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Transitions between convective patterns in chemical fronts
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We present a theory for the transition from nonaxisymmetric to axisymmetric convection in iodate-
arsenous acid reaction fronts propagating in a vertical slab. The transition takes place away from the
onset of convection, where a convectionless flat front becomes unstable to a nonaxisymmetric convective
front. The transition is studied by numerically solving a reaction-diffusion equation coupled with non-
linear hydrodynamics in a two-dimensional slab.

PACS number(s): 47.20.Bp, 47.70.Fw, 82.20.Mj

I. INTRODUCTION

The effects of convection on chemical wave propaga-
tion have been observed experimentally in several sys-
tems, including the iron-nitric acid reaction [1], the
chlorite-thiosulfate reaction [2], the Belousov-
Zhabotinsky reaction [3],and the iodate-arsenous acid re-
action [4]. In these systems, convection enhances the
chemical wave speed and affects the curvature of the
front. Convection develops because of density gradients
induced by either compositional or thermal gradients.
Thermal effects are very important in systems that exhib-
it double-diffusive convection such as the iron-nitric acid
system. For the iodate-arsenous acid reaction, the
thermal length scale is large compared to the convective
length scale, and the Quid can be considered as having
uniform temperature, with convection being driven solely
by the chemical gradient [5]. In this system, as the front
propagates upward in capillary tubes, the front is Qat, ax-
isymmetric, or nonaxisymmetric, depending on the diam-
eter of the tube.

A linear stability analysis for convectionless flat fronts
showed that the transition to convection should be
nonaxisymmetric in cylinders [6]. Nonlinear numerical
studies near the onset of convection in a two-dimensional
slab also obtained nonsymmetric convective fronts [7].
Experiments observe a transition to axisymmetric fronts.
It was clear that to study axisymmetric fronts, the model
had to be extended to regimes away from onset and a new
numerical scheme was needed to detail with the long
computations. In this paper we report such computa-
tions. We begin with an introduction to the basic equa-
tions governing the system. We then discuss the expan-
sion method used to solve the two-dimensional Poisson
equation and compared its performance with other, es-
tablished methods. Our results are compared with previ-
ous linear and nonlinear analyses where appropriate. We
relate our work to current experiments and suggest new
experiments to test our results.

II. EQUATIONS OF MOTION AND LINEAR THEORY

Convectionless front propagation in the iodate-
arsenous acid reaction with arsenous acid in

Here D is the molecular diffusivity, c is the iodide concen-
tration ([I ]), c2 is the initial concentration of iodate
([103 ]), and c3 is the ratio of two reaction rate con-
stants, c3=k, /kb and a=k&[H ] . For the current cal-
culation, we use the typical values D =2.0 X 10
cm sec ', c2=5.0X10 M, c3=—1.0X10 M, and
u =3.45 X 10 sec M '. With these parameters, the
convectionless reaction-diffusion wave front has a con-
stant speed of 0.029 mm/sec, typical of experiments.

To describe the effects of convective Quid motion, we
couple the reaction-diffusion equation with the Navier-
Stokes equation:

+(V.V)V= g — VP+vV V,
Po Po

V.V=O,
ac 2+V V =DV c —ac(c —cz)(c —c3) .C

(2)

(3)

(4)

Here V is the Quid velocity, P is the reduced pressure re-
lated to the conventional pressure by P =p —pcgz,
g= —gz is the acceleration of gravity (g =980 cmsec )
in the vertical ( —z) direction, v=9.2X10 cm sec ' is
the kinematic viscosity, and p0 is the density of the react-
ed Quid. Here we have used the Boussinesq approxima-
tion that includes the density difference only where it
modifies the large gravity term [7]. In this paper, we only
consider the density difference induced by the change in
chemical concentration. Our previous work has shown
that even though the reaction is exothermic and the den-
sity differences due to thermal expansion and chemical
composition are comparable, the convective length scale
is much smaller than the length scale of the temperature
change [5], and thus thermal effects play a minor role.
This allows us to neglect the heat equation by treating the
temperature as uniform. Since the density differences are
small, we assume a linear dependence of the density on

stoichiometric excess can be described by a one-variable
reaction-diffusion equation [8]:

