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Correlations in Ising chains with nonintegrable interactions

Birger Bergersen, Zoltan Racz, and Huang- Jian Xu
Department of Physics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 121

Institute for Theoretical Physics, Eotvos University, 1088 Budapest, Puskin utca 5-7, Hungary
Department of Physics, University of Manitoba, Winnipeg, Manitoba, Canada R8T IBAD

(Received 23 June 1995)

Two-spin correlations generated by interactions that decay with distance r as r with —1 &
cr & 0 are calculated for periodic Ising chains of length L. Mean-field theory indicates that the
correlations C(r, L) diminish in the thermodynamic limit L ~ oo, but that they contain a singular
structure for r/L ~ 0 that can be observed by introducing magnified correlations LC(r, L)—

C(r, L). The magnified correlations are shown to have a scaling form 4(r/L) and the singular
structure of C(x) for x ~ 0 is found to be the same at all temperatures, including the critical
point. These conclusions are supported by the results of Monte Carlo simulations for systems with
o = —0.50 and —0.25 both at the critical temperature T = T and at T = 2T .

PACS number(s): 05.50.+q, 05.70.Ln, 64.60.Cn

I. INTRODUCTION

The Ising model in d = 1 dimension with long-range
interactions decaying with distance r as J(r) r
has been much studied. Dyson [1] showed that there
is no phase transition for o ) 1, while there is long-
range order at low temperatures when the interactions
are ferromagnetic and o & 1. The borderline case of a =
1 was studied by several authors [2], who found a one-
dimensional version of the Kosterlitz-Thouless transition
[3] in the system. A variety of methods [4—7] have been
used to show that the transition is of second order with
continuously varying critical exponents in the region 2 &
0 & 1. For 0 & o & 2, it has been found that the
critical exponents are mean-field-like for thermodynamic
quantities, but the spin-spin correlations at the critical
temperature

1
C(r) oc

have a nonclassical critical exponent rl = 2 —o' [8,9].
The case o. =

2 is somewhat special in that the mean-
field exponents are modified by logarithmic corrections
[4] in analogy to the situation with the short-range Ising
model for d = 4 or the d = 3 Ising model with dipolar
interactions [10].

The case 0 ( 0 does not appear to have been inves-
tigated except for 0 = —1. The reason perhaps is the
fact that the interaction potential J(r) becomes nonin-
tegrable for o & 0 and then the energy of the system
is nonextensive. The textbook example of 0 = —1 has
attracted much attention since it corresponds to an Ising
model in which every spin interacts equally with every
other spin. The problem of nonextensive energy is solved
by rescaling the coupling strength by the number of spins
and the result is a mean-Beld exact solution. Spatial cor-
relations have no meaning in this system.

For o ( 0 and o g —1 one can still consider spatial

correlations and this is what we shall do in this paper.
The reason for doing it is partly that there are interac-
tions in nature that are nonintegrable. The gravitational
interaction is a prominent example, but there are many
systems that contain topological defects with noninte-
grable effective interactions between the defects. Our
original motivation, however, comes from the studies of
nonequilibrium steady states. The main diFiculty with
nonequilibrium steady states is that their properties de-
pend not only on the interactions but also on the details
of the underlying dynamics. In order to get a handle
on the effect of dynamics, there have been several works
[11—14] in which the goal was to determine the effective
interactions that are generated by the interplay of vari-
ous dynamical processes. A way to achieve this goal is to
investigate thp phase transitions occurring in nonequi-
librium steady states and deduce the effective interac-
tions &om the universality class the transitions fall into.
For example, a combination of spin flips and Levy-flight
spin exchanges in a d = 1 kinetic Ising model produces
a steady state with effective long-range interactions and
this steady state displays a critical phase transition. In
this case, the large-distance behavior of the interactions
J(r) r i can be deduced [12] from measuring criti-
cal exponents. Of course, this can be done only if o is in
a range 0 ( cr & 1 where either the correlation exponent
g or the thermodynamic exponents depend on o.. In or-
der to extend this method to nonintegrable interactions
(o ( 0), we must investigate the correlations since mea-
suring thermodynamic exponents yield mean-field values
independently of o. Thus we can see that in order to
extract information about nonintegrable effective inter-
actions in nonequilibrium steady states, we must first
understand the equilibrium correlations in systems with
nonintegrable interactions.

