
PHYSICAL REVIEW E VOLUME 52, NUMBER 6 DECEMBER 1995

Role of inviscid invariants in shell models of turbulence
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Nonpositive definite, global inviscid invariants similar to helicity are discussed for two types of shell
models, and evidence for an alternate role for helicity in Navier-Stokes turbulence is presented. It is sug-
gested that the extra invariants play the role of triggering an intermittent cascade of energy to small
scales characterized by pulses. These invariants also determine where a transition to chaos appears. An
analysis of numerical experiments with existing models is suggested and a class of shell models where the
dynamical interactions of a second quadratic invariant are closer to those of helicity in the Navier-
Stokes equations is introduced. The place of the popular Gledzer-Ohkitani-Yamada model within this
class is discussed.

PACS number(s): 47.27.Eq

I. INTRODUCTION

One of the outstanding questions in our understanding
of fully developed turbulence is the mechanisms by which
the cascade of energy to small scales is maintained. That
the cascade is intermittent is well recognized, but the
phenomenological and dynamical models used to address
the problem are rarely connected to the dynamics in the
full Navier-Stokes equations. In this paper it is shown
that a popular model for explaining turbulent intermit-
tency, the GOY model [1,2], shares some symmetries
with terms in a decomposition of the spectral Navier-
Stokes equations into the interactions between its helical
components [3]. The essential common property that is
defined in both the Gledzer-Ohkitani-Yamada (GOY)
model and in the Navier-Stokes equations is the impor-
tance of interactions between components with opposite-
ly signed helicity. This role for helicity supporting an in-
termittent cascade contrasts strongly with helicity's pre-
viously identified role in blocking the cascade [4,5], a role
that was proposed earlier based on an analogy to the way
magnetic helicity force-free states [6].

In the GOY model with the standard parameters for
three-dimensional turbulence, interactions between
modes with oppositely signed helicity occur naturally as
the sign of helicity reverses between neighboring shells
[7]. Whether Navier-Stokes turbulence follows a similar
path is a more difficult question because there are several
paths, characterized by interactions between different
components of the helicity, that the cascade can follow.
One way to investigate this question is to consider several
variants of the GOY models that investigate each path in
the full Navier-Stokes equations individually or in un-
ison. One question would be how strongly the statistical
behavior of the cascade depends on the symmetries in the
different models. Another line of investigation is to
determine which path the cascade follows in the full
Navier-Stokes equations. In this paper, preliminary re-
sults following both of these approaches are presented,
and the direction of a more complete study is presented.

Also included will be an analysis of the Kerr-Siggia shell
model [8], which has a cubic, nonpositive definite invari-
ant that shares some dynamical properties with helicity,
and served as an inspiration for part of this proposal. In
all of these cases it will be argued that competition be-
tween the transfer of energy and the transfer of the gen-
eralized helicity could explain the presence of numerical-
ly observed chaotic dynamics and intermittency in the
energy cascade. For the GOY models, results on inter-
mittency corrections will be used to illustrate the impor-
tance of the second quadratic invariant in the energy cas-
cade.

In Sec. II, results for the Kerr-Siggia model will be re-
ported. In Sec. III, the GOY model is reviewed, and how
the inviscid conserved quantities and the dynamics de-
pend on the free parameters present in the model is dis-
cussed. In Sec. IV, an argument that predicts the transi-
tion from a trivial dynamics (dominated by the presence
of an attractive fixed point) to a fully chaotic regime for
some critical values of the free parameters is discussed.
Some numerical results for the energy transfer are also
discussed. In Sec. V, versions of the GOY model are in-
troduced by considering explicitly the possibility of hav-
ing shells which transport positive or negative helicity ex-
actly as occurs in the Navier-Stokes equations. Two pre-
liminary calculations with the full Navier-Stokes equa-
tions that support the importance of the interactions be-
tween components with oppositely signed helicity are
presented. Some problems that can be studied by using
the variants of the GOY model are discussed, and an
analysis of the full Navier-Stokes equations that could be
done to illuminate these properties is presented.