Bc =DV c —ac(c —cz)(c —c3) .
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Bc d(f, c) +DU c —u(c —c2)(c —c3) .
dt B(x,z)

Here we have defined

(9)

a(f„f, ) af, af,
B(xz) Bx Bz

~f2 ~fi
Bx Bz

(10)

We impose no-slip boundary conditions (vanishing fiuid
velocity) and no chemical fiow at the walls. For an initial
chemical concentration and Quid velocity, the evolution
of the system is determined by Eqs. (7)—(9). This set of
equations is highly nonlinear, requiring us to resort to nu-
merical methods.

The linear stability analysis of the Qat front was carried
out by us previously [9]. We first considered a laterally
unbounded front and introduced a small perturbation of
fixed wavelength. We found that ascending Qat fronts are
unstable to perturbations of wavelengths greater than a
critical wavelength. This explains the presence of con-
vection in vertical capillary tubes of diameter larger than
this critical wavelength. This linear stability analysis was
carried out using a thin front approximation. In this lim-
it, the reaction-diffusion equation is replaced by an eikon-
al relation between the normal velocity of the front C and
its curvature sc:

C —n.V~ =Co Da . —f 0

Here Co is the fiat front speed, V~f is the fiuid velocity at
the reaction front, and n is the unit vector perpendicular
to the front pointing into the unreacted Quid. The second
term on the left-hand side accounts for the effect of Quid

the iodide concentration c:

p=po[1 —P(c —c2)] .

Here, po is the density of the reacted Quid. The
coefficient of linear expansion (P=1.7X 10 M ') is ob-
tained from the experimental measurements of the iso-
thermal fractional density difference 5 =c2P=0.84
X 10 between the unreacted and reacted Quids, which
measures the relative size of the small density differences.

A complete description of the experiments performed
in test tubes requires a cylindrical geometry. To treat
this geometry, we would have to solve the equations for a
complicated nonlinear three-dimensional Quid Qow. In-
stead we confine our attention to the two-dimensional
slab and expect to obtain semiquantitative results for the
transition between convective patterns above the onset of
connection. In this case, the continuity equation [Eq. (3)]
allows us to introduce a stream function g defined by the
relations

Bg df
Bz Bx

The vorticity co is defined as

co=V' 1(,
and Eqs. (2) and (3) can be rewritten as

Ba) B(g,co) Bc

motion. The eikonal relation provides the stability
mechanism for the propagation of chemical fronts since it
tends to lower the hills and raise the valleys. It is the
competition between the stabilizing eikonal relation and
the destabilizing Quid buoyancy that results in a stable
convective curved front. A numerical linear stability
analysis using the reaction-diffusion equation showed that
the eikonal relation is an excellent approximation [10].
We also carried out a linear stability analysis on the two-
dimensional slab and on the three-dimensional cylinder
using no-slip boundary conditions [6,11]. We found that
the dimensionless driving parameter

$=5gd IvD (12)

involving the cylinder radius d (or slab width d) and the
corresponding Quid parameters completely determines
the stability of planar fronts. This parameter measures
the strength of buoyancy, which tends to destabilize a Qat
front in favor of convection, as opposed to curvature
effects, which tend to Qatten the front. This theory pre-
dicted that planar ascending fronts in vertical cylinders
are unstable to nonaxisymmetric convection for
4 & 4, =87.9 and to axisymmetric convection for
4 & 4, =370.2. Similar calculations for the bounded slab
gave the result of S,=371.5 and 4, = 1805.5 for antisym-
metric and symmetric convection about the midplane, re-
spectively. Using these critical values for eV and the ex-
perimental values of the physical parameters, we calculat-
ed the critical slab widths for antisymmetric and sym-
metric instability: d, =0.929 mm and d, =1.574 mm.
We will compare these results with our numerical simula-
tions.

