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Matrix-inversion method: Applications to Mobius inversion and deconvolution
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The purpose of this paper is threefold. The first is to show the matrix-inversion method as a
joint basis for the inversion of two important transforms: the Mobius and Laplace transforms. It is
found that the Mobius transform is related to a multiplicative operator while the Laplace transform
is related to an additive operator. The second is to show that the matrix-inversion method is a
useful tool for inverse problems not only in statistical physics but also in applied physics by means
of adding two other applications, one the derivation of the Fuoss-Kirkwood formulas for relaxation
spectra in studies of anelasticity and dielectrics and the other the reconstruction of real signal in
signal processing. The third is to indicate the potentiality of the matrix-inversion method as a rough
algorithm for numerical solution of the convolution integral equation. The numerical examples given
include the inversion of Laplace transform and the signal reconstruction with a Gaussian point spread
kernel.

PACS number(s): 05.50.+q, 05.30.Jp, 02.10.Sp, 02.10.Lh

I. INTRODUCTION

The origin of this paper can be traced to a paper by
Chen [1], who discovered some physical applications of
the old Mobius inversion transform (MIT) from number
theory [2]. In that paper, which stimulated extensive in-
terest [3—8], Chen achieved his solutions of three impor-
tant problems in statistical physics with the use of the
MIT. The first problem is to invert the phonon density
of states &om the specific heat as a function of tempera-
ture, which was first raised by Montroll [9]. The second
is the inverse blackbody radiation problem, which was
first proposed by Bojarski [10]. The third is a physical
interpretation for the MIT: to invert a pairwise potential
&om the cohesive energy as a function of vertex spacing
for an infinite linear atomic chain. Both the first and sec-
ond results are expressed by an infinite summation of the
nth order Laplace inversion transform (LIT) modulated
by the Mobius function, which simply equals —1, 0, +1.
Similar formulas have been obtained in the analysis of
the dust temperature distributions in star-forming con-
densations [6] and the determination of the temperature
distribution of the material shells of distorted black holes
from their Hawking signals [7]. However, before apply-
ing Chen's inversion formulas to real problems in which
the data to be inverted are always discrete, one has to
fit the data with carefully selected analytical functions
and use the table of Laplace transform (LT) to find the
corresponding solutions.

One may have seen that the MIT and LIT are the keys
to obtain the solutions in Ref. [1]. However, one znay
have not thought of an interesting question: is there any

similarity between these two transforms, though they are
seemingly quite different?

The answer of this paper is afBrmative. A recently
proposed method, the matrix-inversion method (MIM)
[11], acts as a connection between the two transforms.
It is found that within the &amework of the MIM, the
formulations for the two transforms are quite similar ex-
cept that the MIT is related to a multiplicative operator
and the LIT is related to an additive operator. In fact,
the MIM may be a useful tool for treating inverse prob-
lems not only in statistical physics but also in applied
physics. To manifest this, we use it to rederive the Fouss-
Kirkwood formulas for relaxation spectra and obtain an
alternative formula for reconstructing the real signal in
signal processing. On the other hand, we show that the
MIM provides a simple approach to the numerical inver-
sion of the LT as well as the numerical reconstruction of
real signal with a Gaussian point spread kernel. It helps
one to get rid of the inconvenience for dealing with dis-
crete data, which occurs when only using the inversion
formulas in Ref. [1], by means of presenting a procedure
of discretization for the LIT. In a word, it may represent
a difFerent possibility for the numerical solution of the
convolution integral equation.

II. MATRIX-INVERSION METHOD

The MIM is dedicated to solving the following function
equation:

'Mailing address.
where T(1),T(2), . . . , T(n), . . . is an operator progression
and A1, A2, . . . , A, . . . is a number progression. Usually,
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the first operator is a unit operator, T(1) = I. Carlsson,
Gelatt, and Ehrenreich (CGE) have put forward a pro-
cedure to solve Eq. (1) [12]. They wrote Eq. (1) in terms
of a linear operator I,

(T(1)Q(x),T(2)Q(x), . . ., T(n) Q(x), . . .) to that spanned

( ( ) ( ), ( )P( ), . . ., ( ) ( ), . . .).
If T(n) are additive, A is a Toeplitz matrix,

