation func-
tion. This result dictates a lower bound on the statistical
errors in the autocorrelation functions. Similar findings
hold for other densities and temperatures for LDA runs
with smaller variances found for the TB and Moliere po-
tentials. In addition, the two methods for calculating
D, afford excellent opportunities for cross comparisons
of accuracy.

We regularly employ two other quantities, the pair cor-
relation function and the translational order parameter,
to describe the dense media. The translational-order
parameter (TOP) displays certain behavior for differ-
ent phases. For a solid, the TOP remains at a value of
near unity while for a liquid, the quantity hovers around
zero. Therefore, examination of the TOP ensures that
the medium has actually attained a fluid state. In Fig.
3, we display the TOP for the H system discussed above.
The TOP begins at unity, indicating the initial bee (solid)
configuration, and rapidly descends to the fluid state
[p(k,t) ~ 0]. While determination of g(r) occurs at each
time step, we generally average the quantity over that
portion of the trajectory beyond the onset of the fluid
state. The averaging, while producing a smooth g(r),
masks transient structural features.

500.0 +—L 1 L 1

400.0- -

300.0 -

MSD(a.u.)

200.0 o

100.0 r

0.0 T T T T T T T T T T T
o 26 60 75 100 126 160 176 200 226 260 276 300

t(10-"%s)

FIG. 2. Mean-square displacement as a function of time for
same parameters as in Fig. 1.
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FIG. 3. Translational order parameter as a function of time
with same parameters of Fig. 1.

In the above section, we have estimated various sta-
tistical variances or errors for representative LDA simu-
lations. While these remain below the general statisti-
cal sampling error of 1/ V'N, which for a 54-atom sam-
ple gives 14%, the systematic sources of error proba-
bly rank higher. These sources include such features as
the model employed, the temporal propagation, and the
sample size. We have, as detailed above, gone to great
lengths to ensure the proper convergence in a variety of
parameters for the LDA and model interaction poten-
tials. We have also shown stable, accurate propagation
through the choice of parameters in the velocity Verlet.
Finally, size effects usually arise at the order of 1/N,
which is similar to our lower statistical bounds. Prob-
ably the main source of systematic error rests with the
use of the LDA approximation in the density functional
scheme. While quantitative comparisons lie outside the
scope of this paper (relying on more sophisticated non-
local DF approaches), agreement between LDA calcula-
tions and experimental results for the diatomic and bulk
properties indicate that the LDA provides a reasonable
representation for H at the temperatures and densities
under consideration. With the analysis techniques well
defined, we consider both pure and mixed isotopic states
of dense hydrogen.

C. Pure hydrogen: Low-temperature comparisons

We begin by investigating pure hydrogen at low tem-
peratures and high compressions. This regime provides
not only insights into the physical behavior of this system
but also grounds for comparing the various techniques
and models described in the previous section. In addi-
tion, while preliminary results at certain 7" and p values
appeared in earlier papers, the present calculations mark
longer trajectories and better sampling analysis and thus
provide better cases for comparisons. Figure 4 displays
the pair correlation function g(r) at a temperature of 0.1
eV (1160 K) as a function of density for trajectories on
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FIG. 4. Pair correlation function g(r) as a function of dis-
tance r at T' = 0.1 eV and four densities: 0.25 (solid line), 0.50
(dashed line), 0.75 (dashed-dotted line), 1.00 (dotted line)
g/cm? in the LDA for pure H with N,=54.

