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Wavelet analysis of the energy transfer caused by convective terms:
Application to the Burgers shock
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Orthonormal wavelet analysis, which can deal with the information about both space and scale
simultaneously, is applied to analyze the energy transfer due to spatial structures. To utilize the
concept of "triad interaction" in non-Fourier bases, a simple and appropriate definition of transfer
functions is proposed. An essential problem in the use of orthogonal wavelets is a fast oscillation
observed in the temporal variations of energy and transfer functions. This oscillation is intrinsic to
a wavelet base function and corresponds to "phase" in spatial information. A way to remove the
phase is also proposed. These prescriptions are applied to examine the energy transfer process of
the Burgers shock as a preliminary work. It is shown that the energy transfer is well separated into
ones caused by the mean How and the velocity field of the shock. Within a scale, those correspond
to sweeping and compression, respectively. The mean Bow contributes even to the energy transfer
across a scale, but it is not substantial.

PACS number(s): 03.40.Gc, 47.27.Ak

I. INTRODUCTION

Spatially intermittent structures play an important
role especially when cascade processes are examined dy-
namically. In the energy cascade process, stretching of
vortices causes energy to be transferred toward smaller
scales. However, the relation between the dynamics of
vortices and the mechanism of cascade has not been
clearly understood so far. ]A'e would therefore like to
con6rm what role spatially localized structures play in
cascade or general transfer processes. For this purpose we
utilize orthonormal wavelet analysis in this paper [1,2].
The wavelet contains information about both scale and
position. Therefore it is very convenient for studying the
spatial distribution of self-similar sets in a general sense.
In fact, many authors applied wavelet analysis to the en-
ergy dissipation, singularity, etc. [2—4].

Among them, Meneveau [3] studied directly the en-

ergy transfer across scales in detail. He de6ned energy
transfer and flux functions in wavelet space which are
analogous to those in Fourier space. One of his main re-
sults is that the variation of the local flux is much larger
than the mean value. This observation does not mean
necessarily that the inverse transfer of energy is common
locally, partially because the sweeping of energy does con-
tribute to the flux function. As Meneveau pointed out,
the sweeping does not transfer energy between different
scales, because the sweeping of a mass of energy in a scale
only induces a pair of positive and negative transfers in
the direction of its progression. In Fourier analysis, the
sweeping effect cannot be explicitly expressed except if
the approach of Waleffe is followed, where he asymptot-
ically showed that a pair of extremely nonlocal triads
corresponds to the sweeping by the large-scale local flow
[5]. Thus we should carefully apply wavelet analysis to
the analysis of energy transfer. Moreover orthonormal

wavelet analysis involves its own problems to be solved,
some of which were pointed out by Meneveau.

Studies on energy cascade so far are mainly based on
the triad interaction in Fourier space [5—9]. Applica-
tion of these Fourier analyses to wavelet analysis is not
straightforward. In Fourier space, because of homogene-
ity, triad interactions are defined naturally. That is, a
special set of wave numbers is selected: Ie + p+ q = O.
Furthermore, after symmetrization of transfer functions
the total energy exchanged among modes in this triad
is conserved. In this sense, triad interactions can be re-
garded as an element constituting energy transfer caused
by nonlinear interaction. On the other hand, even for
orthonormal wavelets, any three wavelet bases can con-
struct a triad, because the product of any two wavelet
bases is not a single wavelet base but a combination of
wavelet bases. In addition, the energy exchanged in a
triad is not conserved [3]. In fact, Eyink tried to study
the locality of the energy transfer by means of a continu-
ous wavelet, but failed to remove the large-scale convec-
tion effects due to the lack of a detailed energy balance
in his representation [10]. Hence we should introduce an
alternative definition of transfer functions in the energy
equation to utilize a triad as an element for wavelet anal-
ysis. The transfer functions de6ned in this paper will be
confirmed to be the simplest extension of those in Fourier
analysis.

Analyzing the transfer process due to moving struc-
tures with a wavelet brings about another technical prob-
lem on oscillation intrinsic to a wavelet base function.
Roughly speaking, each wavelet mode possesses also the
information about phase as Fourier modes. However, the
simple definition of energy, half the squared wavelet coef-
ficient, cannot remove the information about phase per-
fectly. This problem is essentially the same as that on
the spatial oscillation for continuous wavelet transforma-
tion with a real-valued wavelet. However, the latter is
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well known and the use of a complex-valued wavelet is
advised to evade the phase oscillation [4]. On the other
hand, we do not know so far of any complex-valued or-
thonormal wavelet that possesses proper characteristics
such as the compactness both in physical and Fourier
spaces. Since the orthonormal wavelet is indispensable
for triad-interaction analysis of transfer process, we re-
quire some way to remove the phase.

For an orthonormal wavelet, it is hard to recognize the
spatial oscillation because of the discreteness of the spa-
tial parameters. Therefore such an oscillation has been
neither removed nor even considered. Here we intend
to reveal the phase oscillation and show how to remove
it. To do this, we adopted. a single Burgers shock as
one of the simplest models. A shock can be understood
as discontinuity of velocity and is also a basic element
that constitutes one-dimensional turbulence; the energy
of a shock is believed to be transferred to smaller scales.
The speed of a shock can be controlled by adding local
How: Galilean transformation. By this transformation,
spatial information can be changed to temporal. As a re-
sult, the energy of a wavelet mode observed at a spatial
point shows fast (phase) oscillation blurring the substan-
tial variation according to the motion of a shock (struc-
ture) as shown later in the paper. Therefore discussing
the transfer with original data obtained by means of a
wavelet may lead to erroneous conclusions.

One of the ways to remove the phase oscillation is time
averaging over the period of fast oscillation, which is dis-
cussed in Sec. IV B 1. Note that for interacting or mov-
ing shocks, their velocities are not the same. Thus the
time averaging method does not work well. The possi-
bility of a space averaging method, which is suitable for
plural shocks (structures), is also discussed in Sec. IV B
2.