P(x) = LQ(x) = ) R(n) Q(x)
n=.1

= R(1) 1+) R '(1)R(n) Q(x), (2)
n=2

A=

(Ai A2
0 A1
0 0
0 0
0 0

~ ~ ~ ~ ~ ~

A3 A4
A2 A3
A1 A2
0 A1
0 0

A5
A4
A3
A2
A1

where R(n) = A„T(n). Therefore
On the other hand, if T(n) are multiplicative, we call A
a Mobius matrix,

Q(x) =L 'P(*)

1+) R-'(I)R(n) R-'(I)P(x) A=

(Ai A2
0 A1
0 0
0 0
0 0

A3 A4
0 A,

A1 0
0 A,
0 0

A5
0
0
0

A1

1 —) R-'(I)R(n)+ ) R-'(I)
n=2 num 2

xR(n)R '(l)R(m) — R (1)P(x).

However, in the original work of CGE, only the case of
one kind of operators that are defined by R(n) f (x)
(iU„/2) f(s„x) (related to a lattice sum) is illustrated.
Applications to other kinds of operators such as the dif-
ferential operator are not pointed out. Furthermore, the
CGE technique disregards the translational symmetry of
crystal lattices. As a result of this drawback, the formu-
lation and the inverse coefIicients are not obvious.

To introduce the MIM, let us first define an additive
operator and a multiplicative operator: An operator is
additive if T(a)T(b) = T(a + b); it is multiplicative if
T(a)T(b) = T(ab), where the real numbers a, b denote
the operator parameters.

For example, the scale-change operator defined by
T(n)F(x) = F(nx) is a multiplicative operator, whereas
that defined by T(o.)F(x) = F(e x) is an additive oper-
ator. The derivative operators D(n) = d"/dx" are addi-
tive operators. An operator is additive or multiplicative
means that we have the possibility to find a series of its
kins which together with itself form a semigroup, whose
operation is namely addition or multiplication.

In the case that T(n) are either additive or multiplica-
tive, operating T(1), T(2), . . . , T(n), . . . in turn on the
right-hand side of Eq. (1) yields a series of function equa-
tions, which can be written in matrix notation as

(T(1)P(x),T(2)P(x), . . . , T(k)P(x), . . . )

The characteristic feature of a Mobius matrix is that ev-
ery two adjacent nonvanishing elements A; and A, +1 in
the nth row are uniformly separated by n-1 zeros. As a
result, the jth element in the mth column is A ~~, when
j~m (j divides m); and 0, otherwise.

No matter whether A is a Toeplitz or Mobius matrix,
its inverse matrix B = A does exist, provided the di-
agonal element A1 is nonvanishing. So we have

(T(l)Q(x), T(2)Q(x), . . . , T(k)Q(x), . . . )

= B(T(1)P(x),T(2)P(x), . . . , T(k)P(x), . . . ) . (7)

It is noteworthy that the formulas of Eq. (4) and Eq. (7)
are symmetrical. The inverse matrix B possesses the
same structure as A. That is to say, if A is a Toeplitz
matrix, then B is also a Toeplitz matrix; while if A is a
Mobius matrix, then B is a Mobius matrix as well. In
the case of a Toeplitz matrix, this property leads to a
discrete convolution as

) AaB„+i e = b„i.
k=1

) AI B„ya ——b„i . (9)

The b's in Eqs. (8) and (9) refer to the Kronecker delta
symbol. We shall show in the following sections that
Eqs. (8) and (9) are the keys to determining the inver-
sion coefficients B in both the cases. From Eq. (7) the
inversion result can be seen to be

In the case of a Mobius matrix, it leads to a recursion
relation as

= A(T(1)Q(x), T(2)Q(x), . . . , T(k) Q(x), . . . ) . (4)

The infinite-dimensional matrix A is the representa-
tion of an operator which stands for some kind of
transformation from the function space spanned by

n=1

In the following we show that the convolution integral
equation, which frequently appears in physical and tech-
nological sciences, can be attributed to the former case.
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A convolution integral equation as

can be rewritten as the following form if Q(y) can be
expanded into a Taylor series around x:

(i2)

where

+oo
A„= —, t"K(t)dt .