the order of 1000 time steps (At=0.73 fs) for a 54-atom
reference cell in the DF-LDA. At the lowest density, the
distinctive peak of molecular hydrogen (H2) looms promi-
nently about its equilibrium position of 1.4 bohrs. This
characterizes the medium as a molecular fluid, which cor-
responds to the correct physically observed phase at this
density and temperature [1]. As the density increases,
the molecular peak declines, indicating less relative con-
centration of H,. Finally, around 1 g/cm?, no molecular
character remains, and the media become atomic. Since
the temperature remains very low, the transformation
from molecular to atomic fluid occurs through the pres-
sure dissociation of the H, bonds by the ever closer prox-
imity of surrounding particles. The exact transition to
atomic hydrogen remains uncertain and a cynosure in the
literature of hydrogen under pressure, although a value
of around 1 g/cm3 appears consistent with other studies.
To accurately depict this phase change requires inclusion
of the zero-point motion of the nuclei (~ 0.25 eV). How-
ever, since our interest in this low-temperature regime
lies in only a general description and a comparison with
methods of comparable detail, we omit this component
for this study. The basic behavior of compressed hydro-
gen in this low-temperature regime agrees closely with
comparable investigations by Younger [21] using Hartree-
Fock, by Theilhaber [22] using a time-dependent DF, and
by Hohl and co-workers [23] using a Car-Parrinello ap-
proach [54]. For example, at T = 0.25 eV (~ 3000 K) and
a density of 0.50 g/cm? (r,=1.75), we observe two peaks
in the g(r): a narrow one near the equilibrium internu-
clear separation (Req=1.45 bohrs) for Hy and a broad
one around 3.8 bohrs, in basic agreement with Hohl et
al. [23]. We similarly find the first peak shifted by a
small amount (0.03 bohr) from R.q, slightly asymmet-
ric, and about a factor of 1.5 higher than the second
feature. At higher densities and temperatures [p=0.75
g/cm?, T = 0.75 eV; r,=1.5, 1500 K], our g(r) exhibits
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the same behavior as that of Ref. [23] with the H, peak
almost merged with the broad feature (see Fig. 4). Fi-
nally, both sets of calculations show the complete plasma
character of the media at a density of 1 g/cm?® (r,=1.38)
for T = 1200 K (0.1 eV) with a single feature having a
maximum around 2.5 bohrs. Their estimate of a diffusion
coefficient of order 10~2 cm? /s is also in accord with our
findings. Theilhaber [22] at this density and a tempera-
ture of T' = 2000 K also reports a plasma state based on
the form of the g(r). These general trends from molecu-
lar liquid to atomic plasma also pertain in the study of
Younger [21]. In addition, generally good agreement be-
tween path integral Monte Carlo and DF-LDA results for
thermodynamic properties and pair correlation functions
for hydrogen was found by Pierleoni et al. [28] for the
region in a plot of T' as a function of p below a straight
line defined by T between 5 and 70 eV and p between
0.33 and 16.67 g/cm®. All of the present simulations for
T of 1 eV and above are safely in the agreement region
of this plot.

We also present simulations with the tight-binding
model that employs two s-type functions at each center.
As shown in Fig. 5, the TBss’ pair correlation function
closely resembles the trend for the DF-LDA. The results
pertain for a MD trajectory with 432 atoms of 1000 time
steps (At=0.2 fs) after an equilibration of 5000 steps.
The model supports the molecular binding into H, as
well as the pressure dissociation at high compressions.
This dissociation occurs at a slightly higher density of 1.2
g/cm®. In general, the TB method provides reasonable
results at a far less computational cost. For example, on
a Cray-YMP computer a sample of 54 atoms at 1 eV and
a density of 1 g/cm? takes on average 200 s per time step
for 70 roots in the LDA and only 0.3 s for the TBss'.

Related closely to the pair correlation function by a
Fourier transform, the structure factor S(k) represents
an experimentally measurable quantity through x-ray
diffraction. For the TBss’' model, we present in Fig. 6
the structure factor as a function of density for a T; of
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FIG. 5. Pair correlation function at 7 = 0.1 eV for four
densities: 0.50 (solid line), 1.00 (dashed line), 1.25 (dotted
line), and 1.50 (dashed-dotted line) g/cm? in the TBss’ model
for pure H with N,=432.
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0.5 eV (5800 K). Not surprisingly, we note a behavior
very similar to the corresponding g(r). At low density,
the H, peak dominates the k regime between 0.5 and 2
a.u. As the density rises, the molecular state gradually
changes to pure atomic. The region near k£ = 0 depends
strongly on the long-range radial behavior of g(r). Since
we confine the simulations to a reference cell of length L,
the pair correlation function remains accurate only out
to L/2. Therefore, to calculate the small-k behavior, we
would have to extend the g(r) by some analytical means
or increase the cell size. However, the trends displayed
for S(k) elucidate the general features of this function
without this extension.

D. Pure hydrogen: High temperature

We now fix the density and follow the system through
a series of temperature increases. Figure 7 shows such

FIG. 6. Static structure factor S(k) for the TBss’ model
at T' = 0.5 eV for three densities: (a) 0.1, (b) 0.5, and (c) 1
g/cm® with k in a.u.
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g(r)

FIG. 7. The pair correlation function g(r) for the TBss’
model at p=0.5 g/cm?® for three temperatures (7}): 0.1 eV
(solid line), 1 eV (dashed line), and 3 eV (dashed-dotted line).

a tract in terms of the pair correlation function g(r) for
H at a density of 0.5 g/cm? in the TBss’ for 432 atoms.
We present three ionic temperatures of 0.1, 1, and 3 eV,
which correspond to classical coupling constant (I') val-
ues of 155, 16, and 5, respectively. At low temperature
the molecular fluid pertains. However, as T; rises, the H,
peak disappears much as in the case of rising pressure.
At the highest temperature, the fluid has reached a com-
pletely atomic phase as indicated by the featureless pair
correlation function. The hydrogen bonds break due to
fast collisions between the constituent particles.