III. NUMERICAL METHOD

The system of Eqs. (7)—(9) was solved numerically in a
two-dimensional vertical slab. The convectionless
reaction-diffusion equation [Eq. (1)] can be solved
eSciently by employing a rectangular grid on the spatial
domain. The time evolution can be obtained with either
an implicit or explicit Euler method. Once coupled to
the Navier-Stokes equations, the difhculty of the numeri-
cal simulation lies in solving Eq. (7), which is a Poisson
equation. The dynamics of the equation requires solving
the Poisson equation as time evolves. A successive over-
relaxation method proved to be too costly since it re-
quired several iterations to convergence for every time
step. An improvement was found by using a cyclic
reduction method. This method is used by the GENBUN
subroutine of the FIsHPAK package [12]. The number of
operations per time step used by this method is propor-
tional to m e n e lg ( n) for a mesh of size m X n, where n is
the number of grid points in the direction perpendicular
to the wave propagation. In an effort to speed up our cal-
culations, we developed a method based on a finite-mode
truncation of the stream function, which has of the order
m e n e k operations per time step, where k is the number
of basis functions used in the truncation. Evidently our
finite-mode truncation method is good when the system
can be accurately simulated by a small number of basis
functions or when the grid number n is large. This
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d4

x' (13)

There are two classes of these functions: the even an-
tisymmetric functions C and the odd symmetric func-
tions S . Eigenvalues of and integrals over these func-
tions are tabulated by Chandrasekar [13]. Accordingly,
we approximate the stream function by a truncated ex-
pansion,

method runs at least three times faster than the GENBUN
subroutine for our calculations with comparable accura-
cy. An additional advantage of this method is that the
finite truncation makes use of symmetric and antisym-
metric functions. This allows a better interpretation of
the physical results based on the symmetry of the basis
functions. This method is very useful in discovering the
underlying patterns for this problem. We present here
the details of the finite truncation method.

The chemical concentration c and the vorticity co are
obtained after a small time step using time evolution
[Eqs. (8) and (9)]. Once the vorticity is obtained, the
stream function g at the next time step is obtained by
solving the Poisson equation defied by Eq. (7). Since we
require no Quid velocity at the walls, the corresponding
boundary conditions for the stream functions are /=0
and Bf/Bz =0 at the vertical walls. These boundary con-
ditions can be satisfied by expanding the stream function
in a series of complete orthonormal eigenfunctions of the
operator d /dx:

functions and another set for odd functions. For exam-
ple, if we choose a four-term truncation including Ci(x),
Cz(x), S,(x), and Sz(x), we will have two sets of decou-
pled equations, each set containing two coupled equa-
tions. Projecting over Ci(x) and C2(x) we have

df, (z, t) = (co(x,z, t) i C, (x ) ) = A, (z, t) — A, (z, t)
dZ d

2
~12

, A, (z, t),

A—
dz

1 QA=f . (16)

Here we define f(z, t)=(f (z, t)}=(co(x,z, t) C (x)),
A(z, t)=(A (z, t)), and Q=(q „)=((d /dz )

X C (x ) ~ C„(x)). The coefficients q „are tabulated in

Ref. [14]. The linear system of coupled differential equa-
tions can be easily decoupled by transforming to a new
basis generated by the eigenvectors of the coe%cient ma-
trix Q:

f, (z, t)=(co(x,z, t)~C,(x))=, A, (z, t) , —A,(z, t)d 912

dz d
2

, A, (z, t) .d'

This system can be written by using a compact matrix no-
tation as

f(x,z, t)= g A~(z, t)T (xld),
m=1

(14) 1A' — D A'= f' .
Z

(17}

d2a2
(co~'T„)= A„(z, t)+ g A (z, t) 'T„, (15)

where

(f ~

'T„)= —I f(x ) T„(x/d )dx—G1/2

for a given f (x). Furthermore, given the opposite parity
of the functions S and C, the equations decouple into
a set of equations for the coefficients A„(z, t) for even

where d is the wall separation. Truncating the series pro-
vides good approximation near the onset of convection,
as shown in the linear stability analysis [11]. We also ex-
pect that this truncation will give good results even well
above the onset, provided that the convective pattern is
not too complicated. Away from the front in the vertical
direction we require that the velocity field vanish, there-
fore imposing g(x ~+~ )~0. This method can be
modified to include other types of boundary conditions,
such as free boundary conditions, or one free surface and
one fixed wall, by choosing the appropriate basis func-
tions in Eq. (14).

