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Breakdown of linear dynamics in phase-ordering kinetics
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Simulations and experiments have shown that the linear theory in phase-ordering dynamics fails
first on short length scales rather than long length scales as suggested previously. By following the
example of a simple coupled nonlinear system, we show that the linear theory breaks down first at
the largest wave numbers due to the nonlinear slaving of the most stable Fourier modes to the larger
amplitude unstable modes. The range of wave numbers in which the dynamics is nonlinear expands
toward smaller wave numbers with time. We present numerical results verifying the mode slaving
hypothesis and determine tb, (k), the time at which the linear theory breaks down as a function of
wave number k.

PACS number(s): 64.60.My, 68.35.Fx

Phase-ordering kinetics occurs when a system under-
goes a temperature quench from a disordered state above
the critical point to a Anal state inside the coexistence
curve [1]. If the order parameter is conserved, such as in
a binary alloy, this process is known as spinodal decom-
position while if the order parameter is not conserved, as
in an order-disorder transition, this is known as contin-
uous ordering. Both these processes are of technological
interest to the material science and metallurgic commu-
nity. For example, alloys become embrittled when phase
separation occurs [2]. On a fundamental level, the phase-
ordering process is ubiquitous and serves as an acid test
in the understanding of nonequilibrium dynamics.

The phase-ordering process can be divided into several
time regimes. At early times when the composition fIuc-
tuations are small, the dynamics are believed to be linear
and characterized by exponential growth of composition
fluctuations [3,4]. At later times, the system efFectively
consists of domains of the different phases separated by
sharp interfaces. In this late stage, the domain growth is
determined by the dynamics of the interfaces and char-
acterized by dynamical scaling; that is, the domain mor-
phology is invariant and can be described by a charac-
teristic length scale that grows in time [5—7]. This paper
is concerned with the limits of the early-time regime at
which the linear theory first fails to describe the evolution
of the Fourier modes.

The linear theory for spinodal decomposition was in-
troduced in 1959 by Cahn and Hilliard [3] and later ex-
tended by Cook to include thermal noise [4]. They pre-
dicted that at early times the composition Huctuations
will grow exponentially at long wavelengths while the
short-wavelength modes relax to "false" equilibrium val-
ues. Binder [8] argued that the time at which the linear
theory fails depends on the rate of growth of the fastest
growing mode. Although experiments [9] and simulations
[10,11] lend some support to the linear Cahn-Hilliard-
Cook theory, there is no support for the breakdown first
occurring at the fastest growing mode. In fact, experi-
mentally, the linear predictions fail first on short length
scales [12]. Ising model simulations [13,14] also showed
that the linear theory fails on short length scales even

when the long-length-scale behavior is described by lin-
ear theory. The failure on small length scales was found
to correspond to the formation of isolated domains of
one phase or the other in a sea where the order parame-
ter is zero [13,14]. More recently Corberi, Coniglio, and
Zannetti [15] have argued that there are actually two
early-time regimes; a regime in which the composition
fluctuations erst smooths out and decreases diffusively
followed by a regime in which the local order parameter
grows rapidly towards the equilibrium values.

In this paper, we clarify the above observations by
considering the dynamics in Fourier space. In particu-
lar, we show that the time at which the linear theory
fails depends on the wave number. Using the concept
of mode slaving we argue that the most stable modes
become adiabatically slaved to the larger-amplitude less-
stable modes. Therefore the linear theory breaks down
first at the largest wave numbers and the regime in which
the dynamics are nonlinear expands toward smaller wave
number with time. We extend the mode slaving argu-
ments to systems for which the relaxation time scales of
the different modes are not well separated. Finally, we
present numerical results verifying the mode slaving hy-
pothesis and determine the wave-number dependence of
the tixne tb, (k) at which mode k deviates Rom the linear
behavior. In the large-A: limit this breakdown time tb, be-
haves as tb, (lnA)/k, where 6 is the amplitude of
the initial conditions. In this paper we will restrict our-
selves to the nonconserved order parameter. However,
much of the arguments discussed below are also applica-
ble to the conserved order parameter.