We have so far concentrated on the general structure
of the fluid since the pair correlation function incorpo-
rates a time average over the trajectory. However, such
averaged quantities may miss transient features of the
system evolution. For example, recent MD-LDA calcula-
tions [23,55] on dense hydrogen at low temperatures have
discovered long chains of molecules that form, dissolve,
and reform over the course of the simulation. A poignant
example of such time-dependent processes at higher tem-
peratures appears in Fig. 8, which displays contour plots
of the electron density in a plane through the reference
cell for H at 3 eV and 1.5 g/cm?® at several time steps.
While properties such as diffusion might at a certain T;
become comparable to the OCP values, the actual charge
density shows a significant departure from the expected
uniform OCP background for the electrons. Groups of
atoms coalesce, resulting in charge densities many times
the simple addition of unperturbed atomic charge dis-
tributions. Such departures indicate strong interaction
among the particles. At this temperature, the events are
transient so that no permanent molecular bonds form.
However, for many MD cycles, groups of atoms remain
in close contact. Such collections of atoms can have pro-
found effects on the radiative and, to a lesser extent, the
transport properties of dense systems.

We now consider these associations of atoms in more
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detail, particularly concentrating on structures that
maintain close proximity for reasonably long times. For
a representative case, we choose an LDA simulation of
800 time steps [At=0.73 fs] for 54 atoms at 7' = 1 eV
and p=1.0 g/cm? and investigate the behavior of the in-
teratomic separation 7;; (= |r; —r;|) of various pairs of
atoms over time. At this density, the bcc structure yields
a nearest-neighbor distance Ry of 2.44 bohrs. In Fig. 9,
we present this function for atoms 39 and 47 over a part
of the trajectory. We note that for a time frame of over
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FIG. 8. Charge density contours in the zy plane in the
LDA for T = 3 eV and p=1.5 g/cm® at two different time
steps: (a) 390 and (b) 1290 of the trajectory. Axes scale: 1
unit = 0.21 bohr.

x(0.21 bohr)
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FIG. 9. Interatomic separation r;; (bohr) as a function of
time for atoms 39 and 47 in an LDA H simulation of 54 atoms
at T =1 eV and p=1 g/cm®.

18 fs the pair remain at a distance less than 2.0 bohrs. In
addition, 7;; oscillates around the value of ~ 1.75 bohrs
for a “period” of about 10-fs duration. This time is of the
same order as the vibrational period of H; in its electronic
ground state (7.3 fs). We find that such associations, in
which two atoms remain closer than 2.0 bohrs for more
than 10 time steps (7 fs), occur for over 20% of the pairs.
Several such clusterings arise for each pair during the
duration of the trajectory (about 10-15% of the time).
Therefore, at any time step along the trajectory, between
1% and 5% of the pairs are undergoing a long-time asso-
ciation. Thus, this clustering is not a rare event and may
have profound ramifications on the radiative properties of
the media [56]. We have also found multiple associations
(N > 3) that last for tens of femtoseconds although these
remain much rarer. Figure 10 presents the r;; values for
three atoms 24, 25, and 34 from an LDA simulation of

2.0

ijibohr)

; . . T r ;
970 980 990 1000 1010 1020 1030 1040
t(.37fs)

FIG. 10. Same as Fig. 9 except for three atoms (24, 25,
and 35) at T = 3 eV and p=1.5 g/cm®. Pair designations:
(24,25), circle; (24,34), triangle; and (25,34), cross.
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54 H atoms at T = 3 eV and p=1.5 g/cm? for 1500 time
steps [At=0.37 fs, Ryn=2.13 bohrs]. We note a close as-
sociation of all three nuclei for a period of over 10 fs. In
addition, atoms 24 and 34 (triangles) remain in close con-
tact for over 20 fs and perform two full oscillations about
1.75 bohrs. Figure 11 further illustrates this result by
presenting three-dimensional (3D) snapshots of this en-
counter at selected time steps corresponding to Fig. 10.
For display purposes, each frame has been rotated into
the plane of the three atoms, and the “bonds” drawn for
better visual perspective. The pair (24,34), marked by
triangles in the previous figure, appear at the top of each
frame. We observe atom 25 approach, form a close asso-
ciation with the other two, and then depart. This more
graphically represents the spatial encounter depicted in
Fig. 10 and serves to illustrate these temporal groupings
or clustering. We find similar groupings for other densi-
ties [0.5 < p < 2 g/cm?®] and temperatures [1 < T; < 5
eV]. Such effects also occur in the TBss’ model but with
somewhat less frequency. This may indicate that higher
excited states are needed to properly model the surface
for intermediate-energy collisions.