Since mean-field theory is expected to describe the crit-
ical behavior correctly for a & 0, we used it to calculate
the correlations for finite size systems (Sec. II). Our
main result is that the singular part of the correlations
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appears to have universal features that make it useful in
deducing effective interactions in nonequilibrium steady
states. We check our mean-field results against simula-
tions in Sec. III and a final discussion is given in Sec.
IV.

II. CALCULATION OP THE CORRELATION
FUNCTION IN MEAN-FIELD THEORY

We consider a one-dimensional Ising model of L
2N + 1 spins 8; = +1 at sites i = —N, —N + 1, ..., N
and impose periodic boundary conditions. The energy of
the system is given by

'R = —) J;,s,sj —) Hgs;

one finds

1 —m2
C(k) =

1 —(1 —mz)P J(k)

where J(k) is the Fourier transform of J; ~
= J;

Up to this point, the derivation followed along stan-
dard lines. The nonintegrability of the interaction starts
to play a role when we try to find the critical temperature
T . Since C(k = 0) is proportional to the fluctuation of
magnetization, its divergence determines T in the ther-
modynamic limit N ~ oo. Thus setting m = 0 in Eq. (8),
one finds

2J
k~T, = J(0) = lim )

and the interaction is assumed to decay with distance as
a power-law but it is cut off at ~i

—j ~

= N:

J, . = J/)i —j]i+ for 1 ( (i —j( ( N
0 otherwise.

Here J ) 0 and the parameter o is assumed to be in
the range —1 & o & 0. The inhomogeneous external
field H, is included in order to calculate the susceptibility
y;,z

——8(s;)/BH~, which, at temperature P i = k~T, is
related to the two-spin correlation function C; ~

= (s;sz)
through

(4)

The problem with the above expression is that the sum
diverges as N~ ~ for cr & 0. Thus, in order to have a ther-
modynamic limit for the correlation functions, we either
have to divide J by N ~ ~ or have to consider tempera-
tures that are proportional to N~ ~. Since only the ratio
J/k~T enters the expressions, the two routes are equiva-
lent. Introducing 8 = T,(N)/T and 8 = (1—mz)8, where
T,(N) is defined through the sum in (9) without taking
the N ~ oo limit, we obtain the spatial correlation func-
tion from the inverse Fourier transform of (8):

N 27m
1 —m2 1 COS 2~+1 jt

2N + 1 1 —8 1 —8Q~(n)
+ 2) &, (10)

where (Hi) -+ 0 means that the susceptibility and, con-
sequently, the correlation functions are evaluated in the
limit of vanishing fields.

In the mean-field approximation, y, ~ is obtained &om
the self-consistency equation for the average magnetiza-
tion:

where Qiv(n) is given by

(2N+1 )
1+o'

j=1 2

(5)

Taking a derivative of both sides of this equation with
respect to H~ and letting (Hi) + 0, we obtain

C;,; = ) PJ, ,iCi, +b;, (1 —(s;) ) (6)

N

C(k) = ) Ci exp( —ikl), k =
l=—M

n= 0, +1, ..., +N, (7)

Equations (5) and (6) form a closed set of equations for
C; ~ and (s;). In zero field, the system is expected to be
homogeneous and thus C; z

——C; z and (s;) = m, where
m is given by the stable solution of (5). Assuming this
homogeneity, Eq. (6) is solved by Fourier transformation.
Introducing

One can see that correlations in the low- and high-
temperature phases are simply related by rescaling the
temperature and the amplitude by 1 —m~ [15]. For this
reason we shall consider only the high-temperature phase
and the critical point and thus set m = 0 and 0 = 0.