D 0

The operators in this case being the derivative operators:
D(n), are additive. By derivative action upon Eq. (12)
with respect to x step by step, we can reach a Toeplitz
matrix formulation. Therefore the inverted result, the
function Q(z), can be expressed by

This equality is very useful for determining the inversion
coeFicients B .

The reader may have realized that an advantage of the
MIM for integral equation lies in its unusual treatment
on the integration limits. As we have known, before the
discretization of an integral equation with an infinite in-
tegral interval, one has to at first cut off the interval to a
finite one. However, since the function in the integrand
is unknown, we do not know where to truncate, nor do
we know the influence of an arbitary truncation on the
solution. But in the present method, this difIiculty is
avoided. The truncation takes place only during the in-
tegration of Eq. (13), and since the kernel function K(t)
is exactly known all the time, the integrand in Eq. (13)
can be evaluated to any precision as needed. That is to
say, the inversion coeKents can be determined very ac-
curately. The cost for this advantage is that P(z) should
be differentiable at any order.

III. GENERALIZED MOBIUS INVERSION
FORMULA

Q(z) = ) B„P~"l(z),
n=o

(14) Given a function P(z) that is related to another func-
tion Q(z) by

where the coeKcient B can be determined by a discrete
convolution relation

).&aB -a = 4o.
k=o

Thus the basic idea of the MIM applied to solving a
convolution integral equation has been shown. The inver-
sion of integral equation is ascribed to that of a Toeplitz
matrix. This then leads to a recursion formula, Eq. (15),
from which the inversion coef6cients can be determined.
Actually, Eq. (15) establishes a connection between the
characteristic functions of the two progressions, (A
and (B ), as

A„z" =
n=o

where o, is an arbitary nonzero real number. We have in
this case A = 1 for all n g N. The operators, de6ned
by T(n)q(z) = Q(n z), are multiplicative. According
to the MIM, we obtain

q(z) =) B„P(n-z),
n=1

with B determined by

).B ga = ).Bl = 4i .
k/n k/n

Equation (19) implies that B„ is, namely, the Mobius
function in arithmetic number theory:

1 A:=1
BI.„=p, (k) = & (—1) k is a product of r distinct primes

0 otherwise.

Thus we have

P(z) = ) Q(n z) -;:-Q(z) = ) p(n)P(n z).
n=l n=1

(2i)

The cases of n = +1 can be found in Schroeder's book [2].
With the same idea, we can easily Ggure out two alternative versions for the MIT,

P(z) = ) Q(z+") -:;-Q(z) = ) p(n)P(z+")
n=1 n=l

(22)

and
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P(z) = ) Q[(2n —1) z] -;;- q(z) = ) p(2n —l)P[(2n —1) z),
n=l n=1

since the operators in the above equations are both multiplicative. The latter was previously obtained by using the
Kronecker h expansion for the Mobius function [13]. From Eq. (22), a special case of a known result for Lambert
series can be deduced,

) ~ n

n=1

OO n;-x=) p(n) (Ixl & 1). (24)

An interesting example of the above transform appears when we take the left-hand side as the Bose-Einstein distri-
bution for phonons or photons with zero chemical potential,

f Ace l . &nkvd ) /RAN l'&nkvd )faz I k I

== ).fa.u.
I kT I

-::-fa.z~.
I kT I

== ).c (n)fax
I kT I

(25)

E(Rg) = ) 'f( 1~2+ t22+ ls2Rg),
l1,l2, l3 ——0

(26)

where R1 is the nearest-neighbor distance, R1 ——a for sc
or Rq ——a/v 2 for fcc, and the prime on the summation
excludes the case that l1 ——l2 ——l3 ——0. Obviously,
Eq. (26) can be rewritten as

F(R, ) = ) uj(n) f(~nRg),
n=1

(27)

provided we introduce a weight function ur(n) which van-
ishes when the natural number n cannot be decomposed
into a sum of three square non-negative integers E1+l2+E3
and equals the number of atoms on the sphere with the
radius gtz + lz + tsRq otherwise. By using the MIM,
the inversion of Eq. (27) is obtained as

f(Rg) = ) m(n)E(~nRg),
n=1

(28)

where m(n) is the generalized Mobius function for sc or
fcc lattice, which is governed by the following recursion
formula:

) zo(k)m(n/k) = ) zo(n/k)m(k) = h„g.
k~n A:/n

(29)

This is exactly the result presented in Ref. [14], but the
method presented here is clearer.