The question now arises as to the physical nature of
these temporal associations. The basic behavior of two
atoms approaching, oscillating about each other for a
short time, and departing mimics the expected effects
in collisions marked by a shape or barrier-trapping res-
onance. The energy involved in the collisions studied
(E < 5¢€V) lies well below the excitation threshold for the
excited states of atomic hydrogen. However, for simple
H+H collisions, the combination of an attractive ground-
state potential with the centrifugal barrier produces a
curve that effectively traps the atoms at short distances
for a finite time. Since the particles start in the con-
tinuum, they must by conservation of energy, end there,
making the trapping a temporary phenomenon. For the
H+H system [57], the resonances have typical lifetimes of
50-100 fs, somewhat longer than observed in the above
simulations. However, the actual situation becomes com-
plicated by the presence of the surrounding H atoms. The
interaction of these atoms with the collisional pair dis-

990 1010 1030

FIG. 11. 3D representation of the three-particle collision
displayed in Fig. 10 for time steps 990, 1010, and 1030. Each
frame rotated into plane of the three atoms. Top pair rep-
resents atoms 24 (left) and 34 (right); atom 25 collides from
below.
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torts the simple two-body potential such as the collinear
reaction barrier [58] in Hs. Therefore, the actual situa-
tion is complicated, having contributions from a complex
many-body electronic surface and centripetal terms. The
resonances so far described arise from a full quantum
mechanical treatment of the TD Schrodinger equation,
and would not strictly appear in the classical solutions
of Eq. (1) for the nuclear motion. However, the changing
topography of the interaction surface with time provides
ample opportunities for trapping a few particles within a
barrier. These particles would closely interact until this
barrier finally weakened or disappeared from changes in
the surface due to the surrounding particles. The be-
havior would closely resemble a true shape resonance.
Therefore, the basic concept of such barrier-trapping res-
onances appears to have merit in describing these H col-
lisions. No matter what the trapping mechanism, such
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FIG. 12. Comparison of density times the diffusion coeffi-
cient (pD) as a function of density for pure H at three temper-
atures: (a) 1, (b) 3, and (c) 5 eV for four different methods:
LDA (cross, triangle), TBss’ (circle, square), Moliere (open
triangle), and OCP (line).
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long-lived associations will yield highly distorted charge
distributions among its constituents.

Having elucidated some structural aspects of the dense
media, we turn to a discussion of the dynamical proper-
ties as represented by the diffusion coefficient, D,. While
analysis of the trajectory provides various other proper-
ties such as viscosity and thermal conductivity, we shall
focus on diffusion since convergence comes for moderately
short trajectories, particle averages reduce statistical er-
rors, and the long-time tail behavior presents little diffi-
culty [30]. In Fig. 12, we compare the self-diffusion co-
efficients (pD), as a function of density and temperature
for four interaction models: DF-LDA, TBss’, Moliere,
and the classical OCP [15]. At the lowest temperature
(1 eV), the DF-LDA and TBss' models agree very well
over a range of densities. However, the OCP remains
almost a factor of 4 too low. The classical coupling con-
stant I" ranges from 15 to 28 for the density range 0.5
to 3.0 g/cm®. While this corresponds to the strongly
coupled regime, the quantum mechanical effects prevail
since the ions remain highly screened. As T; increases,
the agreement between the TB and LDA continues very
good, and the OCP comes into better accord. At the
higher temperatures, the media become reasonably ion-
ized, and the electronic wave function spreads over many
sites. This gives the appearance of point ions within a
uniform charge background—the physical model of the
OCP. However, even for 5 eV in which I ranges from 3.1
to 5.7, the TB and LDA diffusion coefficients exceed the
OCP by 30%. In addition, the Moliere pure pair poten-
tial results show good agreement with the more sophis-
ticated models over a considerable range of density and
temperature. However, this model contains no explicit
representation of the electronic component and therefore,
will not give the proper low-temperature behavior such as
molecular binding nor yield radiative or electronic prop-
erties such as ac and dc conductivities. A closer exami-
nation of the Moliere model in Fig. 13 demonstrates that
its pair correlation function displays apparent differences

glr)
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FIG. 13. Pair correlation function g(r) at T = 1 eV and
p=1 g/cm? for the Moliere (dashed line) and LDA (solid line).
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TABLE II. Comparison of the density times the
self-diffusion coefficients for pure H as a function of density for
several models at three temperatures. Numbers in brackets
signify powers of 10.