Another word of caution should be mentioned regard-
ing the energy transfer due to pressure. In the case of
incompressible Quid, pressure can be determined only
by the velocity field through a relation such as Lp =
—V' . (m . Vm). In Fourier analysis, pressure does not
work explicitly in the energy transfer. That is, the in-
compressibility holds even for the velocity of each wave-
number vector, and then the transfer term due to pres-
sure disappears in the energy equation m*(k). ikp(k) = 0.
In wavelet analysis, these are no longer true, because a
wavelet base is not an eigenfunction of differential oper-
ator. Physically speaking, in incompressible Huids infor-
mation is transmitted to infinitely distant points instan-
taneously and spatially separate points interact through
pressure. Here we should solve pressure explicitly and
evaluate its eKect on the transfer as done by Meneveau
[3]. In this paper, however, we focus our attention on
the nonlinear terms because transfer of some quantities
such as energy in the Burgers equation, entropy in the
Boussinesq equations [11,12], and enstrophy in the two-
dimensional (2D) Navier-Stokes equations are not depen-
dent on pressure explicitly. The examination of the role
of pressure on the transfer process will be left to future
works.

The next section is devoted to the review of the or-

II. ORTHONORMAL WAVELET

The orthonormal wavelet has two discretized parame-
ters j and m corresponding to position and scale. Taking
the discrete dilation in octaves we define the wavelet base
function as follows:

(x)=2 ~ @p(2 z —j) (m, jCZ), (2.1)

where gp is a special function called an analyzing wavelet
and (g lm, j C Z} is a complete orthonormal system.
Then a function f (x) is expanded with this orthonormal
basis in the following form:

f(*) = ).f, @, (*) (2.2)

where f (m, j are integers) is an expansion coefficient
(a wavelet coefficient). It should be noted that m is the
scale parameter while j indicates the position in the form
j/2 . Their orthonormality condition is

*(x)@, (x)dx = 8,, h (m, j, m', j' c Z),
~ ~

(2.3)

where b,~ is Kronecker's symbol.
Following Meyer's procedure [1], the analyzing wavelet

is defined as follows. First we choose an infinitely diÃer-
entiable, real function Pp(k) which satisfies the following
conditions:

Pp(k) & 0, Pp(k) = Pp(-k), (2.4)

Pp(k) is rnonotonically decreasing for k & 0, (2.5)

bp(k) = 1 (lkl & 2s~),

&.(k) = 0 (lkl & —.' ),

(yp(k)} + (yp(k —27r)} = 1(—7r ( k ( —7r). (2.6)

Then the Fourier transform of the analyzing function
@p(k) is defined as

gp(k) = exp
l

— i l-f k.)
& 2)

(k~ —(4.(k)}'
&2)

(2 7)

thonormal wavelet. In Sec. III, we propose a definition
of transfer functions which satisfies the detailed balance
of energy exchanged in a triad. We also show the general-
ization of triad interactions. These are applied to analysis
of shock dynamics in the Burgers equation in Sec. IV.
Some analytical results are also given there. In the final
section, summary and conclusions are presented.
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Finally the analyzing wavelet is obtained by its inverse
Fourier transform:

1.0—

@o(x) = — @o(k)e'" dk.
27r

(2.8)
'~ 0.5-

The analyzing wavelet is not chosen uniquely so far. In
this paper, we employ one constructed by Yamada and
Ohkitani [2]. In their construction, Po is defined as

0.0 I

Zn 3II; 4'
k

where

&o(k) = [&(k)&(-k)1'" (2.9)
FIG. 2. The absolute values of Fourier coefficients of the

analyzing wavelet. The spectrum has a compact support in
the region ~7r & lkl & —7r.

(4
g(k) =hl —7r —k

lE3 )
(4

hl k ——~ I+hl —~ —k
I

(2.10)

h(k) = exp( —1/k ) (k ) 0), h(k) = 0 (k & 0). (2.11)

The analyzing wavelet is shown in Fig. 1. The absolute
value of @o(k) is also shown in Fig. 2.

Not only the analyzing wavelet but every wavelet base
is localized in physical space in the sense that it and
its derivatives of any order become rapidly decreasing
functions (i.e. , functions which converge to zero faster
than any power function as lxl -+ oo). The Fourier
transform of a wavelet base has a compact support in
Fourier space [2]. When a field is periodic with its pe-
riod 1 and the spectrum of the Geld is compact in the
region lkl & s~2, the set of wavelet bases that is
necessary to reconstruct the field in physical space is
(@. l0 & m & N, O & j & 2~ —1).

From the definition (2.1), the product of the width of
a wavelet base in physical space, Lx, and its width in
Fourier space, Lk, is constant for any scale m:

right by 2 from the origin. When we observe an event
of some moving velocity, say uo, the time series of its
wavelet coefficient for a wavelet base with (m, j) delays
by Az /(2uo) from the observation in physical space at
x = 2 j. Therefore we define the representative posi-
tion of a wavelet base with (m, j) as x ~

= 2 (j+ 2)
instead of the usual 2 j. It should be noted that the
value of the shift, Ax /2, is dependent on the concrete
form of the analyzing wavelet. The newly introduced co-
ordinate will be used for the analysis of a shock in Sec.
IV and we will see the consistency between our definition
and observations.

XII. MATHEMATICAL FORMULATION

A. De6nition of transfer function

In this section, we discuss nonlinear interactions and
their role in energy transfer based on the Navier-Stokes
(NS) equations:

Ax Ak = | (C is a constant). (2.12) 8—u = —(u V')u —V'p+ veau,
Bt

Thus, in physical space, Lk defines the inverse of the
width of the wavelet base. It should be noted that C is
a constant but depends on the definitions of Lx and
Lk . In this paper, we set Ax = 2, which is the
interval between adjacent wavelet bases of scale m, .

As. seen in Fig. 1, the symmetric point where the ana-
lyzing wavelet takes the maximum value is shifted to the

1.0—

where p is pressure and v is the kinetic viscosity. Here
we assume that Quid is contained in the periodic box so
that velocity is periodic on the boundaries. Generally the
box can be extended infinitely where velocity vanishes at
infinity.