Equations (10) and (11) can be easily evaluated nu-
merically and the mean-Geld results can be compared
to Monte Carlo (MC) simulations (see Sec. III). First,
however, we shall discuss the analytic properties of C~
in the "thermodynamic limit" where N ~ oo. As can
be seen from (10), the average of Ci over l is given by
[(2N + 1)(1—8)] and is negligible for 8 g 1. The part
of C~ that remains after subtracting the average also di-
minishes, but with a smaller exponent. It is of the or-
der of N and thus no spatial correlations remain in the
N ~ oo limit for o & 0. It turns out, however, that the
correlation function has an interesting singular behavior
for sinall m = l/(2N + 1), which can be well observed
in finite-size systems. We shall investigate this spatial
dependence by amplifying it through subtracting the av-
erage part of C~ and multiplying the result by 2N + 1:
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N

C ~(x)—:(2N + 1)Ci — = 2 )1 cos (2mnx)

n=1

where I'(z) denotes the gamma function. Thus we can
take the upper limit of the sum in (12) to infinity and find
a scaling function 4(x), which is independent of N. The
singular part of O(x) in the limit x ~ 0 is calculated by
first noting that the identity 2 g i cos (2vrnx) = —1 is
valid for any x that can be written as l/(2N+ 1), where l

is an integer not divisible by 2N+ 1. Using this identity,
the sum in (12) can be rewritten so that it contains the
expression (1 —8D~/n~ ~) —1. This expression is then
expanded in 0 and, finally, the sums over n are changed
into integrals. The number of singular terms obtained in
this way depends on cr and, for (j + 1) & ~o'~ & j
where j is an integer, we find

Ai(a.),A2(o.),A, (o.) . (14)

The coefficients A (o) can be calculated explicitly. For
example, the coefficient of the strongest singularity A» is
given by

(15)

If ~o~ = 1/j then the last term in (14) changes &om
power-law singularity into a term of logarithmic singu-
larity, Az ln(x). For example, the case o = —1/2 yields
the singular part

8 02
e„„s(x)= + —ln(x)

sx 4
(16)

One can compare 4~(x) calculated for o = —0.5 and
8 = 0.5 &om the exact sum with, e.g. , 2N + 1 = 801
and 4„.„s(x) obtained from (16). One then finds that
Oiv(x) —4„.„s(x) is constant (A = —2.35) to an accu-
racy of the order of 1%. Thus the singular part plus
a constant represents the exact solution to a very good
accuracy over the entire range 0 & x & 0.5, which is rel-
evant physically. We checked the "singular-terms-plus-
constant" description for other values of o. and found
that the accuracy decreases as 0 decreases. For exam-
ple, in order to achieve a 1% accuracy at o = —0.75 and
8 = 1, one must also include an additional term and write
O(*) = A,x-'~'(1+ ax) + C.

Next, we turn to the calculation of 4(x) at the criti-
cal point (8 = 1). In systems with short-range interac-
tions, the decay of correlations changes &om exponential
to power-law as the critical point is reached. Systems
with long-range, integrable interactions (o ) 0) have
power-law correlations already in the high-temperature
phase and the change that occurs in these systems when
T is approached is that the exponent of the power-law
decay changes (becomes smaller at T,). For example, in

The function Q~(n) is finite and can be evaluated exactly
in the N -+ oo limit

I'(1 —o) cos 2 D
lim QN(n) =

where M = g,. s; is the total magnetization of the sys-
tem. Thus, at the critical point, (1—8) does not diverge
in a finite-size system; it just changes from a quantity of
O(l) to O(N~), where p = 1/2 in the mean-field the-
ory. The apparent singularity of 1/(1 —8) is the result of
effectively linearizing Eq. (5) when using Eq. (4) for cal-
culating the correlation function. For our purpose of cal-
culating O, the real or apparent singularity of C(k = 0)
does not pose a difficulty since 4 is defined after sub-
tracting C(k = 0) from the correlation function. Note
that 4(x) is well defined physically: it is the correlation
function after the average has been subtracted.