II. PULSE SCALING OF KERR-SIGGIA

The Kerr-Siggia model [8] is a shell model with one
complex variable per shell, originating from a decimation
of the possible interactions between triads in Burgers
equation. With a simple forcing and eddy viscosity the
equations were
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H„=Re(u„'u„,)

A„=Im(u„"u„,)
for e'=v, =0, there are two inviscid invariants E =gE„
and H =gH„.The first is energy and the second, while
not positive definite, can be treated as a Hamiltonian with
canonical variables u„and u „=u„asfollows:

du„/dt =ik„5H/6u (3)

The energy transfer between shells is e„=—k„
There is a trivial, unstable Kolmogorov solution with

~ (2i/3 ) i/3k —i/3 H () d E P2/9 2/3k —2/3Qn- n ~ n ~an n ~ n

corresponding to a solution of an earlier cascade model
t9].

The context for discussing this model along with the
GOY model and the Navier-Stokes equations is the extra
invariant H. Despite the fact that this H is cubic and not
quadratic, and that neither Euler nor GOY has a Hamil-
tonian of this form, due to the nonpositive definite nature
of H, it appears to have some of the same qualitative
effects upon the cascade that we speculate helicity is cap-
able of for Navier-Stokes and GOY models. The point is
that while additional invariants can block the energy cas-
cade, as enstrophy does in two dimensions and helicity
does to some degree in Navier-Stokes [4,5], due to the
nonpositive definite nature of the invariant there is an es-
cape route where the cascade can find a way around this
blockage. As will be demonstrated for the Kerr-Siggia
model, this can take the form of pulses. From the tools
used to demonstrate this for the Kerr-Siggia model, it
will then be demonstrated that there is weak evidence for
analogous phenomena in Navier-Stokes.

In the original discussion [8], two classes of solutions
besides the trivial Kolmogorov solution were discussed.
First, stationary solutions for a small number of shells
with no forcing or dissipation (@=v,=0) and maximal H
were discussed. Second, forced, dissipative solutions
were discussed. Intermittency was found in the time-
dependent solutions, and the effect of the extra invariant
was noted, particularly as it affected the slope of the ener-
gy spectrum, which was (E„)-k„'rather than the
Kolmogorov solution, but what effect the stationary solu-
tions might exert upon the forced, dissipative time™
dependent solutions was not considered.

For the present calculations, @=1 was chosen, which
gives a characteristic time scale of t =1. Using as initial
conditions ui=u2=(1, 1), u„=0,n ~3, and %=14, it
took until t=3.9 for the effects of initial transients to
disappear. Theo statistics were taken until t=6.8. Fig-
ure 1 shows the spectra of (E„)and (H„)for this

dui/dt =e/u
&

+2iu2u
&

du„/dt =k„,i(u„,+2u„+,u„*),
du~/dt =k~, i(u~ i+v, ~u~ ~u~),

where e was the average energy input and dissipation, v,
was taken to be 2, and k„=2".Defining

period as well as k„' curves, confirming the results of
the original paper [8]. Details will be discussed after the
evidence for pulses is presented.

Figure 2 shows E„and H„spectra for a series of
moderately spaced times, and the time development of E,
H, and dissipation for this time period. By "moderately
spaced in time" it is meant that the times shown are not
so closely spaced so as to show continuous development,
but are close enough to show a relationship between
pulses of E„andH„and intermittent bursts in the dissi-
pation.

The primary event to focus upon is best illustrated in
the H„spectra. In this sequence it starts as a pulse of
positive H„centered on n =4 at t =6.11. This is associ-
ated with only one of several bumps in the energy spec-
trum at this time, and is not associated with the spike in
energy dissipation at t =6.15. This spike in energy dissi-
pation is associated with one of the higher shell bumps in
the energy spectrum, and comes from a pulse at an earlier
time of oppositely signed H„similar to the pulse to be de-
scribed.