We model the phase-ordering dynamics via the time-
dependent Ginzburg-Landau (TDGL) equation

Here P(r, t) is the local order paraxneter, which describes,
for example, the local species concentration and I"(Pj is
the coarse-grained &ee energy, which we take to be the
P4 &ee energy. For simplicity we assume that the mo-
bility is a constant that we set to unity and we take the
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low-temperature limit by neglecting a thermal noise term
in Eq. (1). Here we assume that the coarse-grained de-
scription is valid down to length scales smaller than the
interfacial thickness between the two coexisting phases.
This will be the case for Ising models with long-range in-
teractions and for polymer blends if the correlation length
is much larger than the radius of gyration.

In Fourier space the time-dependent Ginzburg-I andau
equation becomes

= (~a4i —~~&4,j), (2)

where the Fourier transform is
= (2m) + J' dr P(r)e'"' with d being the spatial dirnen-
sion. The linear growth rate is wA, = (1 —k~) and the
nonlinear term Np is given by

1
+k&4'q j =

g dqidq24'k —q& —qg 4'q& 4'qm ~

2m' "
The linear dynamics is obtained by neglecting the non-
linear term Np, then each Fourier mode simply behaves
exponentially with time

Pi, (t) = Pg(0)e "'. (4)

The linear dynamics can be divided into two regimes; for
k values below the critical value, k = 1, uI, ) 0 and
the Fourier modes grow exponentially, while for A: & A;„
~A, & 0 and the modes decay exponentially to zero.

Binder estimated the time at which the linear the-
ory failed by using the linear solutions for P and finding
the time when ([P(r)]~) was comparable to ([P(r)]4) [8].
He argued that the time when the nonlinear terms will
become important is determined by the fastest growing
mode. For the nonconserved order parameter the fastest
growing mode is at A: = 0. Hence the breakdown of the
linear dynamics should be observable first at the largest
length scales.

We argue that the linear theory will fail first for
the most stable, high-wave-number, modes. To moti-
vate this, we use an analogy with a standard multi-
time-scale analysis for low-dimensional dynamical sys-
tems [16]. Consider a system consisting of several modes
nonlinearly coupled to each other. If there is a wide sepa-
ration of time scales between the modes, the most stable,
fastest modes will quickly relax to a value adiabatically
determined by the slower, less stable modes; i.e., the most
stable modes are slaved to the slower modes. Consider,
for example, the following simple two-mode example:

]
dt

= ~~4i+4z,

diaz 3
dt 1

Here n is the ratio between the linear time scales of Pi
and Pg. We assume lnl (( 1 so that Pz relaxes on a
time scale much faster than that of &Pi. Therefore Pz will
quickly (on a time scale cu ) relax to a value determined
by 4i,

The dynamics of the slower mode on much larger time
scales (o.w) becomes

dPi 1

dt 0!
= CX(dpi ——Pi. (7)

To relate this to the linear dynamics, assume that the
values of Pi and Pz are both small at t = 0. The faster
relaxing mode will stay in the linear regime for a time
of order u while the slower mode will remain in the
linear regime for times of order (cia) . Hence, in this
case, the linear approximation fails first for the fastest
relaxing mode.

A similar idea should hold for phase-ordering dynamics
with the distinction that, due to the continuum of time
scales, the separation between fast and slow modes is less
clear. However, the most stable modes will still become
slaved to the slower modes at lower wave number. Direct
application of the slaving arguments gives

1
(P P)= (N „K) (8)

for the slaved modes. Here the brackets indicate an av-
erage over initial conditions. A mode will become slaved
on a time scale 7~ = (—wI, ) . Since w increases with
decreasing k the boundary between the slaved and linear
modes will move toward small wave number with time.
When this boundary reaches k such that lurgl is approx-
imately the maximum growth rate there is no longer a
separation of time scales and the linear theory will break
down for all wave numbers. Note that this minimum k
is still a stable mode.