p (g/cm?) pD [g/(cms))]
LDA TB Moliere
T=1eV
0.5 6.5]—3] 5.9[—3]
1.0 6.4[—3] 6.9[—3] 5.5[—3]
1.5 7.3[-3] 7.6[—3]

2.0 8.5[—3] 7.3[-3]
3.0 9.7[-3] 8.1[—3]
T =3¢V

0.5 2.3[-2] 1.7[-2]
1.0 2.4[—2] 1.9[-2] 1.8[—2]
1.5 2.3[—2] 2.2[—2] 2.1[—2]
2.0 2.3[-2] 2.2[-2]
3.0 2.5[—2] 2.5[—2]
T=5¢eV
0.5 2.9[-2]
1.0 3.2[—2] 3.0[—2] 3.3[—2]
2.0 3.7—2] 3.9[—2]

from the LDA. The LDA shows a deeper penetration
and therefore “softer” potential. Also, the characteris-
tic bump in the Moliere near 1.8 bohrs does not appear
in the LDA result. Table IT summarizes the results given
in Fig. 12. Finally, we compare with the Thomas-Fermi
DF calculations [24] at a density of 2.5 g/cm3. At a tem-
perature of 0.5 eV [I' = 50|, the TBss' gives a diffusion
coefficient a factor of 2 larger. However, at the higher T;
(=2.5 eV, I' = 10), the two techniques agree to within
11%. Over a broad range of I', indicative of a strongly
coupled regime, the diffusion coefficient depends more on
quantal rather than classical effects.

E. Isotopic mixtures

We shall display results for several different hydrogenic
isotopic species: hydrogen (H, 1 amu), deuterium (D, 2
amu), and tritium (T, 3 amu) at several representative
densities and temperatures. In addition, we restrict the
presentation to equimolar concentrations (N; = Nj) of
binary mixtures and report only the total molar density,
[n (mole/cm?)] = 11.206 (ni1+nz) with n; = N;/L3. All
calculations employed the isokinetic ensemble in which
the temperature remains constant at T; due to velocity
scaling. In an earlier work [59], we focused primarily on
the HT system. Here, we expand our presentation to
include all three permutations [HT, DT, and HD]. The
differences in behavior among the various mixtures play
important roles in many macroscopic processes, for exam-
ple, in the optimal choice of fuel in ICF capsules. There-
fore, presenting but one mixture, for example HT, leaves
an incomplete picture of the isotopic behavior.
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Before discussing the mixtures in detail, we first ex-
plore some basic features of pure isotopic systems that
bear particular relevance to the composites. For a single-
species fluid, the mass becomes merely a scaling param-
eter in the equations of motion [Eq. (1)]. The usual
treatment employs scaled variables in which the new time
incorporates the square root of the mass. The electronic
potential energy, and therefore the force, remain the same
for all the isotopes since these quantities have no mass de-
pendence. Therefore, the same scaled equation of motion
fits all isotopes. To obtain the dynamical evolution of the
systems for all three isotopes requires only the solution
of one scaled equation. However, to extract the actual
property in common units (cgs) necessitates a transfor-
mation. For the self-diffusion coefficient that has units
of length?/time, the actual quantity is proportional to
the scaled value over /m;. Therefore, for pure isotope
species ¢ and j, the following relationship holds:

0.5 —— HT(TB)

— — -HT(LDA) 1

0.0 HH-HH -

r(bohr)

FIG. 14. Pair correlation functions for HT equimolar mix-
ture in the DF-LDA and TBss' models at 0.5 moles/cm? at
three temperatures: (a) 1.0, (b) 0.5, and (c) 0.1 eV for gur:
DF-LDA (dashed line) and TBss’ (solid line).
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Y _:’ (19)

which yields 0.577, 0.816, and 0.707 for Dv/Du, Dt /Dp,
and Dp /Dy, respectively. We would also obtain these ra-
tios for a mixture with intraspecies interactions but not
interspecies connections. In fact, the self-diffusion coeffi-
cients for pure D and T follow directly from Eq. (19) us-
ing the results for H from the previous section. Reversing
this prescription provides an excellent test of the MD sim-
ulation programs for mass explicitly included, a necessary
modification to treat mixtures. We have performed cal-
culations with both the TBss’ and Moliere models with
the mass included in Eq. (1) and found agreement to
better than a few percent with the predicted ratios of
Eq. (19). However, introducing the interspecies interac-
tions will cause departure of transport properties from