We project the vorticity and stream function onto T„
to eliminate the dependence on the x direction. Substi-
tuting Eq. (14) into Eq. (7), multiplying T„on both sides
of Eq. (14), and integrating over the slab width d, we ob-
tain

Here A'=A, 'A, f'=A, 'f, D=A, 'QA, is the diagonal-
ized matrix of Q, and A, is the eigenmatrix formed by the
normalized eigenvectors of Q. Once the equations are
decoupled, the boundary value problem for the standard
second order differential equation (16) can be solved ei-
ther by Green's function method or with a forward-
backward substitution [15]. We found the forward-
backward substitution to be more eKcient. To complete
the solution of the Poisson equation we need to carry out
a similar calculation using the odd functions Si(x} and
Sz(x). Once the coefficients A„(z, t) are computed, the
stream function is obtained by substituting those
coefficients into Eq. (14). This process is repeated succes-
sively for each time step.

In our numerical simulation, we use a Qat chemical
front solution plus small random perturbation near the
front as our initial chemical concentration. All initial
values of tP and co are set to zero. Because of the hydro-
dynamic instability, the Quid velocity gradually increases
as the system evolves. It eventually becomes steady in a
frame comoving with the chemical front. Our calcula-
tions were carried out using a four-term truncation as
well as an eight-term truncation, depending on the pa-
rameter region. When the system is slightly above the
onset of convection, the results obtained with a one-term
truncation are not much different from those with a
four-tenn truncation. Further above the onset of convec-
tion, the Quid velocity field becomes more complicated,
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and more terms are required to ensure an accurate result.
The accuracy of the truncation was guaranteed by
analyzing the maximum value of the last term. In all of
our calculations, the maximum value of the last
coeKcient included is less than 1%% of the leading
coefficient. This criterion is satisfied with a four-term
truncation for widths d & 2.0 mm and with an eight-term
truncation for widths 2.0 & d & 5.0 mm. We have further
checked a sample of our results by using the GENBUN
subroutine, without observing any significant differences.
The finite term truncation is faster than the C"ENBUN sub-
routine by a factor of 3.2 for the four-tenn and 2.3 for the
eight-term truncation. The truncation also allows us to
study the contributions of different modes to the Quid
Qow. It also helps in computing unstable and metastable
states.

Our calculation use meshes of sizes 25 X200, 40X 300,
and 50X400, depending on the slab width. In the hor-
izontal direction the mesh size should not be too small in
order to accurately represent the functions S (x) and
C (x) over the mesh. At the same time, the spatial
domain in the direction of propagation should be long
enough to allow for the front to propagate and to reduce
interactions with the upper and lower boundaries. We
verify our selection of mesh size by doubling its size while
keeping the physical space the same and comparing the
results. In the experiments, the front propagates in a
long tube without interacting with the ends of the tube.
In the simulations the front is allowed to propagate a
small distance and then it is shifted back to the center of
the mesh, introducing unreacted steady Quid on the top
of the slab to cover for the shift. This procedure is
justified as long as the upper and lower boundaries are far
away from the front.

IV. RESULTS
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FIG. 1. Chemical wave speed as a function of the slab width
d. Below the onset (d &0.92 mm), chemical waves have a con-
stant speed of 0.029 mm/sec. For widths 0.92 mm ~d ~0.275
mm, the antisymmetric fronts and mixed states are observed.
Above the second critical point (d, =0.275 mm), the chemical
waves become completely symmetric. The solid line (~ )

represents the globally stable state. The dashed lines represent
the unstable, purely antisymmetric state (Q) and the metastable
purely symmetric state ( 0 ).