Following the appearance of the positive peak of H„in
n =4 at t=6. 11, this peak breaks off from the lower
shells and slowly propagates to larger shell numbers. The
energy peak associated with it moves in tandem. Spectra
of the transfer rates of E„andH„also have peaks that
move with the pulse. When the effects of the highest
shell, where the dissipation occurs, are felt, the pulse
stalls at t =6.29 before the energy in the pulse suddenly
dissipates at t =6.34. The stalling is the probable source
of the bump in the time-averaged energy spectra just be-
fore the dissipation regime. While this bump is on top of
a spectrum less steep than Kolmogorov (k„'/ rather
than k„ / ), it is qualitatively similar to a bump in the
turbulent energy spectra for atmospheric observations
[10], spectral closures [4], and forced calculations of

Time averages and fits

0.10

0.01

0 2 4 6 8 10 12
Shell num. beI

FIG. 1. Time-averaged spectra for the kinetic energy (solid
line) and Hamiltonian (dashes) for the Kerr-Siggia model. Note
the "bump" in the energy spectra near shell 9. The gap in the
Hamiltonian spectra at shell 4 is where it is negative. 2
curves are drawn for comparison.
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Navier-Stokes turbulence [11]. For Navier-Stokes the
bump is believed to be associated with a bottleneck effect
[32], where the decrease in the slope of kinetic energy
spectrum in the dissipation regime blocks the free flow of
kinetic energy just at the boundary between the inertial
and dissipation subranges. While this effect probably
plays some role in the appearance of the bump in the
Kerr-Siggia model, examination of Fig. 2 suggests a
strong role for the stationary solutions associated with
the second invariant. This comes from noticing that the
cubic invariant is nearly maximal over the shells covered
by the bump.

While this pulse is dissipating at t =6.34, the next ma-
jor pulse of negative H„is beginning to move into shell 2
and positive H„for the major pulse following that is de-
veloping in shell 0 from the forcing. So a succession of
E„andalternately signed H„pulses is suggested. Clearly
this is a simplified picture, as there are minor spikes in
dissipation between the major spikes that are associated
with weak pulses with small H„ofno particular sign. An
example of such a weak pulse is the blip in H„atn = 8
for t =6.35 and the rapidly moving E„atthis time. To

quantitatively demonstrate the alternation in sign of the
strong pulses, Fig. 3 is a contour plot in shell and time
separation of correlations between different shells and
times of E„andH„.These plots are similar to contour
plots of the energy transfer in forced Navier-Stokes cal-
culations [12,13], and in meteorology are referred to as
Hovmuller diagrams. These are

&(F.+/ „,i+/ r F.—+/ „)(F., i F.—) & (4)

where F„is either E„orH„.Positive correlations are
dark, negative are light. These plots are for n =1, the
second shell. The effect of a single pulse is the first region
of increasing b,„and b, t originating at (0,0). The propa-
gation is linear after the first few shells. Starting at about
Et=0.5 there is another strong dark region in the E„
correlation, and a strong light region in the H„correla-
tion. This supports the qualitative picture coming from
watching the time development in Fig. 2 that there are a
succession of pulses of oppositely signed H„.

The appearance of these pulses raises several questions.
First, what modification of the stationary solutions can
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FIG. 3. Hovmuller diagrams in shell and
time separation of kinetic energy and Hamil-
tonian fluctuations at di6'erent shell numbers
and times using (4). Negative fluctuations
correlati: n; are light, positive are dark. Note
the strorigt. &. black for energy is not at (0,0), in-
dicating that the strongest fluctuations in ener-

gy are in the higher shells. The sign of H Auc-
tuations changes between pulses (light upper
ridge), but does not for energy (dark upper
ridge).

propagate as a unit? Second, what causes the alternation
in sign of H„ofthe pulses; is it the forcing or the non-
linear dynamics? We will not attempt to answer these
questions. The point we do want to make is that there is
some connection between the alternation in sign of the
extra nonpositive definite conserved quantity that seems
to be associated with the appearance of pulses in the en-
ergy cascade and with intermittency in the model. In cal-
culations where the extra invariant is suppressed, inter-
mittency disappears. These ideas are supported by not-
ing that the mechanism by which the conserved quanti-
ties are pumped in the system and removed from the sys-
tem can inAuence the scaling laws in the inertial subrange
[15,16]. An extreme example is a calculation of the
Kerr-Siggia model with a Newtonian viscosity [15]where
the extra conserved quantity is suppressed, where there is
a Kolmogorov spectrum and no intermittency. These are
subtle questions that would require more accurate stud-
ies.