As for other lattices, such as bcc and diamond struc-
ture, since the corresponding operator does not explic-
itly form a semigroup, the MIM cannot be directly used.
Some trick is needed. to modify the multiplicative opera-
tor progression into a semigroup which essentially covers
the original operator progression, if one wants to obtain
inversion formulas similiar to Eqs. (28) and (29).

where fgy@(x) = 1/[exp(x) —1] is the Bose-Einstein distri-
bution function, and f~ ~q, (x) = exp( —x) is the classical
Boltzmann distribution function.

The lattice-inversion method (LIM) can be regarded
as an example for the nonunity case: A„g l. Over a sc
or fcc lattice with the lattice constant as a, the lattice
sum of a function f(x) can be expressed as

The LIM has been shown to be a very useful tool for
materials simulation. In an atomistic view, many proper-
ties such as cohesive energy, elastic constants, and so on
are contributed by all the atoms arrayed in the crystal
lattice. Conventionally, it is an effective way to assign
potential functions (such as pair potentials) to every in-
dividual atom and use them to calculate properties of
materials. Therefore, the determinations of such individ-
ual functions become the key problem. As a usual treat-
ment, one supposes parametrized forms for them and by
careful fitting to available data of properties determines
the parameters. However, the fit procedure will become
more diKcult once more distant neighbors are involved
in. If only a few neighbors are considered, a cut-off func-
tion is needed to smooth the potential function at the
truncated sphere; otherwise the potential derivative at
the truncated point will become infinite. Now the LIM
presents a way to get rid of the inconvenience of treating
many neighbors, by removing the parametrization proce-
dure from the individual functions to their corresponding
lattice sums and inverting the individual functions from
the parametrized lattice sums [15]. This way looks more
natural because most of the materials properties are re-
lated more closely to the lattice sums than to the indi-
vidual functions. This idea has been applied to atomistic
simulation. For example, it was used to construct first-
principles pair potentials from ab initio cohesive energies
versus lattice constants 16—18]. In the semiempirical
embedded-atom method [19], it was used to determine
the pair potential and the electron density from a uni-
versal cohesion equation and the Thomas-Fermi screen-
ing equation for electron density [20]. In addition, it
provides a useful scheme for building the pair potential
between a couple of distinct atoms from a specified bi-
nary alloy superstructure as a reference, which otherwise
is usually constructed from the two respective pair poten-
tials between pairs of identical atoms through averaging
methods [21].

IV. APPLICATION TO THE INVERSION
OF I APLACE TRANSFORM

The LT has been a widely used tool for technologies
such as circuit theory and network analysis. It has been
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also &equently employed in applied physics. For exam-
ple, in the study of anelastic relaxation of solids, the
relation between the creep function and the relaxation
spectrum under constant stress can be attributed to a
LT [22]. Another example is that in the investigation
of the inverse problem of depth profiling with photoa-
coustic spectroscopy, the optical absorption coefIicient is
shown to be related to the surface temperature distribu-
tion through a LT after some simplifications [23]. Both
the problems seek to invert an unknown function &om
the experimentally measureable functions. The third ex-
ample is that the LT is a useful method for analyzing the
problem of hydrogen permeation through a multilayered
material in electrochemical systems [24]. All these ex-
amples raise the necessity of practical algorithms for the
LIT.

The studies of the LIT by mathematicians have formed
a long history. A well-known scheme is the Bromwich
formula, which is similar in formulation to the LT. Bell-
man et al. wrote a specialized book to discuss the nu-
merical inversion of the LT [25]. Because of its compli-
cations, the numerical studies for the LIT still remains
an attractive research objective in recent years. For in-
stance, Cunha and Viloche presented a numerical inver-
sion method based on the Fourier series of Laguerre func-
tions [26]; Brianzi and Frontini presented another regu-
larized inversion algorithm [27]. In this section, we show
that the MIM presents a different possibilty of numerical
calculation for the LIT.