chemical front (solid trace) higher on one side and lower
on the other. In Fig. 3 we show a chemical wave on a
slab slightly below d =2.75 mm. For this width (d =2.6
mm), the Quid rises near the center of the slab and falls
near the walls, leading to a chemical front higher near the
center with two comoving convective ro11s. However,
one roll is stronger than the other, so the front is not
quite symmetric. The region for rising Quid is wider than
the region for falling Quid, but the velocity of the rising
Quid is weaker compared to the velocity of the falling

We investigate the onset of convection for chemical
fronts ascending in a vertical slab of width d for the
iodate-arsenous acid reaction. Our numerical results are
summarized in Fig. 1, where the calculated ascending
chemical wave speed vf (filled circles) is plotted as a func-
tion of the slab width. The solid horizontal line in Fig. 1

represents the speed vf =0.029mm/sec of the globally
stable convectionless chemical wave. For d &0.92 rnrn,
the ascending wave has this speed. For slab widths be-
tween 0.92 and 2.75 mm the wave speed increases with
the slab width. The slope decreases as the width ap-
proaches 2.75 mm but increases again as the width is fur-
ther increased. The shape of the wave and the Quid Qow
also vary as a function of the slab width. For ascending
waves in slabs of width d ~ 0.92 mm, the reaction front is
Qat, no Quid motion is present, and the chemical wave
speed corresponds to the speed of the reaction-diffusion
front. As the width increases beyond 0.92 mm, convec-
tion sets in and the speed of the chemical wave increases.
For convective waves close to the onset of convection,
the shape of the front is approximately antisymmetric,
with a single convective roll traveling with the front, as
shown in Fig. 2. In this region, Quid rises on one side of
the slab and falls on the opposite side, resulting in a
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FIG. 2. Fluid velocity field and wave front shape for an as-
cending wave in a vertical slab of width d =1.2 mm. The front
is higher on one side than the other. A single convective roll is
observed.
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Quid. At this point, the system is close to the second crit-
ical point (d, =2.75 mm) and close to becoming com-
pletely symmetric. Above d, the front becomes com-
pletely symmetric, with the highest point of the front at
the center of the slab (Fig. 4). There are two identical but
counterotating convective rolls traveling with the front.
The lighter reacted Quid rises at the center and the

FIG. 3. Fluid velocity Geld and wave front shape for an as-

cending wave in a vertical slab of width d =2.6 mm. The Quid

6eld is composed of both the antisymmetric modes and sym-

metric modes. A second convective roll can be seen near the
right wall.

heavier unreacted Quid falls near the vertical walls, re-
sulting in asymmetric front. As we further increase the
width, the amplitude of the curved front increases and
eventually becomes a long finger (Fig. 5), a symmetric
wavefront with its length longer than its width. Our non-
linear calculations agree with the linear theory based on
the eikonal relation [Eq. (11)]. The linear theory predicts
the onset of convection near d, =0.92 mm, which is con-
sistent with our numerical results.

We show the evolution from a Qat front to a steadily
propagating curved front for d =5.0 mm in Fig. 6. Ini-
tially (t =0 min) the system is set to the convectionless
Qat front with a very small random perturbation near the
front and no Quid Qow. At t =0.5 min the front is still
fiat but the Quid velocity is growing because of the hydro-
dynamic instability. At this moment, the Quid motion is
not strong enough to modify the shape of the front. At
I; =1.5 min, the front becomes roughly antisymmetric
since the fastest growing antisymmetric unstable mode
Ct(x) dominates near the onset. Between t =1.5 min
and t =2.5 min, both the antisymmeric and the sym-
metric modes grow and compete with each other. At first
the antisymmetric modes are dominant. Latter the sym-
metric modes dominate. The sharp cusp at the left side
of the front is due to the wave collision. At t =3.5 min,
the wave becomes almost symmetric but is still evolving.
At this moment, the left and the right sides of the front
are not at the same height; consequently the front is not
completely symmetric. At t =4.5 min and thereafter, the
front is symmetric and propagates with a constant speed
Uf =0.115 mm/sec. During the transient process the
chemical wave speed is not well defined since the wave
shape is constantly changing, with di6'erent local speeds
at every part of the front. By averaging these local
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FIG. 4. Fluid velocity field and wave front shape for an as-
cending wave in a vertical slab of width d =3.2 mm. The front
is completely symmetric, with the highest point at the slab
center. The Quid field is composed only of symmetric modes and
consists of two counterrotating rolls.