The strong nonlinear terms in NS equations cause en-
strophy or energy transfer kom larger to smaller scales
in two or three dimensions. In the energy equations,
these terms turn into the third order nonlinear terms with
respect to velocity, which are called transfer functions.
Assume velocity is decomposed into several orthogonal
subspaces, e.g. , a space spanned by a set of orthonormal
wavelet bases:

CO

0.0
~() + ~(~) +.. . (3.2)

—1.0
-5

I

0 5

FIG. 1. Meyer's analyzing wavelet.

where we call each part of the right-hand-side a mode,
and modes satisfy the orthogonal relation f dVu~ l

u~ l = 0 when a g b Then the .transfer functions
are the combination of all the products of any three
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—E() =) 7(a: bwc)+
dt

a, b

(3.3)

modes. Here we define the energy of the mode as
E( )—:I ~u( )

~

/2dV. Time evolution of the energy of
the mode c is

by the inner product. Thus the mediating mode causes
the energy transfer through the velocity field constituted
by it. This characteristic of the unit is preferred in our
definition.

For the Burgers equation, the definition of 7 (a: b m c)
is

where the first term on the right-hand side represents the
transfer functions due to the nonlinear term (the advec-
tion term in this case) in Eq. (3.1). In the case that
the surface integrals vanish, we can define the function
7(a:bm c)as

7(a:b-+c) —= —— u( u ua) (c) (b)
3 Ox

(b) (c)
Ox

(3 7)

7(a: b -+ c) =——— dv(u') . (u(' V')u(')
2
u(~) . (u(~) . ~)u(~) ) (3.4)

For convenience' sake, we call this function a unit. In
this paper, we regard this unit as a unit expression for
energy transfer. We will call mode a a mediating mode,
mode 6 a giving mode, and mode c a receiving mode.

The unit is antisymmetric with respect to the exchange
between the modes 6 and c. Thus the unit can be inter-
preted as the energy transfer from the mode 6 to c by
a.

By means of the unit we can construct a triad sat-
isfying the detailed energy balance, that is, the energy
exchanged among these modes is conserved:

7(C:A-+B) =u 'u, 'u 'I((:A, B), (3.8)

We also define 7 (b -+ c) in the same way as the definition
(3.6). Note that the constant before the integral difFers
&om that in the definition (3.4), as they are chosen to be
consistent with Eq. (3.3).

The unit can also be represented by means of wavelet
coefIicients, although it is defined by an integral of triple
products of modes. For the simplest case where each
mode is constructed by a single wavelet base, the unit is
rewritten as follows:

T(a~b, c) + T(b~c, a) + T(c~a, b) = 0, (3.5)
dx,

t9z
(3 9)

where

1
T(a~b, c) =—-(7(b: c-+ a)+7(c:b-+ a)),2

1
T(b~c, a)—:—{7(c:a -+ b) + 7 (a: c -+ b) j,2

1
T(c~a, b) = f7 (a: b ~ c)—+ 7 (b: a ~ c)).

2

The function T(a~b, c) is called a detailed transfer func-
tion in the Fourier-triad analysis [17]; in Kraichnan s no-
tation T(a~b, c) = T(a, b, c) (see [13]).If the velocity field
is decomposed into incompressible subspaces, the unit
becomes simpler: 7 (a: b -+ c) = —IdV(u(') (tc( ) .
V')u(~) ). If the Fourier basis is adopted in the definition,
the function T(a~b, c) corresponds to the traditional de-
tailed transfer function. Note that nonlinear transfer due
to pressure vanishes in this case [14—16].

Furthermore, we define another function by summing
units over the mediating mode a:

7 (b -+ c)—:) 7 (a: b -+ c). (3.6)

We call this function the local transfer function. Of
course 7 (b + c) is antisymmetric between modes b and
C.

The unit is not defined uniquely. In our definition,
the structure of the advective term is retained. That is,
the mediating mode is combined with the nabla operator

where each of A, B and C denotes the mode defined
by a single wavelet base, @. ', @ ', and g. ', and their
coefFicients are u- ', u. ', and u. ', respectively.

In a similar way, units for higher spatial dimensions
can also be rewritten by means of wavelet coefFicients,
although the result takes a more complicated represen-
tation because of the added parameters. Therefore our
notation for the definition of the unit is more convenient
than that with wavelet coeflicients.

B. Comparison of our de6nition with that in
Fourier-triad analysis

Here we try to explain the unit in the context of the
triad interaction. In the Fourier basis, what we call "triad
interaction" is naturally introduced, where the sum of
modal energies conserves. On the other hand, as men-
tioned in Sec. II, the transfer function which satisfies the
concept of the triad interaction is not defined trivially in
non-Fourier bases. Then we have introduced the unit to
construct a triad interaction which is naturally connected
to that in the Fourier basis.

Now we consider a single triad where the sum of the
energy changes of three modes is conserved due to nonlin-
ear terms of governing equations such as convective terms
of the Navier-Stokes equations or the Burgers equation.
Note that we do not consider the energy exchange due
to pressure here. In Fourier space, however, our triad
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interaction without the pressure efFect coincides with the
traditional one because the energy exchange due to pres-
sure vanishes as commented on in the Introduction:

LE~ ~ + LE~ ~ + LE~ ~ = 0 (3.10)

where LE~ ~, LE~ ~, LE~ ~ are the energy change of the
three modes in consideration for infinitesimal time bt.
Next, we introduce the energy transfers n, P, 7 between
any pair of them as shown in Fig. 3. Then LE& ~ are
described with n, P, p as follows:

triad. We can also construct the triad interaction with
the units in the wavelet basis although any three wavelet
modes can interact. In this paper, we basically deal with
the local transfer function defined by (3.6), because they
can be interpreted as the energy transfer between two
modes as the usual treatment in the Fourier-triad anal-
ysis. It should be noted that generally a mode can be
constituted by a set of wavelet bases, and the solution is
divided into several orthogonal modes or subsets here.

&E = (p —n)ht = 2T(a~b, c)ht,

AE = (n —P)bt = 2T(b~c, a)ht,

AE ' = (P —p)bt = 2T(c~a, b)ht.

(3.11)

n = s(AE( ) —b,E( ) )/ht + f,
P = -(AE(') —AE( ))/ht + f,
p = s (AE —AE(') 3/bt + f,

(3.12)

Since Eqs. (3.10) and (3.12) are not independent, one
parameter f is needed to represent n, P, p with AE() as

C. Physical view of the local transfer function

In this subsection we will explain a physical view of
the local transfer function defined in Sec. IlIA. As an
example, we will deal with the enstrophy transfer of 2D
turbulence because the vorticity field is scalar and this
fact makes the problem more tractable. However, the
result can be applied to more complicated cases easily.