The Laplace transform

&om its characteristic function

(35)

Completing some simple substitutions, we obtain the so-
lution as

P(x)=) x" 'B x—„
(11—

Ay

&*)
(36)

m=o
1

lim = b(x).e~ —i I'(1 + e)x
(37)

Note that we have used d /dx = (e d/de )
The MIM can be used directly to invert an analytical

function. A few examples are given to indicate this appli-
cation. For simplicity, in the following treatment, A = 1
is chosen as the optimal parameter (in the Appendix, we

prove that the inversion result is strictly Bee from the
parameter A).

P(p) = e-~'P(t)dt
0

(3O)

can be translated into

P (x) = ) A Q (x),
=r(n+1) ) B a x =x

m=o
(38)

m=O

witht =e", @=e, P (x) =P(e )e ", Q (y)
P(e")e~~ "l~, K~(u) = e""exp( —e"), and

+oo t™e"'exp( —e') dt,
m! oo

where A is a positive parameter introduced to guarantee
the existence of the integrand of Eq. (32). The charac-
teristic function of the progression (A ) can be found to
be

(3) 4(p) = b/(&'+ b')

111

P(x)=) B x-
dz)

=) B'
dx

bx

1+ (bx)'

(») —(bx)'+ (»)' —."

= (bz) ——(bz) + —(bz) —. = sin(bz). (39)3 5

e~ +'l exp( —e')dt

+oo
t"+ ' 'dt = r(A+ —)—

0
(33)

where r(z) is the gamma function. According to the
MIM, we have

Now we turn to the determination of coeKcients A
and B from Eqs. (33) and (35). Although the Weier-
strass expression for the inverse of the I' function has
long existed, we find that it is inconvenient in finding the
coefFicients. %le find that the Taylor's expansion for the
r function is a substitution for the determination of A.

and B . First, we have

I d
Q (z) = ) B P (z),

m=o
(34)

r"(1),) A"- = r(1+z) = r(1)+r'(1).+
m=o

where the inversion coefFicients B may be determined
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Note that there are

r'(*) = @(x)r(

where g(x) is the psi function

1 t 1
~(x) = -.- -+):x (k k+x)

(41)

(42)

V. DERIVATION OF THE FUOSS-KIRKWOOD
FORMULA FOR RELAXATION SPECTRA

In studies of dielectric and anelastic relaxation, it is
of importance to invert a relaxation spectrum &om an
experimentally measurable property such as permittivity
and compliance response functions via their connection
as integral equations. For example, the anelastic dynamic
response functions, sometimes called the storage compli-
ance and the loss compliance [22], can be expressed by

@~"l(x) = (—1)"+ n! ) 1
- (k+ x)"+''

where p is the Euler's constant

(43)
G(ln ~)d(ln r)

Ji((u) = Jp+ 1+(d 7

~7 G (ln ~)d(ln ~)J( )= (47)

1 1
lim ~ 1+ —+ + ——inn

Tl~OO n )
= 0.5772156. . . .

On the ground of the above formulas, one can derive the
recursion formulas for A and B, respectively,

m

(m+ 1)A +, = —pA + ) (—1)'+ ((i+ l)A, , (44)
i=1

m

(m+ 1)B +i ——pB + ) (—I)'((i+ 1)B,, (45)
i=1

where Ao = Bo = 1, and ((n) is the Riemann ( func-
tion. From Eqs. (44) and (45), A and B+ can be de-
termined. For instance, A~~ = r'(I)= p(1)r(1) = —p,
A2 —— [

—PAi +(—1) ((2)Ao+]/2= [p2 + g(2))/2,
—[p /2+3'((2)/2+((3)]/3, . . ., and Bz+ = p, Bz+ = [p2—
&(2)]/2 B' = h'/2-3~&(2)/2+6(3)]/3,

The coefBcients A can also be calculated using
Eq. (32). We list the first dozen coefficients of A+ and
B in Table I. The listed data show that B decreases
quickly when m increases. Hence, it may be plausible to
truncate Eq. (36) for an approximate inversion. Figure
1 illustrates the results of numerical inversion for three
selected functions. It is shown that the approximate so-
lutions are in good agreement with the exact solutions.