J
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FIG. 5. Fluid velocity 6eld and wave front shape for an as-

cending wave in a vertical slab of width d =5.0 mm. The prop-
agating front has become a long finger.
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FIG. 6. Snapshots of the evolutionary process for the chemi-
cal front in the slab of width d =5.0 mm. The front is set ini-
tially to the convectionless Aat front, with very small random
perturbations. It first evolves into an antisymmetric front; later
it goes through a mixed state and finally becomes a purely sym-
metric front.

speeds, we observe a slow increase in average speed be-
tween t =0—1 min and a rapid increase after 1.0 min due
to the fast growth of the antisymmetric modes. After
that it gradually decreases to a constant value as the front
becomes dominated by the symmetric modes. It is in-
teresting to note that the temporal scenario of the system
is similar to the scenario in parameter space. As time
evolves, the system starts as a Aat front; it later becomes
antisymmetric, mixed, and then completely symmetric.
This is the same scenario that we find in parameter space
as we increase the slab width from zero to d =5.0 mm.

We study the transition from the antisymmetric state
to the symmetric state by comparing the kinetic energy of
the front with the energy of the pure symmetric and pure
antisymmetric states. The pure antisymmetric state (dia-
monds in Fig. 1) is obtained by forcing the coefficients
multiplying S to zero on the expansion, Eq. (14). The
pure symmetric state (open circles in Fig. 1) is obtained in
a similar way. This technique can be applied to our
theoretical model, but it may not have an experimental
counterpart. These states are obtained just to better un-
derstand the behavior at the different transitions. Be-
cause of the different parities and the orthogonality of the
even and odd functions, we can decompose the total
kinetic energy associated with convective Quid motion
into the contributions of antisymmetric modes and sym-
metric modes. Purely antisymmetric solutions can be
found only above d =0.92 mm; below that we find only
Bat fronts. These purely antisymmetric solutions have a
higher chemical wave speed and higher kinetic energy as-
sociated with the convective Quid How than the inixed
state (Fig. 7). We test the stability of the antisymmetric
solutions by using them as initial conditions for the full
equations. The system then rapidly evolves into the stable

FIG. 7. Kinetic energy composition as a function of slab
width d. The percentage ~f the kinetic energy from the an-
tisymmetric modes (0 ) .~";"eases, while the percentage of the
symmetric modes (CI) inc~'~ases as the slab width increases.
After d goes through a second critical point (d, =2.75 mm) the
How is completely symmetric.

mixed state. Thus we conclude that pure antisymmetric
solutions are unstable. Purely symmetric solutions exhib-
it a different behavior when introduced into the full equa-
tions. Purely symmetric solutions can be found only for
widths d + 1.68 mm. All symmetric solutions have lower
chemical speed and lower kinetic energy associated with
the convective fIuid Aow. We tested the stability of the
symmetric state in the same way we tested the antisym-
metric state. For symmetric fronts on slab widths be-
tween 1.68 and 2.75 mm, we find that, contrary to what
happens to antisymmetric states, the solutions take a very
long time to evolve into the mixed state. We therefore
consider these symmetric solutions as metastable, in the
sense that an initial symmetric state takes a very long
time to decay into a mixed state (typically more than an
hour in real time). Metastable states may be observed in
experiments in a slab whose width decreases with increas-
ing height. The wave should take a stable axisymmetric
front in a slab with d )2.75 mm and keep its form for a
period of an hour or even longer after propagated into
the section where d &2.75 mm. For slab widths beyond
2.75 mm, the final steady state is purely symmetric, using
either purely antisymmetric or purely symmetric solu-
tions as initial conditions. It must be pointed out that a
metastable purely symmetric solution within 1.68
mm~d ~2.75 mm has a symmetric front shape and a
Quid velocity field similar to Fig. 4, except for having a
smaller front amplitude. The unstable purely antisym-
metric solutions for d & 0.92 mm do not have an antisym-
metric front shape, even though the velocity field is an-
tisymmetric. This phenomenon can be understood by ex-
amining the symmetry of Eq. (4) under the transforma-
tion x~ —x. Only for symmetric velocity fields is the
chemical concentration symmetric. For antisymmetric
velocity fields, the chemical concentration does not have
the similar symmetry.