The vorticity equation is

(3.14)

where

(3.13)

where v is the kinetic viscosity and w—:(V' x m) ~, is the
vertical component of vorticity. In 2D turbulence, the
enstrophy Q—:jdS~ /2 is assumed to cascade.

We assume the vorticity field is decomposed into sev-
eral orthogonal subspaces as

The parameter f is generally time dependent and denotes
the net circulation Aux in this triad. In our definition,
f is 0 for 1D (e.g. , the Burgers equation), but is not
fixed for 2D or 3D. In the Fourier-triad analysis, the net
circulation of energy, f, is kept also uncertain in each
triad. In this sense, our definition is just an extension
of the traditional one, but takes the simplest form. As
a matter of fact, we can construct other units (see the
Appendix for a unit with f = 0), but such units are too
complicated to be interpreted physically. In any case,
when we use a unit to analyze local interaction between
modes, we should carefully estimate the energy transfer
between them.

Finally we should remark on the selection rule of a

~( )+~()+.. . (3.15)

(a) —g ~ fl(~)f(~) (&) — - fl( )f( ) (3 16)

where (f, )), (f ( ), . . . are sets of normalized bases
constituting the modes a, 6, . . ., respectively and
O. , O. , are the coefFicients of the bases. Note that

I f; f dS = h gh. ;~. For incompressible fiuids, the lo-
cal transfer function for enstrophy can be derived in the
same way as the definitions (3.14) and (3.15):

(a)
T~(a -+ b)

—= —f ds~~ ~(m v)~~ ~. (3.17)

(c)

FIG. 3. Detailed balance of the three modes in the trans-
fer term. The energy transfers between each two modes are
n, P, p, respectively.

It should be noted that if the velocity field m, the medi-
ating mode, is divergent-&ee and surface integrals on the
boundaries vanish, the two terms of the integral in Eq.
(3.4) become equivalent.

Assume the mode u~ ~ contains a part of a vortex
structure. After an infinitesimal time bt, the structure is
transformed by the velocity field as w( ) w( ) —ht(m .
V')u( ) if the viscous effect is neglected. Here, ~( ) repre-
sents the total transform of the part of the structure con-
tained in the subspace a initially and can be spanned by
not only the subspace a but also other subspaces. Thus
this transformation of the structure induces the variation
of other modes. The jth vorticity variation of the am-
plitude of the mode b due to the transformation of the
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structure u( ) in the infinitesimal time bt, DjO~ —+ b,
is derived as

IV. APPLICATION OF %'AVELET ANALYSIS TO
THE BURGERS SHOCK

Zn( ) = ( ) ~( ) —SS u. 'I7 ~( ) dS A. Simulation

h t —f ( ) (u . ')7)~( ) dS (3.18) In this section, we apply wavelet analysis to the Burg-
ers equation:

Then AQ b, the variation of the enstrophy of the mode(b)

b due to the mode a in a unit time, is described as
gu Ou 8 u

(4 1)

= —') n'"~ n(')j 2

= —) ()I ) f f, (u). . p)~( ) jds

~(') (u . V)~( ) d S. (3.19)

Pq(b) ) ) i(()(() d P O(b) j2 )- ~
(()(j'))&)

2 2

In the Burgers equation, turbulent, states are described
asymptotically by a set of shocks. A shock basically con-
sists of in-phase fluctuations of all scales and its &ont is
localized spatially. Thus, modal energies defined in the
orthonormal wavelet basis concentrate around the &ont
of the shock, i.e., only the coefIicients of wavelet bases
placed near the shock take values. According to the pro-
gression of the shock, excitations of modes propagate.
Furthermore, the energies seem to be also transferred to-
ward smaller scales around the shock. Here, we examine
these energy transfer processes in view of both scale and
position.

For this purpose, first we part the velocity field into
five modes named "observer mode, " "larger scale mode, "
"smaller scale mode, " "left mode, " and "right mode, "
respectively, as follows:

Therefore AQ &
is equivalent to the local transfer func-

tion defined by (3.19). Moreover, the enstrophy decrease
of the mode b absorbed into the mode a in a unit time,

AQ&, equals —AQ b. Therefore we can consider that(-) (b)

EQh and the enstrophy transfer between the modes a
and b are equivalent. This means that in this case our
definition of the local transfer function is consistent with
the physical view and also satisfies the detailed balance
of the enstrophy transfer between two modes considered.
We can apply this view also to the unit defined in (3.4)
if the mediating mode, m( ), is divergent-&ee.

For compressible fluids, the definition (3.17) is no
longer valid. In this case, the enstrophy variation of the
mode b due to the mode a, AQ b, does not balance(b)

with that of the mode a due to the mode b, AQ&, i.e. ,

f dSw(b)(u '(7a()) ).g —f dSw( )(u V'a)(b)). Moreover, it
is meaningless to consider the local balance, because en-
strophy is not a conserved quantity in the inviscid limit.

The simple physical view stated above is not applied
to the Burgers equation, because it is a 1D model of
compressible fluids. Nevertheless energy is conserved in
the inviscid case, i.e. , v = 0 [see Eq. (4.1)j. Thus the
explanation for the unit given in Sec. III B still holds for
the Burgers equation.

As mentioned in the Introduction, the pressure should
be treated explicitly in wavelet analysis. However, the
application of the triad interaction introduced in this pa-
per to pressure is not straightforward, because the nonlin-
ear effect due to pressure takes quite a complicated form
with velocity. Thus we should introduce a new scheme
or view to analyze the role of pressure on the transfer
process. We will leave this issue to future works.

( )
(obs) + (large) + (small) + (right) + (ieft)

(4.2)

(obs) rn()
@me ( )

mi jCS&arge

(small)

m, j6Ss ma 1 1

u™@,() (4.3)

(right) ) u @ (x),
m, jESright

(left) ) "mpm
(

m j+Sleft

where

~large

~small

~right

~left

(mj]0&m&mp, 0& j&2
(m, g]mp & m & X —1,0 & j & 2 ),
fm, j]m = mp, 0 & j & 2 —1),
(m) j]m = mp, 2 & j & 2 —1). (4 4)

The mean fiow up (a constant) is included in u(' 'g') be-
cause it is interpreted as a far larger scale flow. Since the
introduction of the mean fIow corresponds to Galilean
transformation of the system, the speed of the mean flow
does not have special meaning at this stage. That is, its
value does not affect results qualitatively. However, the

If we make the "observer mode" constituted by a single
wavelet base with m = mp(0 & mp & N), j = 0, then
the definitions of these modes are
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FIG. 4. The function E = '~= l(t) (solid line) and its
phase-free counterpart R„&

' (t) (broken line).
FIG. 6. Time series of 7 (left —+ obs) (solid line),

7 (right ~ obs) (broken line).

mean flow makes it clear that the time series of physical
d bquantities observed by means of a wavelet is blurred y

the spatial oscillation due to the phase as discussed in
Sec. IVB2. We examine the energy transfers between
the "observer mode" and one of the other four modes
with the transfer functions introduced in Sec. III numer-
ically.