1.5 [ e e
t (a) T=1.0

1.0 F

0.5F

0'0:4.._Iﬁ;ul;;;_u:%wlu“l‘.H“%H{:
(b) T=0.5

g(n)

r(bohr)

FIG. 15. Pair correlation functions for DT equimolar mix-
ture in the TBss' model at 0.5 moles/cm® at three tempera-
tures: (a) 1.0, (b) 0.5, and (c) 0.1 eV for gpp (solid line), grr
(dashed line), and gpt (dotted line).
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TABLE III. Comparison of self-diffusion coefficients for
HT mixture as a function of molar density for several models
at T;=1 eV. Numbers in brackets signify powers of 10.

n Dy D~
(mol/cm?) (cm?/s) (cm?/s)
LDA TB Moliere LDA TB Moliere
05 1.5[—2] 9.8[=3] 7.0(—3] 1.2[—2] 1.0[—2] 6.4]—3]
1.0 6.2(~3] 5.4[-3] 4.4[-3] 5.7[-3] 53[ 3] 4.1[-3]
1.5 3.6[—3] 4.0[-3] 3.3[—3] 3.8[—3] 4.1[—3] 3.1[-3]
2.0 2.3[—3] 2.2[-3)

the simple ratio of Eq. (19). The magnitude of this de-
parture provides an excellent gauge of the full effects of
the interplay between the two species.

We begin our discussion of the basic structural behav-
ior of these mixtures by examining the pair-correlation
functions. Figure 14 presents a comparison for the cross-
pair correlation function gur(r) between the DF-LDA
and TBss’ cases for an HT mixture at 0.50 mol/cm3 at
several temperatures (I'= 15-155). The TBss’ model em-
ployed a sample of 250 atoms (125 H, 125 T') while the
LDA utilized only 54, which corresponds in each case to
a total number density of 4.46 x 10~2 particles/bohr3.
For the LDA (TBss'), the trajectories were accumulated
over 1000 time steps (n:) in increments of At = 0.73

0.02 [ RN
(a) o H(LDA)
r e H(TB)
0.015 - © +  H(Moliere) ]
& T(LDA) ]
) o A  T(TB) ]
0.01 | . X T(Moliere) -
%
0.005 ~ § 7
0 [ g
o .
%) L
P 0 |
£ F
o (b) © D(LDA)
a e D(TB)
g + D(Moliere) ]
0.01 ¢ © 5 T(LDA) ]
P A T(TB)
X T(Moliere)
0.005 |- * g 3
i ¥ s .
0 o e e b v by e 1
0 0.5 1 1.5 2 2.5

n(mol/cma)

FIG. 16. Comparison of the self-diffusion coefficients of
three models: LDA (open circle, triangle), TBss’ (closed cir-
cle, triangle), and Moliere (crosses) for T = 1 eV for two
equimolar mixtures: (a) HT and (b) DT.
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TABLE IV. Comparison of self-diffusion coefficients for HT mixture as a function of molar
density for several models at T;=0.5 eV. Numbers in brackets signify powers of 10.

n (mol/cm?) Dy (cm?/s) Dr (cm?/s)