As the slab width d increases, the symmetric modes
contribute more and more to the total kinetic energy
(Fig. 7). Near the onset of convection (d, =0.92 mm) al-
most all of the kinetic energy is generated by the antisym-
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metric components of the Quid Aow. As d approaches the
second critical point d, =2.75 mm, the percentage of the
symmetric modes contributing to the total kinetic energy
rapidly increases to 100%. For mixed states (0.92
mm ~d ~2.75 mm), both components of Iluid liow con-
tribute to the kinetic energy. Mixed states have a kinetic
energy higher than the purely symmetric state but lower
than the purely antisymmetric state (Fig. 8).

Our results are consistent with experiments in
cylinders. In experiments under the same conditions and
parameters as we have used here Masere et al. [4] ob-
served Hat fronts for d (1.1 mm and nonaxisymmetric
fronts in tubes of internal diameters 1.4 and 1.6 mm. Ax-
isymmetric fronts are observed for tubes of internal diam-
eters 2.3 mm and above. Because of diFerent geometry,
the critical points are different. Yet experiments show
the same scenarios from Aat fronts to nonaxisymmetric
fronts and then to completely axisymmetric fronts as the
diameter increases. Furthermore, the experiments also
indicate changes in the slope of chemical wave speed vs
diameter. Just above the onset of convection, the chemi-
cal wave speed increases as the diameter increases, but
the slope decreases slightly near the second critical point.
After the front becomes completely axisymmetric, the
slope changes to an even larger number. This
phenomenon is observable, but not so obvious, in the ver-

2.0 3.0 4.0 5.0
slab width d(mm)

FICx. 8. The kinetic energy composition of the convective
fiuid motion. All unstable purely antisymmetric states (0 l have
higher kinetic energy than the stable mixed states (), while all
metastable purely symmetric states ( c) ) have lower kinetic ener-

gy than the mixed states. Eo is the kinetic energy with d =1.0
mm. The base is log».

sion of iodate-arsenous acid reaction with arsenous acid
in stoichiometric excess, whereas this was dramatically
shown in the other version of the experiment with that
iodate excess [16], where the change of increase rate was
very large compared with that near the saturation point.

V. CONCLUSIONS

By coupling the reaction-diffusion equations with the
hydrodynamic equations, we observe the onset of convec-
tion and the transition between convective patterns from
antisymmetric to completely symmetric convection. As-
sociated with this transition we find abrupt changes in
slope in the chemical wave speed versus slab width. We
expect that the system will eventually evolve into a tur-
bulent state, where there is no longer steady front propa-
gation. To study the road to turbulence we need a more
efFicient scheme or idealized models.

Our simulations in a two-dimensional slab have shown
a transition between patterns similar to the one observed
in experiments in vertical cylinders. Even though the
geometry is different, both cases allow Quid motion near
the center of the Quid and no Quid motion near the walls
because of the no-slip boundary conditions. The com-
petition between the stabilizing curvature effect and the
destabilizing buoyancy eFect determines the critical point
for convection. Above the onset, buoyancy and boundary
conditions determine the possible convective pattern.
The macroscopic convective Quid How helps the intermix-
ing of the reactive reagents and enhances the chemical
front speed. The balance among the buoyancy, curva-
ture, and Quid How results in the steady propagation of
the front. It would be interesting to simulate directly the
chemical front propagation in the cylinder. This may be
a complicated task because of the three-dimensionality of
the Qow and the singularity at the origin. We are
currently working on a model based on a front evolution
equation to treat the cylindrical problem.
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