How can the pulses be related to the spectra in Fig. 1?
The (E„)spectrum in Fig. 1 goes as 2 "~ . By dimen-
sional arguments one might expect that the (H„)spec-
trum would obey 2 ",but this is not required since at
any given time (H„)can have either sign. In fact, the
(H„)spectrum is less steep than this and also seems to

follow 2 " . To understand this, imagine that each
pulse is a coherent package of E„andH„traversing the
spectrum, spending on average 2 " time in each shell.
Then the time-averaged spectra (E„)and (H„)will
both have 2 " spectra. This is similar to the argument
that has been used to generate a ——', spectrum from Auc-

tuations in a strained Burgers vortex [17]. If b t spent in
each band goes as 2 " as this suggests, then this would
imply that the bands in the (h„,b, t) plots should ap-
proach zero slope as 6„increases. There is some tenden-
cy in this direction for small 5„in Fig. 3, but for larger
h„when the stalling noted at t =6.29 in Fig. 2 and dissi-
pation effects are important, the bands are nearly linear.
Again, the time-averaged (H„)should not have any par-
ticular sign, as evidenced by shell 4 in Fig. 1, and their
magnitude

~ (H„)~ should decrease as the averaging time
is lengthened. This has been verified by using different
time intervals for the time averaging.

III. GOY MADEL

Given this discussion, let us now examine properties of
the Kerr-Siggia model shared by the CxOY model [1,2].
The GOY model has a very rich dynamical behavior, and
has been the object of many studies in recent years (see
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where v is the viscosity and f is a forcing acting on a
large-scale shell (for example, n0=1) introduced to ob-
tain a statistically station. ary dynamical state. This model
has interactions only between first- and second-neighbor
shells in the Fourier space. The two parameters b and c
in the nonlinear terms are chosen such as to conserve en-
ergy, E=g„~u„~for any choice of A, . The most general
choice of parameters is

1 E'

A,
2

(6)

where e is the second free parameter in the model.
The GOY model also has a second quadratic invariant

besides energy:

[7,18—22] for some numerical and analytical results). It
is the most popular shell model for three-dimensional
(3D) turbulence, because its intermittent properties are
very close to the corresponding quantities in Navier-
Stokes equations when the parameters of the nonlinear
terms share some properties with the nonlinear term in
the Navier-Stokes equations. In particular, for zero
viscosity and no external forcing, when the system has
the same conservation laws as a 3D Aow: conservation of
energy, helicity, and volume in phase space.

The dynamical equations are as follows:

d
un =l kn( un +1 un+2 +bun+1 un 1+cun iun 2 )

dt
—vk„u„+5„„f

two inviscid fixed points corresponding to the Kolmo-
gorov scaling u„~—k„'~ (constant fiux of energy, zero
fiux of helicity) and to a fiuxless scaling

~

u„-k„"+
(constant Aux of helicity, zero fiux of energy) [21].

For this study our interest in this model comes from
the presence in the (e, A, ) plane of a region where the stat-
ic Kolmogorov-like fixed point is dynamically unstable
[21]. The dynamics is fully chaotic, and shows an inter-
mittent cascade of energy toward small scales [18,20]
with a complex (multifractal) structure of the attractor in
the phase space. This intermittency is quantified by
measuring the scaling exponents g(p ) for the structure
functions in the inertial range

Only very recently [7,22] has it been realized that the
second quadratic invariant plays a crucial role in the dy-
namics of the model. In [7], it was found by varying the
two free parameters (e, A, ) in the 3D physically relevant
region (0 & e & I;A, ) 1 ) that, along the line of constant
helicity [a(e, A, ) =1], the model has the same intermittent
behavior. That is, the set of g(p) depends only on the
value of e, giving numerical evidence that the dynamics
of the model is strongly dependent on the presence of the
second inviscid invariant. Furthermore, it has been
shown [22] that by modifying the nonlinear term such as
to destroy the presence of the second invariant (but still
preserving the inviscid energy conservation) the intermit-
tent corrections to K41 seem to weaken.

H =/ y(p)nk~~~ i ~ u (7) IV. TRANSITION TO CHAOS

While energy conservation is forced by choice (6), the
characteristics of the second invariant H change by
changing the values of e and A,. When e& 1 this second
invariant is not positive definite [y(e)= —1], while if
e) 1 it is positive definite [g(e)=+1]. By remembering
that the Navier-Stokes equations are characterized by
having a second inviscid invariant that is positive definite
in 2D (entrophy), and nonpositive definition in 3D (helici-
ty), the value e= 1 can be identified as the border between
a shell model for 2D turbulence (e) 1) and a shell model
for 3D turbulence (e & 1). In the following, the problem
of whether shell models like GOY model are a good rep-
resentation of 2D turbulence [23] is not addressed, and
only the range (0 & e & 1) where the dynamics should
reproduce aspects of a 3D turbulent Aow will be con-
sidered.