LDA TB LDA TB
1.0 2.3[3] 2.8[—3] 2.5[=3] 2.8[—3]
15 1.8[—3] 2.4[-3) 1.7[-3] 2.6[—3)
2.0 1.9[—3] 1.7]-3

fs (0.146 fs) after an initial equilibration of 500 (5000)
steps. The behavior qualitatively resembles in many as-
pects that of pure H (Fig. 7). At low temperatures, the
mixture forms a molecular fluid signified by the distinc-
tive peaks of the diatomic molecular isotopes Hy, T3, and
HT at their mutual equilibrium separation around 1.4
bohrs. The slight shift in the position of the lowest peak
arises from the difference in the equilibrium separation
predicted by the two methods. As the temperature rises,
the molecular peak gradually disappears until nothing
remains by 1 eV. The motion of the nuclei has become
sufficient for collisions between molecules to break the
hydrogen bonds. The system at this stage resembles a
simple atomic fluid. The LDA and TBss’' models show
considerable similarity at the highest temperature. How-
ever, they differ at the transition temperature of around
0.5 eV, indicating the sensitivity of the transition to the
nature of the interaction potential. The LDA, as ob-
served for pure H, makes the transition to the atomic
fluid at a slightly lower temperature. We also observe a
similar difference in the transition for a fixed temperature
and increasing density. This transition region remains
small with good agreement at the higher temperatures
and densities between the LDA and TBss’ models. This
same trend manifests itself in the DT mixture as indi-
cated in Fig. 15, which displays all three pair correlation
functions gpp, grTt, and gpt. At the lowest tempera-
ture, we observe equal portions of the molecules since
all the electronic potential surfaces at this level have the
same form. Longer equilibration times generally apply
in order to attain this equal distribution since the two
components have different time scales. With the temper-
ature, and therefore the kinetic energy, held fixed in the
isokinetic scheme, the heavier particles travel at slower
velocities. To accumulate enough collisions to obtain a
balance between the association and dissociation of the

molecular bonds usually requires a longer time than for
the pure H system. At this temperature, the zero-point
motion (~ 0.25 eV) becomes important and should be
included for high precision results, but, as with pure H,
we omit this contribution that lies outside the principal
thrust of our study of higher temperatures.

We now investigate the dynamical properties of such
mixtures through the self-diffusion coefficients (D,) by
comparing the three models: DF-LDA, TBss’, and
Moliere. The former, employing the most sophisticated
representation of the interactions, serves as the standard
by which to judge the other two approaches. We present
the self-diffusion coefficients D, for the three models at a
fixed T; = 1 eV as a function of molar density (I'=15-24)
for mixtures of HT and DT in Figs. 16(a) and 16(b), re-
spectively. The DF-LDA, TBss’, and Moliere models em-
ployed the following parameters, respectively: N;2=54,
250, 250; n;=2000, 6000, 5000; and At = 0.725, 0.146,
0.146 fs with Ny, defined as the total particle number (/Vy
+ Nz). The lowest density marks the greatest differences
among the methods. Such densities correspond to atoms
that interact at long and intermediate distances. For such
separations the interaction potentials display consider-
able sensitivity to the sophistication of the model with ex-
change and correlation making significant contributions
to the interaction surface. As the density rises, the atoms
make closer contact, and the short-range part of the po-
tential, heavily influenced by the nuclear repulsion com-
ponent, plays a vital role. The more approximate models
better represent this regime, and we would thus expect
closer agreement as the system becomes more compact.
Since the TB model has an approximate representation
of these more complex quantum mechanical effects, we
would anticipate agreement with the DF-LDA at a lower
density. The results displayed in Fig. 16 validate these
qualitative predictions. The DF-LDA and TBss’ begin

TABLE V. Comparison of self-diffusion coefficients for DT mixture as a function of molar density
for several models at T;=1 eV. Numbers in brackets signify powers of 10.

n (mol/cm?) Dp (cm?/s) Dy (cm?/s)

LDA TB Moliere LDA TB Moliere
0.5 9.9[—3] 8.1[—3] 5.4[—3] 8.2[—3] 8.1[—3] 5.2[—3]
1.0 4.6[—3] 5.0[—3] 3.4[—3] 4.7[-3] 4.8[-3] 3.6[—3]
1.5 3.2[-3] 3.3[—3] 2.9[—3] 3.6[—3] 3.8[—3] 2.7[-3]
2.0 2.5[—3] 2.6[—3]
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TABLE VI. Comparison of self-diffusion coefficients for
HD mixture as a function of molar density for several models
at T;=1 eV. Numbers in brackets signify powers of 10.

n Dy Dp
(mol/cm?®) (cm?/s) (cm?/s)
LDA TB Moliere LDA TB Moliere
0.5 1.2[—2] 1.1[—2] 7.4[—3] 1.2[2] 1.0[—2] 7.1[-3]
1.0 6.2[—3] 7.0[-3] 4.8[-3] 5.3[—2] 6.2[—3] 4.6[—3]
1.5 3.6[—3] 3.6[—3]

to show considerable agreement by 1 mol/cm?® and con-
tinue in accord as the molar density n increases. On the
other hand, the Moliere more slowly approaches the gen-
eral consensus, becoming comparable to the other two
models by 1.5 mol/cm3. This trend appears for both
the HT and DT cases; we also observe similar behavior
for the HD system. Since the DF-LDA case has such a
few number of atoms for each species (IN;=27), we have
performed calculations over sample sizes of 108 atoms
for a trajectory of 2000 time steps at a few representa-
tive densities. Within the statistical error, the results
closely match those for the smaller sample. In addition,
we have performed calculations with up to 432 atoms for
the TBss’ model and 1024 atoms for the Moliere in or-
der to establish meaningful sample levels. A more quan-

titative representation of the graphical data appears in
Tables ITI-VI.
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n(mol/ cm®)