We test these ideas by observing the evolution of the
structure factor for the TDGL equation [Eq. (1)] in one
dimensions for the nonconserved order parameter,

8$(x, t) = ~(x t) —[~(x t)] +44'(x t) (9)

We take the initial conditions to be uncorr elated
Gaussian variables so that (P(x, 0)P(x', 0)) = Ab(x —x').
Two initial variances were examined with the data aver-
aged over 52 initial configurations for initial amplitude
4 = (0.01) and 78 initial configurations for initial am-
plitude A = (O. l)~. We discretized space using a mesh
size of bx = 0.25 on a lattice of nx = 32768 points. The
update was performed using the Adam-Bashford method
with bt = 0.005.

For each time step we calculated the structure factor,
S~(t) = (PI, (t) P g (t) ) and compare it to the structure
factor predicted by linear theory, SI, h„(t). To eliminate
any discrepancy due to discretization, the linear results
were calculated using the same discretization and update
schemes as used in the simulation. For this reason we plot
our results with respect to the e8'ective wave number k ff
defined by k,z = (2[1—cos(kbx)] j/(bx)z. k takes on the
values of k = 2am/L where L = bxnx is the system size
and m varies from nx/2 to nx/2. —

Figure 1 shows the ratio of SI, ~;„(t)/Sl, (t) as a function
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FIG. 1. The ratio Sq,~;„(t)/Sl, (t) where Sq,~; (t) is the lin-

I, ( ) is e scattering intensity from the
simulation. The data are for E = ([P,(0)] = 0.1 . At
small k, S&(t) is just slightly less than S (t) H
there '

n g, ,y;„& j. owever,
here is a sharp transition at k = k ' '

q, ~;„(t). The low-A: linear region
shrinks with time.

uqSI, (t) and (Nq(t)N q(t)) differ at small k but coincide for
large k. The ran e of k ing in which they coincide expands to
smaller wave numbers with time. Th
f

ime. ese quantities are equal
or complete slaving.

of k for various times. For each tc ime, we observe a range
of wave numbers at small k in which S . ~t~

'
in w ic A,. &;„~t~ is slightly

er an A, ~t~ but the ratio is constant with k. F
short times the ine

wi . or

rane o
e inear ynamics remains v 1'd ' t" '
e ine

' a i in "is
ere beginsge o up to a crossover k = k ~~t~jH

a second regime in which S

pea s and then decreases, crossing one at k =
A, &;„~ ~ is ess then

and k t d
an t e ratio continues to decrease. Bath k ' '
2( ) ecreases with time so that the ran e of k

o i ~(t')

which linear th
ki t =k =1we

theory is valid decreases with t W'i ime. hen

&om the 1

we nd that there is significa t d t
e inear prediction at all wave numbers. This

occurs in this case at about t = 3. Fi ure
s ar = (~~, ) = (O. l) . Similar behavior is found

except that the breakdown of the linear

at largest k first. To verify that this is due to adia-
batic slaving of these modes Fi . 2 h

I, ( ) s(t)), where Ny(t) is obtained directl fram th
e slaving hypothesis predicts that these

quantities are equal for a slaved m d I d dmo e. n eed we find
a two quantities difFer at low k but a r

incide at hi h k. As
u approximately co-

i e a ig . s time increases the region where these
quantities coincide extends toward 1

Al hthough Fi . 2 su o
s owar ower wave numbers.

h g. pports the mode-slaving hypoth-
esis, a more careful analysis shows that the ratio
~&( ~P ~)/(NsN I, ) at higher k,@ is not exactly unit

e ra io epends on t~e w
number and time. This is

p the wave

evolution of the
an ime. is is ecause the time scales of the

nonlinear term Ng are not fIisu cientiy

separated &om the linear time 1ime sca e, ~& o the relax-

nonlinear term Ny in the evolution for mode k should
be dominated b the hiy ig~er-amplitude low-wave-number
mode. From Fi . 1 thig. ere should be a regime in which
mode k is no ion er li
that mo e

g 'near but the nonlinear coupl' t
mode, NA. , is still governed by the linear behavior

of the ower-wave-number modes. T ho see ow t is af-
ects our slaving analysis we rewrite our t — dwo-mo e mo el

[ q. ( )] assuming that the time scales of the t d
no necessarily widely separated and that the slower

mode is linear,

Bgg = a'~4'1)