By looking in detail at the structure of the second in-
variant, only when a(e, i.)=1 does it have physical di-
mensions coinciding with Navier-Stokes helicity [7]. This
defines a line in the plane of free parameters where the
inviscid conservation laws of the GOY model are very
similar to the 3D Navier-Stokes equations. Because this
invariant has the same physical dimensions as 3D helicity
and is nonpositive, we will denote it as the GOY helicity
in the following. In Sec. VI, a modified version of the
GOY model will be introduced with a second invariant
having more correspondence with Quid helicity.

A necessary point before going on is that model (5) has

It has been shown [21] that by fixing A, and varying the
e parameters (and, therefore, by changing a) the GOY
model undergoes a transition to chaos following a
Ruelle-Takens scenario. In particular, there exists a criti-
cal value e, such that for e&e, the Kolmogorov fixed
point u„-k„'is dynamically stable. Extending this
analysis by changing the ratio between shells in the range
1 & k & 3, it is found that the Ruelle-Takens transition is
quite general [24]: there exists a line in the plane (e, A, )

which divides the region where a Kolmogorov-like fixed
point is dynamically stable from a region where the dy-
namics is chaotic and intermittent. This qualitative trend
of the transition line appears to be universal, even if the
exact location can be slightly inAuenced by the forcing
and by the value of viscosity. In the following, a very
simple argument is presented based on the presence of
the second nonpositive invariant that predicts, with good
accuracy, the existence of the transition and its location
for any value in the plane (e, A, ).

Consider the two inviscid quadratic invariants, the en-
ergy and the generalized helicity, and their currents.
First, for zero viscosity and zero forcing energy, conser-
vation gives

dt

where the energy current

J„=Im[ —b,„+,—(1—E)b,„]
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is defined in terms of triple correlations:

~n kn —1 n —1 n n+1

The second conservation law for helicity takes the form

d
( —)"k, lu, '=L„,L„—,

dt
(12)

where the current of helicity I.
„

from the nth shell to the
n+ 1th shell is

implies that the energy flux (9) is almost constant in the
inertial range, and that the helicity flux (12) is almost
vanishing. This Kolmogorov behavior is obtained when
the model has a static stable fixed point. It is natural,
then, to ask if it is possible to understand the transition
from the static behavior to chaotic dynamics by invoking
the second invariant. By plugging the Kolmogorov solu-
tions into the expression for the generalized helicity (7),
we obtain

L„=(—)"k„1m[a,„—6„+,] . (13)
H —y ~( e )nk a( e, A. )

—2 /3 (14)

Let us suppose, for the moment, that there exists only
one conserved quantity: energy. Then, very standard ar-
guments [25] tell us that if viscosity is zero, the system
tends to equipartition, corresponding in the GOY model
to ~u„l =const. If one switches on viscous effects, and
starts with an initial configuration with energy concen-
trated in the first shells, an energy cascade toward small
scales develops. This energy cascade has been interpreted
as the attempt of the system to reach another equiparti-
tion state [25]. This attempt at restoring equipartition is
frustrated by viscous dissipation at small scales that con-
tinuously removes energy, and prevents the small scales
from reaching an equilibrium or quasiequilibrium state.

The Kolmogorov 1941 cascade, describing a smooth
and constant transfer of energy from large scales to small
scales, is another way to rephrase this mechanism. But
why does the Aow not follow this picture of relaxing to a
smooth and homogeneous transfer of energy, instead
preferring to use a highly intermittent cascade consisting
of bursts and blockages which are the origins of the inter-
mittent corrections to the g(p) exponents? This is where
we are proposing that the second inviscid quadratic quan-
tity enters into the picture.

It is well known that in 2D turbulence the presence of
a second positive definite quadratic invariant (entrophy)
does not allow the energy to cascade forward (toward
small scales) [26]. This is a general result; either the two
conserved quantities must transfer in different directions
in Fourier space, or only one can transfer to small scales.
For example, in 2D turbulence it is widely believed that
there exists a forward transfer of entrophy and a back-
ward transfer of energy (inverse cascade).