The Burgers equation is solved numerically by the
fourth-order Runge-Kut ta method for time and the
pseudo-spectral method for space in the periodic re-
gion, [0, 1]. Aliasing terms are removed by the 2/3-rule
method. We report the results obtained for 2 modes,
dt = 1 x 10, and v = 1.5 x 10 . The initial condi-
tion adopted is u(z) = 1+ 2 sin(2m. z), and a single shock
emerges and travels with the velocity of 1. Finally, for
the "observer mode" we use (mo, j) = (5, 0) and also(, ') = (6 0) for comparison. As mentioned in the last
paragraph of Sec. II, the observer mode in a scale m is
on the position z = hz /2.

The time series of the energy due to the observer mode
(mo j) = (5, 0), E( = '~= )(t), is shown in Pig. 4. Oscil-mp, g
lation due to "phase" of a wavelet is observed. The trans-
fer function, the time derivative of the modal energy unc-
tion also oscillates. Pour time series of 7 ( . ~ o s),)

local transfer functions between "observer mode an
one of the other four modes, are displayed in Figs. 5
and 6. Although these four graphs show fast oscillations,
7 (large -+ obs) and 7 (left ~ obs) take positive values
on average, while 7 (small ~ obs) and 7 (right -+ obs)

take negative values.
Thus it is concluded that energy is transferred &om

larger to smaller scales and &om left to right as the shock
passes.

B. Numerical results on transfer functions

1. The removal of information about phase

Ax Lk = C. (4.5)

As mentioned in the Introduction, the raw data of
the transfer functions still contain the information about
phase. In this subsubsection, we propose a way to sep-
arate substantial information &om that about phase.
Figure 7 show the absolute values of frequency compo-
nents of the energies for the modes (m = 5, j = 0) and
(m, = 6, j = 0). Note that in this section u denotes
&equency, not vorticity.

Each of them takes two peaks. The higher peaks in Fig.
7 relate to the characteristic wave number of the wavelet
basis, while the width of the lower peaks at u = 0 is
concerned with the width of the wavelet basis in Fourier
space. To see this, we consider how the energy of a shock
with speed up varies for observers within a scale m in
wavelet space. Prom (2.12), hz and Ak satisfy the
relation

0.08

0.3

0.2—

0.1—

0.0

-0.1—

0 2
0.4 0.5 0.6

time
0.7

FIG. 5. Time series of 7 (large ~ obs) (solid line),
7 (small -+ obs) (broken line).

0.06

0.04

0.02

0.00
100II; 200m

FIG. 7. The absolute values of Fourier coefBcients of
R = '~= (t) (solid line) and R = '~= l(t) (broken line).
The frequency of the higher peak in each graph is propor-
tional to the scale parameter m.
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When the shock passes the observer mode of (m, j), the
energy of this mode oscillates with a characteristic &e-
quency w 2upk, where k is the characteristic wave
number ( 2vr2™in this case). Hence the propagation
of the shock is observed as successive oscillations of the
energy at adjacent grid points within a scale. This fre-
quency characterized by u corresponds to the higher
peaks of the Fourier coeKcients of the energy variations
in Fig. 7.

On the other hand, the lower peaks have a width Au
around u = 0. We will relate L~ to Lx . The char-
acteristic time in which the shock passes through the
characteristic width Lx of a wavelet is estimated as
At Ax /uo. Then Bur is defined as follows:

upAk
C

tLp

Lx (4 6)A(d~

This means that the lower frequency part in the region
l~l ( A~ /2 represents relatively slow variation of the
order of At, which is the substantial information about
the pass of the shock. Therefore we should remove the
high-&equency component of the time series of the en-
ergy of the mode to select the phase-Bee energy varia-
tion (PFE). It should be noted that even after removing
phase, the total amount of energy transferred, the coef-
ficient for cu = 0, is unchanged.

Finally, we relate PFE to the phase-&ee transfer func-
tion. We define a way quantitatively to remove the phase
of the energy E~ ~ (t) for the mode "a" as follows:

z,", (t) = jt:(t —t')zt. i(t')~t', (4.7)

G(t) =—f G(ur)e ' 'da,
1 (l~l &~.)
0 (l(ul ) (up),

(4 8)

—E„",(t) = ):&~(&: )(t)
b,c

(4.9)

where

Vct(t: c -+ c) (t) = fG(t —t')V (t: c t c) (t')dt'.

(4»)
The phase-&ee local transfer function can also be defined
by the sum of the phase-&ee unit:

+ f( ~ )(t) = ) +f(~. ~ )(t). (4.11)

where the subscript pf denotes the phase-&ee function.
Note that up is the characteristic &equency at which the
frequency components of El ~ (t) are divided into the sub-
stantial part and the fast oscillating one. We used up ——

51vr, 102+ for the modes (m = 5, j = 0), (m = 6, j = 0),
respectively. The phase-&ee unit is also defined in the
same way as the definition (4.8). From Eq. (3.3), the
time derivative of PFE can be described with the phase-
free unit as follows:

2. The vole of the mean ffovvv in vemovving the phaee

In this subsubsection, we will comment on the methods
of removing the "phase" intrinsic to the wavelet by com-
paring the temporal case with the spatial one. It should
be noted that the problem on the intrinsic phase is a tech-
nical problem when using wavelets, and has no relation to
physical considerations. There are two kinds of methods.
One is the method proposed in this paper using temporal
averaging. The essential part of this method is the intro-
duction of a mean Bow which corresponds to the Galilean
transformation of the system. By this transformation,
we can continuously observe the temporal variation of
a single wavelet mode fixed in space. As reported in
the next subsubsection, the time series of physical quan-
tities observed is blurred by the continuous oscillation
due to the phase. Though the characteristic &equencies
(time scales) of the intriiisic oscillation and the substan-
tial variation depend on the velocity of the mean How,
these characteristic &equencies are well separated for all
nonzero values of the velocity. Thus by averaging the
time series of physical quantities observed over the time
scale of the fast intrinsic oscillation, we can remove the
phase and obtain the substantial variation. We conclude
that the mean How does not play any essential role in the
removal of the phase.