Hi(x) = JU + G(y) dy

1 + exp[2(y —x)]
'

H2(x) = exp(y —z) G(y) dy

1 + exp[2(y —x)]

(48)

(49)

The first-order derivative of Eq. (48) with respect to x is

exp[2(y —x)]
(5O)

The above equation can be reexpressed within the MIM
as

H,'(*) = ) A Gi-l(*).
m=o

It immediately follows that

(51)

G(x) = ) B Hil + i(x).
m=o

(52)

To 6nd the inversion coeKcients B,it can be first shown
that

By letting w = e and w = e" with Hi(x) = Ji(e ) and
H2(x) = J2(e ), Eqs. (46) and (47) can be translated
into

+~
( t)m 2t oo

m' (1+e2')2 (1+ t)2
A z dt= dt

( z zl I'(1 ——)I'(1+ —') z ( zl (z& z

2) I'(2) 2 ( 2) (2) 2 sin(2z)
(53)

TABLE I. The first 12 coefficients of A~ and R for the LT and LIT, calculated from Eq. (32).
The number in brackets corresponds to a power of 10.

0
1
2
3
4
5

A
0.100000000[
-.577215665[
0.989055995[
-.907479076[
0.981728087[
-.981995069[

+O1]
+00]
+oo]
+00]
+oo]
+oo]

gL
0.100000000[+1]
0.577215665 [+00]
—.655878072 [+00]
-.420026350[-1]

0.166538611[+00]
-.421977346[1]

6
7
8
9
10
11

0.993149115[+00]
-.996001760[+00]
0.998105694[+00]
—.999025268[+00)
0.999515656 [+00]
—.999756597[+00]

gyL

—.962197153[-2]
0.721894325 [-2]
—.116516759[-2]
—.215241675[-3]
0.128050287[-3]
-.201348764[-4]
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where 8(z y) is the 8 function. Second, according to Eq.
(16) we have

&.~ ol
G(x) = —jm exp i — l Hq (x)

2 Ox)

a z-=
m=O

2 sin( ~ z)
(54)

(
Hy ~

x+i — —Hy x-
2i

Hence the inversion coefBcients B are By analogy, in the other case of Eq. (49), we have

0, n= 2m+ I
(—1) (—) /(2m + 1)!, n = 2m. (55)

Therefore

Equation (56) is, namely,

2m+ 1

H, (*). (56)G()=-&-(2 1) 2 a. -" '*
( m+

e' e'dt
] +&2t

t~ -'~/"dt

2 0 1+k
1 ! 1 —z 1+zl
2

q
2 2

1('-, )1'('+ )
2I'(1) 2 cos( z z)

(58)

0.4
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-0.1
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0.2
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-0.05

0
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0.05
Y4
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2
solution, and the thin lines are the terms o approx:
exact solution. (a) exp( —t) -::-1/(p+ 1); (4) t exp( —t) .;:-1/(p+ 1); (c) exp( — sin
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) B z = —cos —z
)

So one obtains

2
" (-1)- ( )' a'-

G(*) = —), , —, , a, (*),
m=o

(6O)

) a, (k)z" = ) a, (k)z"
k=O k=o

exp
2 )

( I)~ f
k! (2)

Thus we obtain an inversion result as

(66)

z.e. ,

(.
G(x) = —Re exp i — IIz(x)

vr
~ 28z)

( I)m+v. (~~) +"
d2m d2n

(~ y) = ).) .
m=O n=O

(67)

(— H2 ~ x + z — + H2 x —z—
2)

(61)

Equations (57) and (61) have been obtained by Fuoss
and Kirkwood by utilizing the analytic continuation onto
the whole of the complex plane [22].