In contrast, the presence of a second nonpositive
definite quadratic invariant, like helicity in 3D tur-
bulence, is only a minor constraint on the forward
transfer of energy. Moreover, it is a constraint that, due
to the nonpositiveness, can have strong spatial and tem-
poral fluctuations. If this picture is correct, intermitten-
cy in the 3D energy transfer could be the result of a com-
petition between energy and helicity cascades. Temporal
and/or spatial intermittency in the energy flux would be
the result of switching between a net transfer of energy
(possible due to cancellation effects in the helicity flux)
and a depletion in the energy transfer due to the presence
of a nonzero helicity Aux.

How can these phenomenological ideas be checked in
the GOY model? In the GOY model, a smooth and
nonintermittent energy transfer would correspond to dy-
namics near the Kolmogorov manifold u„-k„' . This

a(e„A, )=—' A, =(1—e, ) (15)

The systematic shift of 5% between prediction (15) and
the numerical results is probably due to viscosity as pre-
viously discussed [24]. We believe that this very simple
result is confirmation that the dynamics of the model is
strongly inAuenced by the second invariant.

Figure 5 shows decaying numerical experiments; that
is, zero forcing and nonzero viscosity with energy initial-
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FIG. 4. Comparison in the (e, A, ) plane of the numerically es-
timated, transition (circles) [21] and the theoretical prediction
(solid line).

It is therefore clear that, whether the exponent (a ——', ) in
(14) is positive or negative determines whether H receives
most of its important contribution from small or large
scales, respectively. Therefore, when a) —', the second in-
variant is concentrated at small scales and, as in 2D tur-
bulence, prevents a smooth forward transfer of energy.
This is reAected by strong intermittency and large devia-
tions from Kolmogorov scaling. However, one can imag-
ine that from time to time it is still possible to transfer en-
ergy if some cancellation effects lead to an almost zero H
Aux. On the other hand, when a & —', , energy transfers to-
ward small scales without having any relevant change in
H, i.e., the model relaxes in to a trivial Kolmogorov-like
fixed point.

Figure 4 shows the numerical results [24] for the tran-
sition from a static Kolmogorov behavior to chaotic dy-
namics by changing e and k. As predicted, the transition
happens near the critical line defined by
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the inertial range where the model is chaotic. Obviously,
the two Auxes are correlated, but the interesting fact is
that when there is a burst of energy, the helicity Aux has
a sinusoidal shape, i.e., a net forward transfer of energy is
only possible if the net averaged transfer of helicity is
zero. Expanding upon the earlier proposal, this suggests
blocking of energy transfer due to competition with heli-
city, interrupted by strong dissipation events made possi-
ble by brief, intermittent periods of large helicity Auctua-
tions, but no net helicity Aux. The dissipation events
might then be associated with a strong dynamical cou-
pling between modes with oppositely signed helicity,
which would permit large helicity Auctuations, but no net
helicity Aux.

FIG. 5. Log-log plot of the total energy as a function of time
in a pure decaying simulation. Case A (dotted line) corresponds
to a smooth Kolmogorov-like transfer of energy, while case 8
(solid line) corresponds to a chaotic intermittent energy
transfer.

ly concentrated at large scales, that compare the dynami-
cal behavior of the model in two characteristic regions:
case A ( e=0. 1,A, =2 ), where there is smooth energy-
transfer regime {on the right side of the critical curve in
Fig. 4) and case B (@=0.5, A, =2), where the dynamics is
chaotic and intermittent (left side of the curve in Fig. 4).
What is interesting is that, for case A, when the second
invariant does not introduce any constraint in the energy
transfer (a & —', ), the energy dissipation is a smooth func-
tion. This means that energy is transferred through the
inertial subrange without any blocking and with a
power-law behavior in time. However, in case B (a) —', ),
the energy dissipation has a staircase shape in time, indi-
cating long periods when little energy reaches small
scales (blocking) interrupted by short bursts of dissipa-
tion. This would be consistent with the suggested role for
helicity, where in addition to blocking the transfer, can-
cellation in the helicity transfer is associated with strong
dissipation events.