While we have dealt with the temporal case in this pa-
per as preliminary work, it is not diKcult to introduce a
way of removing the spatial oscillations due to the phase
by spatial averaging. Here we will explain the method
brieBy. Roughly speaking, this method is based on the
spatial averaging over the length scale of the spatial oscil-
lation due to the phase. We can extend a discrete wavelet
to a continuous one based on the translational invariance
of an orthonormal wavelet. Then the discrete position
parameter j is extended to the continuous one, l. If l co-
incides with one of the discrete points j, the coefficient of
the continuous wavelet coincides with that of the orthog-
onal wavelet. Thus we can relate the squared coeKcient
of the continuous wavelet, e.g. , the energy, to that in the
orthogonal wavelet space. Since the concrete way of spa-
tial averaging is similar to that in the temporal case, we
omit the details here.

Besides the technique for removing the phase for gen-
eral applications of this analysis, there remain two issues
to be settled, in which physical consideration is required
in order to analyze turbulence in terms of wavelet-triad
analysis. In the first stage it is required to define appro-
priate energy transfer functions as proposed here. We
have confirmed the validity of our definitions by apply-
ing them to a single structure with well-defined phase
velocity; the single Burgers shock can be immobilized by
subtracting the mean How. At this level, the results ob-
tained by the temporal and spatial treatments are equiv-
alent. We will report the latter results elsewhere. It
should be noted that at this stage the phase velocity of
a structure plays a physically important role because it
induces the sweeping of the physical quantities around
the structure.

In the next stage, we would have to define struc-
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tures and their phase velocities in turbulence states, if
they exit. Since structures are spatially distributed and
their phase velocities may greatly dier, we cannot re-
late the temporal averaging to the spatial one by a sim-
ple Galilean transformation, even for a one-dimensional
case. However, so far we have not completely established
the required definitions of structures and their phase ve-
locities.
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8. The details of substantial information

In Fig. 8, time evolutions of 7„f(large -+ obs) and

7 zy(small ~ obs) are shown. Both the positive value of
7„y(large ~ obs) and the negative value of 7~y(small ~
obs) mean that energy is transferred from a large scale
to a small one.

The similar graphs of 7 „y(left ~ obs) and

7~f (right ~ obs) as those in Fig. 8 are plotted in Fig. 9.
The similar discussion can be applied to these transfer
processes. That is, energy is transferred from left to right
through the pass of the shock. The total amounts of en-

ergy transferred by both the processes are estimated by
the values of the graphs at cu = 0 in Fig. 10. The dif-
ference of energy between input and output is dissipated
by the viscosity within the scale m. Compared with the
transfer across scales, the transfer within the scale does
not lose so much energy by dissipation seemingly. This
is because the shock in this scale is kept quasisteady by
the balance between input and output of energy.

Here we introduce a unit time At = Ex /up in
which a shock moves the distance between adjacent sites.
For m = 5 and up ——1, At = 1/32. The width of
the peaks in Figs. 8 and. 9 is the same order of Lt
By the way, these graphs do not take maxima at the
time that the shock passes the observer mode. To see
this in detail, let t ~ be the time that the shock passes
x = x ~, the position of the observer mode. Because the
shock emerged from the initial condition 2 sin(2rrx) and
is swept by the mean How up ——1, t ~

= (0.5+x,~)/up
for t ) 0.5. Then for the observer mode at x
t5 p 0.516 is earlier than the times for the maxima of
these graphs. These discrepancies will be explained well

in the following (see Fig. 11).

FIG. 9. Time series of 7„y(left ~ obs) (solid line) and
Q y(right ~ obs) (broken line).

Each of these transfer processes both within and across
a scale consists of two elementary processes caused. by the
mean How and the velocity intrinsic to the shock; the ve-
locity jump exists across the shock. We have examined
so far the local transfer functions whose mediating mode
is the complete velocity Geld. The mediating mode orig-
inates &om the convective term in the Burgers equation,
and causes the energy transfer. Thus we can examine
roles of the mediating mode in detail by dividing the ve-
locity field u(x) into the mean How up and the remainder
u'(x): u(x) = up + u'(x). We call them the mean mode
and the remainder mode, respectively.

First, we discuss the energy transfer Rom the left mode
to the observer mode within a scale, 7 „f(left ~ obs),
which is also divided into two units: 7&y(mean: left -+
obs) and j„y(remainder: left -+ obs). In Fig. 12, the
time series of both units are shown. The shock passes
the site of the observer mode at t

&
—p 0.516 for

m = 5. The energy transfer caused by the mean How,

7„y(mean: left -+ obs), has the broad and positive
peak of the width At around t = 0.5. During this pe-
riod, the shock is between the site of the observer mode
x p and its left next site x q (= x 2 q). On the
other hand, the energy transfer due to the remainder,
7„y(remainder: left -+ obs), is roughly anti-symmetric
around t = 0.5. The direction of the energy transfer
due to the remainder changes its sign &om negative to

0.10—
6.0

0.05—

I~ 0.00:—

-0.05— 0.0 50~ 10071; 15071

0.4 0.5 0.6 0.7
time

FIG. 8. Time series of 7„y(large -+ obs) (solid line) and
7„t(small —+ obs) (broken line).

FIG. 10. The absolute values of Fourier coefBcients of
7 (t)'s for m. The energy transfers from the mode of large,
small, left, and right are shown by solid line, broken line,
dotted broken line, two-dotted broken line, respectively.
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(a)

(b)
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(c)

FIG. 11. Schematic view of the two elementary processes of
the energy transfer within the same scale: (a) sweeping by the
mean flow, (b) compression by the shock structure (velocity
jump), (c) the sum of both processes; the total contribution.