VI. RECONSTRUCTION OF REAL SIGNAL
FROM A MEASUREMENT

The data measured by an instrument are always not
the actual signal generated in experimental processes.
The relationship of a real signal and a measurement is
often assumed to obey the following convolution equa-
tion in the noise-free limit

g(* y) = K(x —(, y —rl)

x f((,g)d(dg, (62)

where f is the actual signal, and g is the measured data.
In many cases, the kernel is found to be the Gaussian
point spread function

& ('+g')
K(() 'g) = —exp l

27''0' ( 20 )
(63)

CP
g(x, y) = ) ) Ag(m)Az(n) f(2:,y), (64)

m=0 n=o

which is able to mimic many processes such as ran-
dom media degradations, Hash radiography, x-ray picture
and recovery of turbulent degraded images [28]. Since
the Gaussian kernel function is separable, we can write
Eq. (62) as

Let us consider a test for the above formula. For sim-
plicity, we only take the one-dimensional case into ac-
count. According to Eq. (62), an impulse signal b(x —xp)
will yield a measured signal in form of a Gaussian func-
tion. On the contrary, we can try to reconstruct the real
signal via Eq. (67),

( I) (02) ™
h X —Xp

m! E2)

x exp
(z —zD)'

)20 2 (68)

VII. DISCUSSION

We have shown in the above text that the present MIM
contains two kinds of symmetrical transforms which cover
important problems such as the MIT and LIT. Actually,
both the two cases can be also attributed to the Mobius
transform on a partially ordered set (POS) according to
Rota [29],

~( ) = ):~(,n)vy) -::-q( ) = ).~(,P)&(&)

(69)

Although it may not be wise to use the above formula
to simulate the b function, it should be pointed out that
such a simulation can help us to learn how precise we can
reach when the method is used in other cases. This can
be illustrated in Fig. 2(a). The result may be satisfactory
with the truncation at sixth order, but if more terms are
added, it would be better than the results shown in Fig.
2(a). As further demonstrations, it is shown in Figs. 2(b)
and 2(c) the numerical reconstructions of a three-impulse
signal and a double-rectangle signal using Eq. (67).

where

Ag(k) = Az(k) =—

Therefore we obtain

+~
exp — dt. (65)

( "') ) p(n, P)A(P, p) = b(n, p), (7o)

where the symbol + denotes a binary relation among the
elements of the set, and the Mobius function for the POS
is defined by
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8(n ) is the Kronecker h function. WWhen the POS
degenerates into a unitary semigroup

he POS Mobius transform returns to the a i iveation, t e
caseoft e;wh MIM hen it degenerates into tha

on o eration, the POS Mobius transform returnstiplication operation, t e s
to the multiplicative case of t e . o
POS Mobius transform has been appa lied to the simp i
cation of the cluster-variation method [30,31], its app i-

a be unfamiliard t 't mathematical form which may e un
or h sicists. In a sense, since the MIM is re a ive y

d tand the Mobius transformpie, it may help one to un ers an e
on the POS.

e i
' 'se andAnother pro em o e ibl t be discussed here is the noise an

I the above sections we have trea ere ularization. n e a ' trea e
the toy problems in e a se

' th absence of noise. However, i
should be pointed oud t that since the inversion of the

of the first kind is inher-Fredholm integral equation o
l an ill- osed problem, a regularization proce ure is

nov's re ularization theory an
sin ular value decomposition

all the above me o s,
roach is numerically unstable, because t e i eren-

MIM t s the solution of convo ution in egra

larize only a derivative equation regar ess o e
function.
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APPENDIX

By derivative action on Eq. (36) with respect to A, we have

&&(*) = ) z" 'lnzB x—
m=0

, ,aB' (
BA dx

Note the equality

(I l
+ x" 'B —x—

~

—z-'lnzg
&"*r & r

(A1)

(Il
x—I x "lnzg

&
"*r E*r.

We have

(
dz r

(1&
x "@~ — (m&1) .

k*r
(A2)

On the other hand

1 t9 1

aX 1(w+ ~) K r(W+ ~)
(A4)

namely,

.Oa~) z- = ) ( +1)B'+,~-,
=0' m=o

(A5)

l.e.,

L= (m+ 1)B (A6)

By inserting Eq. (A6) into Eq. (A3), we can see that

This result means that the solution is &ee &om the parameter A.
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