Figure 6 shows the time evolution of the energy
current J„and the helicity current I.

„

through a shell in

V. SHELL MODEL

As described in Sec. IV, the structure of what we call
helicity in the GOY model is only partially consistent
with the helicity in the Navier-Stokes equations. Apart
from the observation that it has the right dimensions and
that it is not positive definite, there is an asymmetry be-
tween odd and even shells that does not any counterpart
in physical Aows. One means of overcoming this problem
is to introduce two dynamical variables in each shell, one
transporting positive helicity u„+and the other transport-
ing negative helicity u„.The next step is choosing how
to couple these terms. For this, we will use a complete
decomposition of the three-dimensional Navier-Stokes
equations [3] into a basis where the two independent
components of the velocity field at each wave number
correspond to two pure helical waves. In such a basis
there are four possible independent classes of triads in-
teractions distinguished by the combination of helicity
transported from each one of the three interacting modes.

Let us fix, for simplicity, the three modes q, p, and k
such that ~k~ & ~p & ~q~, and call u, (k), u, (p), and

u, (q) the three interacting modes, where
q

(sk, s~, s~)=(+1,+1,+1) refer to the sign of helicity in
each mode. Then it is simple to show that each triad can
fall into one of the four following classes:

4.0

2.0

= energy flux
= helicity flux

(1) (sk, s~,s~)=(+, +, +) or ( —,—,—) .

(2) (s„,s~, s, ) =(+,+, —
) or ( —,—,+ ) .

(3) (sk, s, s )=(+,—,—) or ( —,+, +) .

(4) (sk, s~, s~)=( —,+, —) or (+, —,+) .

0.0

-2.0
9160.0 9180.0 9200.0

iteration
9220.0 9240.0

FIG. 6. Fluxes of energy and helicity during a burst through
a shell in the inertial range. Notice the oscillatory behavior of
the helicity Aux triggering the energy transfer.

Following this decomposition, one is led naturally to
introduce four classes of shell models, each one corre-
sponding to one of the four independent classes of triad
interaction present in the Navier-Stokes equations.

What is quite remarkable is that the original GOY
model belongs to one of these classes (the fourth). To
demonstrate this, we write the general equation for this
class using positive helicity shells u„and negative helici-
ty shells u„,
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dt n kn( n +1 n+2+b n+1 n —1 c n —1 n —2)

dt
u„=ik„(u„++,u„+~+bu„++,u„+,+cu„+,u„~)*

—vk„u„+6„„f

(16)

for which the conserved energy and helicity are given by

(17)

H =y k„(lu„+I' —lu„-I')

exactly as in the Fourier-helicity decomposition of
Navier-Stokes equation [3]. By noticing that in the
original GOY model shells n and n+2 have the same
GOY helicity, it can be seen that (16) is formed
from two masked and uncorrelated versions of the
original GOY model for the dynamical evolution
of the variables (u,+,uz, u3+, . . . , uz+„&u&„) and
(u, , u z+, u 3, . . . , u z„,, u z+„). Therefore (16) has, by
definition, the same behavior as the previous model.
From this, we think it is of primary importance to study
in details the dynamical behavior of the other three shell
models (corresponding to classes 1, 2, and 3), allowing
helicity to have all the dynamical interactions found in
Navier-Stokes. Work in this direction is in progress, and
will be reported elsewhere [28].

VI. NAVIER-STOKES HELICITY

Up to this point only ideal shell models with extra non-
positive definite invariants have been considered, as well
as how they might be extended to more closely resemble
to helicity interactions in the Navier-Stokes equations.
We would like to relate these ideas directly to the
Navier-Stokes equations. As noted, earlier attempts at
understanding the effects of helicity have emphasized its
power to block the cascade [4,5]. However, despite the
blocking power of the extra invariant, the shell model
calculations are indicating that the cascade can proceed
through interactions between shells where the sign of the
extra invariant is opposite. In a full calculation, we
would also want to see what the effects of helicity in
physical space are. For example, there are low Reynolds
number Navier-Stokes calculations of how vortex rings
link and unlink and can generate and destroy helicity
[29,30]. Because spectral properties were not analyzed
and because of the low Reynolds numbers of these simu-
lations, strong conclusions about the effects of helicity
cannot be made from these calculations. But it can be
said that even though the initial conditions contained
large-scale helicity, small-scale structures appeared, and
production of helicity from viscous effects was not
strongly blocked.