FIG. 13. Time series of 7„y(mean: left —+ obs)
and 7„y(remainder: left ~ obs), 7~f (left —+ obs)
(dashed line, broken line, solid line, respectively) and
7~f (mean: right -+ obs), Q t' (remainder: right -+ obs),
7~f(right -+ obs) (dash-double dotted line, dash-dotted line,
dotted line, respectively).

positive at t = 0.5 when the shock is on the center be-
tween the observer's site and its left next site. From the
symmetry of the situation, it is easily understandable
that the transfers between the shock and the above two
sites (x p and x q) coincide. Further, the transfer
between the observer mode and the left mode turns into
zero at t = 0.5 [ 2(t —s z p + t s& — y)']. —Therefore,
we deduce that energy is concentrated to the center of
the shock within the scale by the remainder: compres-
sion. As explained analytically in the next subsection,
the transfer between the observer mode and the left ad-
jacent site (strictly speaking, the mode assigned to this
site) can approximate to 7~f (remainder: left m obs).

The transfer &om the right mode to the observer mode
can also be decomposed into the transfers by the mean
How and the remainder: the sweeping and the compres-
sion (see Fig. 11). These transfers, units, are easily in-

terpreted in comparison with those &om the left to the
observer mode. The transfer due to the mean flow has
the broad and negative peak around t = 2(t q z p +
t s z q) ~ 0.533 when the shock is on the center be-
tween the observer x 0 and the right adjacent site x
The transfer due to the remainder changes its sign from
positive to negative at t = 0.533. The time delay Lt

between the zeros of 7„y(remainder: left + obs) and
j„y(remainder: right -+ obs) corresponds to the distance
between these two centers& x~ p + 2Lx~. The antisym-
metry of 7„f(remainder: right -+ obs) means also the
energy compression (see Fig. 13).

The total transfer of the observer mode within this
scale due to the mean flow is the sum of 7„y(mean: left ~
obs) and 7„y(mean: right ~ obs). This transfer takes a
zero at t = 0.5+ Lt when the shock is on the observer.
At this time, the transfer changes its sign &om positive
to negative. That is, the pass of the energy blob accom-
panied with the shock is observed. The total transfers
within a scale, 7 „f(left -+ obs) and 7„t(right ~ obs),
take relatively sharp peaks after the pass of the shock.
This delay of the peak of each transfer is caused by the
energy compression, and can be explained only by the
decomposition of the transfer function used here.

Next, we examine the energy transfer &om the large
mode to the observer one: 7 zy (large + obs)
7p f (mean: large ~ obs) + 7„y(remainder: large -+
obs). These transfer functions are shown in Fig. 14. Can-
trary to the transfers within a scale, the transfer due to
the mean flow, 7„f(mean: large ~ obs), is antisym-
metric. That is, before the pass of the shock, energy is
transferred to the larger scale from the observer and then
the same amount of energy is returned after the pass. We
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FIG. 12. Time series of 7~f (mean: left + obs) and
7„f(remainder: left ~ obs), 7~y(left ~ obs) (dash-dotted
line, broken line, solid line, respectively).

FIG. 14. Time series of j„y(mean: large m obs)
(dash-dotted line), 7„y(remainder: large m obs) (broken line)
and 7„f(large m obs) (solid line).
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FIG. 15. Time series of 7„f(mean: small -+ obs)
(dash d-otted line), 7„y(remainder: small + obs) (broken
line), and 7„y(small -+ obs) (solid line).

C. Analytical results for the sweeping effect

cannot explain the physical meaning of this antisymmet-
ric nature so far. Anyway, the mean flow affects even the
transfer across scales. The transfer due to the remainder
mode, 7„1(remainder: large ~ obs), takes a sharp pos-
itive peak at t = t 5 ~. 0. This means that the energy
is transferred &om the large mode to the observer mode
around the shock by the remainder. In this case, the
former is relatively smaller than the latter, therefore the
total transfer, 7„f(large + obs), is not shifted remark-
ably.

The transfer &om the small mode to the observer mode
is also decomposed into the transfers due to the mean
flow and the remainder. In Fig. 15, time series of these
transfers are plotted. The transfer due to the mean flow,
7„y(mean: small + obs), is antisymmetric and changes

= 0.5 At 2.1 s sign't sign &om positive to negative also at t = . +
smallThis means that some amount of energy of the sma

mode is given to the observer mode and then returned
as the shock passes. The transfer due to the remainder,

is transferred &om the observer mode to the small mode.
The total transfer, however, is affected by the mean flow
effectively so that it is shifted further and gets narrower
than 7 „1(large m obs).

where b(x) is Dirac's delta function. The wavelet coeffi-
cient of the velocity Geld, u .. , is represented as an integral

"(m)of wavelet basis. To do this, we define a function u ~y)
as follows:

p~ ~
yI)

—= f u(x)2 ~ g(2 x —y)dT

Kp

= 2 + g(2 x —y)d2:

=2"=. f" @(2 z)dz. (4.13)

~ (0) mp mp 1 )9TAQ mp7 (mean: ji ~ j2) = —u u- u

@TAp @PLp
21 g~ 22

tL 'tl .- (0} mp mp (mp)
21 32 ) (4.14)

where J—:j2 —ji. Then 7,( ' (J) is defined as follows:

r.'-'I~) -=fe;, , e-;-,

—[2 —(—1)'] —2
3 J

4'

[4 sin(2 Jk)

—sin( J k) ]P (k) dk (4.15)

where Qo and Po are introduced in Sec. II. As shown

Note that u( )(y) at y = j (j is an integer) agrees with
u . The function u& ) (y), which is shown in Fig. 16,
oscillates around y = x0 with its wavelength about
2. Thus u changes its sign in turn as

~ j~ increases
and decays fast as j goes away Rom the shock. The
main procedure is to calculate 7 (mean: b —i c) when
the passive and active mode are the wavelet modes of
(ms, ji), (mo, j2) (ji g j2), respectively. The mean How

is taken as the mediating mode,

Because of the Galileian invariance of the Burgers
equation, e mean ow, th flow moves a shock with a constant
speed. That is, a blob of energy in a scale is simply
swept within the scale. Thus some of 7 (mean: b —+ c)
should express this sweeping; &om the site of the blob to
the just forward site energy is transferred by the mean
flow. In this subsubsection we attempt to explain this
analytically.

is ne li ible.Let us consider scales where viscosity is negligi e.
Then the shock can be approximated by a step function:

0.04—

0.02—

Es 0.00'

-0.02—

I I I I I

-4 -2 0 4
j-z6

u(*) = [-O(*-*.)+-,]+ -(0)
—j b(x' —2:o)d '+ —,'+u'I ), (4.12)

FIG. 16. The function u~ )(y). Black circles are locate
at 2 ™jfor integer j. The interval 2 is about half of the
wavelength of this function.
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FIG. 17. The function 7,~ (j), which has large peaks at
j =+1.