The second question that has to be answered for 0 = 1
is whether any of the terms in the sum (12) defining 4
becomes singular in the 8 —+ 1 limit. [After all, 1/(1 —8)
was a term in this sum before being treated separately
and, in general, one may expect long-wavelength singu-
larities at the critical point. ] The answer to this question
is no and the reason for the absence of singularities is
that long-range interactions develop a gap in the "Huctu-
ation spectrum" of the system. In order to see how this
happen and why nonintegrable interactions are different
&om the short-range ones, let us examine the denomina-
tor of the terms in the sum in Eq. (10). For short-range,
e.g. , nearest-neighbor, interactions one finds in the long-
wavelength limit

1 —8Q~(n) = 1 —8cos
~

n
/g2N+ 1

8 & 2m-n=1 —8+—
2 q2N+ 1)

One can see that the above expression is nonzero for 0 & 1
while it goes to zero at 0 = 1 as the square of the wave
number (for N -+ oo). This is the origin of the expo-
nential (power-law) decay of /arge-distance correlations
at 8 & 1 (8 = 1).

The structure of the denominator changes for noninte-
grable potentials (a & 0). It becomes independent of N
for N -+ oo and, using (13), one finds

vr I'(1 —o) cos
1 —8Q~(n) = 1 —8

~l~l (19)

Since D—:7r I'(1 —o) cos 2 & 1 for —1 & o & 0
(D + 1 only for o' ~ 0), the denominator in (19) is

the exactly solvable spherical model [16], Ci l " for
T & T and C~ l "+ at T . As we shall see below, the
nonintegrable systems are different &om the cases dis-
cussed above in the sense that the singular structure of
C~ does not change when 0 = 1 is reached. The scaling
function 4„.„s(x) at criticality is obtained by just setting
8 = 1 in Eq. (14).

The first question that arises when the 0 = 1 case is
considered is the infinity of the 1/(1 —8) term, which has
been subtracted from (2N + l)Ci in the definition of C

[see (12)]. Since this term is the sum of the correlation
function, it is equal to the magnetization Huctuation

1 (M2)=C(k=0) =
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nonzero even for the smallest n = 1 at 0 & 1. Thus
there is a gap in the spectrum of magnetization fluctua-
tions for all wave numbers and the singularity of the scal-
ing function C(x) at small arguments (small distances)
comes &om the nonanalytic structure of the denomina-
tor at large wave numbers. It should be noted that the
above argument also holds in the low-temperature phase
after replacing 0 by 0 and using the fact that 0 & 0 & 1

It is clear kom the above discussion that 0 = 1 can
be set in the sum (12) for evaluating 4(x) and it is also
clear that the result for the singular part @„„gis given
by Eq. (14) with 6 = 1. One can again compare Ci„„s
and 4, the latter evaluated for large but Gnite systems,
and one again finds 1% accuracy with the C'„„s+const
description at o = —0.5. The trends with the accuracy
of the singular-part description is also the same for 0 = 1
as in the case of 0 & 1 discussed above.

III. MONTE CARLO SIMULATIONS

8.0—
p(x)—

6.0— cr = —0.5

4.0—
2N+1

+ 1601
x $01
o 401

0.0—

-2.0—

0 0. 1 0.2 0.3 0.4 0.5

FIG. 2. Scaling of data in Fig. 1 after subtracting the av-
erage of C& over l and multiplying the results by 2N + 1, i.e.,
plotting 4'iv(x) defined in Eq. (12) against x = l/(2N + 1).
For clarity, only 40 points are included from each data set.