Therefore, initial conditions that contain significant
large-scale helicity, but which show more clearly how a
cascade is not blocked, would be desirable. Whether or
not production of small-scale helicity by anisotropies
plays a role, as has been suggested [31], will not be our
objective. Simulations of isotropic, homogeneous tur-
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bulence in a periodic box are traditionally initialized with
a given spectrum, but the phases of individual wave num-
bers is completely random. To test the effects of helicity,
we propose constraining the phases of the velocity com-
ponents such that the helicity of the Fourier modes is not
all of one sign, unlike the investigations of the blocking
power of helicity [5]. Since shell models indicate strong
effects from extra invariant fIuctuations even when the
average value is zero, this suggests initializing a Navier-
Stokes calculation with net zero helicity.

Several tests of this type have been done, all with one
qualitatively similar feature. Helicity when it first ap-
pears in the spectra pops up in two neighboring bands of
opposite signs; then the bands separate. Other than this
qualitative feature, the number of tests is not yet
sufficiently large to make definitive statements. Two
cases are shown in Fig. 7. Both cases are 64 simulations,
where only a small number of modes in wave number
band 4 were initialized. Each has the common feature
noted, but a rich variety of additional features as well.

In case A, each mode is initialized with maximal helici-
ty, but otherwise the phases were chosen randomly (by
hand) and the net helicity was zero. Very quickly the hel-
icity picture changes. From a zero helicity spectrum,
soon helicity of opposite sign appears in shells on oppo-
site sides of the initial energy shell. For a short period,
time sequences show that the helicity peak at higher wave
number moves to small scales until it dissipates, leaving a
net helicity of the sign of the large-scale peak. It is dur-
ing this phase that the relative dissipation rate
(dissipation/energy) is largest. Therefore, through dissi-
pation of helicity at small scales, large-scale helicity is
generated. Once only the large-scale helicity peak is left,
the blocking action of the helicity at large scales becomes
important and the dissipation rate is suppressed.

In case D, the helicity of each mode is chosen to be
zero by using free-slip boundary conditions in along cen-
tral planes in the box. All the modes except one use the
same free-slip symmetry plane, with the exception im-
posed to break this symmetry. From these initial condi-
tions helicity does not initially grow around the initial
k =4 wave number band, but around the resonance band
at k=8. Note that once again helicity first appears in
neighboring bands with opposite signs. Then time se-
quences show that the bands move toward opposite ends
of the spectrum. Once again, dissipation is largest when
the high wave number helicity band moves into the dissi-
pation band and is annihilated, then decreases when
large-scale helicity of only one sign remains.

To make this more quantitative, more calculations
need to be done, as well as an analysis of helicity spectra
and transfer properties. But what of a relationship to the
shell models? Investigations of shell models with many
more than two variables per shell seem invariably to lead
to reductions in intermittency. Fully developed tur-
bulence when viewed as a shell model has an infinite
number of degrees of freedom and should in this sense
not be intermittent. But it is, and this is understood as
being due to coherent structures in physical space, which
in Fourier space implies strong phase correlations. The
phase correlations therefore prune the number of paths
the cascade can take, returning us to simple models with
few paths and strong intermittency, such as those
presented here. Therefore, to obtain meaningful compar-
isons between 3D direct calculations and shell models,
there must be some means of identifying the paths the
cascade will follow, and calculating statistics along these
paths. Given the difficulty of attaining this, let us make
some other suggestions.

First, there needs to be further work on bidimensional
correlations of wave number and time, similar to Fig. 3
here, and in earlier analysis [12,13]. The question with
direct calculations is what quantities to use. It has been
found [12] that energy-transfer spectra have a strong sig-
nature. Helicity spectra and helicity transfer spectra
need to be analyzed in the same manner. For simulations
with a small number of initial modes, such as the exam-
ples just given, at least for short times statistics for modes
formed by the initial interactions and their daughters
could be studied. It is our hope that analysis of Navier-
Stokes simulations of this type, coupled with any addi-
tional understanding of the role of helicity coming from
shell models, will provide insight into the nature of the
intermittent cascade of energy to small scales in turbulent
Aows.
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