FIG. 17. Comparison of the ratio of self-diffusion coeffi-
cients for three models: LDA (open circle), TBss’ (closed
circle), and Moliere (cross) for T' = 1 eV for two equimolar
mixtures: (a) HT and (b) DT. Dashed line depicts ratio for
pure species.
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We also notice in Fig. 16 an interesting trend: as the
density rises, the ratio of the two self-diffusion coefficients
hovers around unity. This contrasts sharply with our ear-
lier finding [Eq. (19)] for two noninteracting species that
this ratio should depend on the square root of the masses.
To explore this trend in more detail, we present in Fig. 17,
a comparison of the ratio of the self-diffusion coefficients
for the mixture (symbols) against the ratio for the pure
systems (dashed line) for the three models at T;=1 eV.
For HT, the mixture ratio rests almost a factor of 2 above
the pure fluids and for DT almost 25% above. This effect
probably arises from the additional collisions afforded by
the interspecies interactions. Corrections to simple dense
gas formulas for mixtures due to collisions between dif-
ferent species tend to have a similar effect [34]. We also
observe similar trends at other temperatures and for HD.
This finding emphasizes the need for moderately sophis-
ticated models of the full mixture in these temperature
and density regimes.

To converge the mutual-diffusion coefficients requires
extremely long trajectories, unfortunately out of range of
any DF-LDA calculations. However, we have performed
simulations of HT at 1 eV for several densities in both
the TBss’ and Moliere potential schemes. We begin to
reach well behaved values for these quantities after about
10000 time steps. However, for safety, we employed be-
tween 30 000 and 40 000 steps in most trajectories, longer
than in our previous report [59]. For isotopic binary mix-
tures of nearly equal masses, the mutual diffusion coeffi-
cient D;, assumes a particularly simple form [32]:

Di3 = z1D; + z2 D3, (20)

where z; defines the concentration (/V;/Ni2). In many
cases, this form has been shown valid well outside its
derived range. We have found that for isotopic hydro-
genic mixtures this form usually predicts too low a value
compared to the actually calculated D;5 although usu-
ally only by less than 25%. We present a representative
example in Table VII for an HT mixture at 1 eV as a func-
tion of molar density for the TBss’ and Moliere models.
A similar trend holds for the Moliere potential for HD,
where at n of 0.5, 1.0, and 1.5 mol/cm3, D;, has values
of 8.9, 6.0, and 3.1 x 1073 cm? /s, respectively. Therefore,
the approximation provides moderately accurate mutual
diffusion coefficients from the self-diffusion, which con-
verges for much shorter trajectories.

TABLE VII. Mutual diffusion coefficients in units of 1073
cm?/s for HT mixture at 1 eV as a function of molar den-
sity (mol/cms) in the TBss’ and Moliere models. Dz =
%(D1 + Dz).

TBss' Moliere
n D12 D12 D12 DlZ
0.50 9.6 9.0 7.0 6.7
1.00 5.9 5.6 5.2 4.2
1.50 5.1 4.2 3.9 3.2
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IV. SUMMARY

We cannot hope in a short conclusion to summarize all
the many findings for hot, dense hydrogen contained in
the past few sections. However, a few highlights should
receive emphasis. First, for pure hydrogen, basic struc-
tural and dynamical properties depend strongly on the
level of treatment of the electrons. Clearly, even at the
elevated temperatures, quantal effects remain important.
Second, transient associations of atoms (“clusters”) per-
sist over many MD cycles. These associations, which
rarely bind at temperatures greater than 1 eV, drastically
alter the charge distribution around the collective sites
from a simple superposition of atomic wave functions.
This distortion can profoundly affect radiative proper-
ties of the media. Third, quantum mechanical simula-
tions remain important for mixtures. The self-diffusion
coefficients for the constituent species exhibit perceptible
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deviations from simple mass scaling rules derived from
the pure species. In short, quantum molecular dynam-
ics simulations of hydrogen in this intermediate regime
between molecular liquid and a fully stripped, very hot
plasma provide invaluable information on the basic na-
ture of the medium.
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