In this section, we describe the results of addressing
the following question: Do the results of the mean-field
calculation remain valid when fluctuations are included. '?

Since no exact solutions are available, we studied the
problem by performing MC simulations on the long-range
Ising model described at the beginning of Sec. II. We
considered cases of u = —0.50 and —0.25 at both 0 = 0.5
and 1.0. Single-spin flip dynamics with Metropolis flip
rates was used and we studied systems of sizes 2N + 1 =
201, 401, 801, and 1601. After an initial estimate of the
relaxation times, we let the system equilibrate and the
equilibrium correlations were calculated and analyzed.

Apart &om the usual diKculties of simulating a sys-
tem with long-range interactions (calculating the energy
changes is time consuming and no cluster algorithms can

be used to reduce critical slowing down), there is one ex-
tra problem when a o. & 0 system is simulated. Namely,
the definition of the 0 = 1 critical point is not quite obvi-
ous. The mean field TMF(N) defined in (9) has the right
asymptotics for N ~ oo but for a 6nite N, T has cor-
rections due to fluctuations. For a sequence of systems of
increasing size, one can, in principle, use any sequence of
T, (N) that approaches T (N) in the thermodynamic
limit. In practice, we defined T, (N) as the temperature
where the macroscopic magnetization fluctuations have
the large-N behavior that follows &om mean-field the-
ory, namely, (M )/(2N + 1) 1.17. . . x (2N + 1) ~ .
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FIG. 1. Raw data from the Mc simulation of an Ising chain
of length 2N + 1 at the critical temperature T = T with
the long-range parameter set to o = —0.5. The correlation
function C~ is plotted against l.

0 I I
1

I I I
I

I I I I

0.000 0.005 0.010 0.015

FIG. 3. Blowup of the small-x region of Fig. 2. All data
points in the given x interval are included.
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FIG. 4. Comparison of the scaled MC data (Fig. 2) and

the mean-field results for the 2N + 1 = 1601 data. FIG. 5. Comparison of the scaled MC data and the
mean-field results for o = —0.5 and T = 2T .

Since (M )/(2N + 1) = 1/(1 —8), the above choice
means that we approach the 0 = 1 critical point as
8,(N) = 1 —[1.17.. . x (2N + 1)] ~ . The same cor-
rection can also be made in the mean-field calculation.
This correction, however, is small and would not be vis-
ible in the figures discussed below.

Figure 1 displays the raw data for the correlation func-
tion C~ at 0 = —0.5 and 8,(N). After subtracting the
average correlation and multiplying the result by 2N + 1
(i.e. , calculating 4) we obtain a collapse of data (Fig. 2)
if 4 is plotted against x = I/(2N + 1). A blowup of the
small-x region is shown in Fig. 3.

In Fig. 4, the MC data are compared with 4(x) calcu-
lated &om the mean-field theory of Sec. II and we observe
excellent agreement between simulations and theory. In
Fig. 5 we can see similar agreement away Rom the critical
point (8 = 0.5) for the case of o = —0.5. We have also
performed simulations with o = —0.25 at both 0 = 0.5
and 8,(N) and we again observed both the scaling of the
data when O(z) vs z was plotted as well as the agreement
between MC and mean-field results. Thus we conclude
that the mean-field theory presented in Sec. II correctly
describes the correlations of Ising models in which the in-
teractions are of long-range, power-law form J~
with —1(o (0.

IV. FINAL REMARKS

The main conclusions of our work are that (i) the
mean-field theory provides us with explicit expressions
for the correlation function in case of nonintegrable in-
teractions and (ii) the singularity of the correlations for a
given o has the same structure at all temperatures. The
results appear to be unafFected by fluctuations as indi-
cated by Monte Carlo simulations for particular values of
o and T.

We expect that the mean-field theory is also correct for
higher-dimensional systems where the fluctuations play
an even smaller role. This problem is currently being
investigated.
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