Fig. 17, 7,~ '~(J) has large peaks at J = kl and de-
creases rapidly as

~
J~ increases. Therefore the exchange

of energy within a scale takes place mainly between ad-
jacent modes such as ~jq —

g2~ = 1. In addition, u.
decreases faster than any power of the distance from the
shock, and changes its sign site by site (see Fig. 16). This
means that 7(mean: jq ~ j2) has a large positive value
around the shock when j2 —jq ——1 and uo ) 0. Thus
we can conclude that the mean flow induces the energy
transfer which corresponds to the sweeping of the shock.
It should be noted that this conclusion can be extended
to the situation where the large-scale velocity Geld works
as mean fIow locally.

V. SUMMARY AND CONCLUSION

The purpose of this study is to construct a method
to observe transfer processes within and across scales by
means of orthonormal wavelet analysis. We have also
proposed a general expression of the energy transfer func-
tions regardless of bases.

The most important ingredient of this method is the re-
moval of the information about phase. Because we utilize
orthonormal wavelet analysis, the energy of each wavelet
mode is deGned as half the squared wavelet coefIicient as
usual. The transfer observed in terms of this simple def-
inition, however, shows more complicated variation than
that expected by physical intuition. This is because the
efFect of the phase intrinsic to a wavelet base function is
not explicitly treated.

To reveal the phase oscillation, we have analyzed time
series of the transfer functions due to a shock traveling
with a constant speed as an example. The speed of a
shock can be controlled by Galilean transformation of
a system. Since the phase is represented by higher fre-
quency components of the time series, we can separate
the substantial information &om the phase by cutting off
the higher frequency components.

After removing phase, we have examined the energy
transfers within and across a scale. Each local transfer
function is decomposed into two units due to the mean
flow and the remainder, i.e. , the velocity intrinsic to the
shock. For the transfers within a scale, the mean flow
sweeps the energy &om left to right according to the pro-
gression of the shock. The velocity intrinsic to the shock

induces the compression of energy to the shock. The
hichmean flow causes even the transfers across a sca e, w ic

are not substantial. Thus we should carefully evaluate
substantial transfers through scales. Although, in the
case of the shock traveling steadily, the separation of the
mean fIow from the intrinsic velocity is trivial, in a real
situation the separation should be performed carefully.
We are trying to define the local mean flow systemati-
cally by means of wavelet transformation.

The extension of the present method, the removal of
phase by spatial averaging over the length scale of the
spatial oscillation, to field data is underway and seems to
be successfully settled. In this extension, field data are
spatially filtered in terms of a continuous wavelet, which
was discussed in Sec. IV 8 2. This method may in-
form us about spatial distribution of the "local transfer"
even for a single snapshot of fields. %e are also apply-
ing these methods to 2D Navier-Stokes turbulence and
free convective turbulence [llj. We have found transfer

eprocesses similar to ones discussed in t is paper. These
results will be reported in a forthcoming paper.
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APPENDIX: ANOTHER DEFINITION
OF THE UNIT

It is pointed out in Sec. IIIB that the unit cannot
be deGned uniquely; the one-third of the cyclic sum of
three units in a triad, f, remains uncertain in the triad

=0interaction. For example, we can define a unit wit
as follows:

7„, (a: b -+ )—:c7(a: mbc) —F, (Al)

where I' = -(7 (a: b —+ c)+7 (b: c -+ a)+7(c: a -+ b)).3
The sweeping works as a part of the energy trans er,f

but it is not substantial. Thus we have deGned the unit
in Sec. III by which the sweeping effect can be separated.
However, the additional term introduced in this appendix
makes this characteristic of the unit obscure. Think of
the case that the mediating mode can be regarded as a
constant Row (i.e. , large-scale How) and the other two
modes are in a same and smaller scale but at different

4positions. The original unit can represent the sweeping
effect trivially, but the new unit does not give such a
simple interpretation because of its complexity.



52 WAVELET ANALYSIS OF THE ENERGY TRANSFER CAUSED. . . 6201

[1] Y. Meyer, in Wavelets, edited by J. M. Combes, A. Gross-
mann, and Ph. Tchamitchian (Springer, Berlin, 1988), p.
21.

[2] M. Yamada and K. Ohkitani, Prog. Theor. Phys. 83, 819
(1990); Fluid Dyn. Res. 8, 101 (1991).

[3] C. Meneveau, Phys. Rev. Lett. 6B, 1450 (1991);J. Fluid
Mech. 232, 469 (1991).

[4] M. Farge, Annu. Rev. Fluid Mech. 24, 395 (1992).
[5] F. WalefFe, Phys. Fluids A 4, 350 (1992); 5, 677 (1993).
[6] Y. Zhou, Phys. Fluids A 5, 2511 (1993).
[7] J. A. Domaradzki and J. Rogallo, Phys. Fluids A 2, 413

(1990).
[8] J. G. Brasseur and Q. Wang, Phys. Fluids A 4, 2538

[9]
10
11

[12
[13
[14

[15]
[16]

[17]
[18]

(1992).
K. Ohkitani, Phys. Fluids A 3, 1598 (1990).
G. L. Eyink, Physica D 78, 222 (1994).
S. Toh and E. Suzuki, Phys. Rev. Lett. 73, 1501 (1994).
S. Toh, J. Phys. Soc. Jpn. 64, 685 (1995).
R. H. Kraichnan, Phys. Fluids 10, 1417 (1967).
M. E. Maltrud and G. K. Vallis, Phys. Fluids A 3, 1760
(1991).
D. E. Newland, Proc. R. Soc. London 443, 203 (1993).
R. L. Schult and H. W. Wyld, Phys. Rev. A 46, 7953
(1992).
K. Ohkitani and S. Kida, Phys. Fluids A 4, 794 (1992).
J. G. Brasseur and C. Wei, Phys. Fluids A 6, 842 (1994).