0/2

where o. is no longer assumed to be small. This is easily
solved to give

42(t) = 4""(t)+ l4 (t)j'
(u(3n + 1)

where Pg(t) = P~j"(t) = P (O)e ' and P'" t
t long times the first term is ne 1rm is neg igi e so

the const '
is

is sti proportional to the nonlinear t b tar erm ut
constant of proportionality is 1 3

Usining this analogy, we assume that thee a ere is a regime
w ic ~I, is proportional to the nonlinear NA:)
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where Pi, does not depend strongly on time. Note that
Pi, = 1 for complete slaving. Substituting into the equa-
tion of motion for the structure factor gives

( 1 c)
Pr = ~a

~

~i — (—~yN k} ~2NiN p Bt ) (13)

or

Pa
260A Ot

(12) Since the nonlinear term NI, is dominated by the linear
large-amplitude lower-k modes, we can substitute the lin-
ear forms for P~ in Ni„

(N „.(t)~„. (t)) —
~

~

dk dk" dq'dq" e( ~ —a' —a + r + a I+ a-,~-~~~+,~+,«)
q2~)
x(QA, k i (0)QA, (0)pg (0)p i+, +, (0)p (0)p, (0)),

= 64' r'1)
k&&2Ca kt t &2~k t dpi dQ&& &2(~Is kl ~11+Wkl +ukll ) t

) (14)

where the subscript lin denotes that we have used the
linear forms of Pi, to estimate the nonliiiear terms. This
replacement corresponds to a second-order expansion in
the nonlinearity. Since cuI, ——1 —k the integrals over k
are Gaussian integrals and

(3As~
(Ni, i;„(t)N A, );„(t))=

~

'~ 3e'(' '+ " '
g 8vrt )

+2~3eswg ~ & t

For the stable modes the first term is negligible relative
to the second if k t ) 1 and we get

3 3a'&
47rt

but will be adiabatically slaved to the even slower k/S
modes (for k ) 9). Hence, there is a larger separation of
time scales and a more complete slaving holds.

We have presented qualitative evidence that the break-
down of the linear regime is determined by partial slav-
ing; however, a more quantitative measure is desirable.
We define a breakdown time at which a particular k mode
no longer obeys linear theory using three criteria &om the
ratio of Si, i;„(t)/Si, (t) (see Fig. 1): t~, (k), the time at
which Si, i;„(t)/Sy(t) first varies by more than 2.5% f'rom

the ratio at k = 0, tp, k, the time at which S~ i;„(t)/Si, (t)
is largest and t„„;q~, the tizne at which Si, ~;„(t)/Si, (t)
again passes unity. These values were obtained from Fig.
I using a cubic fit around the peak. To compare with our
partial slaving analysis we define tg as the time at which
the partial slaving prediction for Si, (t) is a factor h of the
Si,i (t),

Hence the nonlinear term Np ~;„ is dominated by the q =
k/3 modes. These modes remain linear at the time the
k mode first becomes nonlinear, thus justifying the use
of the linear forms to estimate NA, . Substituting into Eq.
(13) gives

(dk

(dg —3&g]s + (2t)
(17}

Note that the assumption that that Pi, is independent of
time is not correct, however, this dependence is negligible
for large, k. Note also that in the limit of large k Pq -+
3/2 [17].

Figure 3 shows a plot of the ratio P& (NgN g) /
[(u~Sg(t)] for 4 = ([P;(0)] ) = (0.1) . Here (Ni, N k)
is obtained from the simulation but we use Eq. (17) for
Pi, . From the plot, there is a range of k in which this ra-
tio is unity. This range becomes smaller with time since
the ratio is unity when the k/3 mode is linear. Compar-
ison with Fig. 1 shows that the ratio P&(Ni, lV A, )/Si, (t)
first becomes significant at the value of k when Sg(t)
first deviates &om Si, i;„(t) and the plateau region be-
gins at the value of k at which SI, i(t) S/(it) passes
through one. For Si, (t) much larger than the plateau
region Sg(t) —(Ni, N I,)/w&. This is because, in this
regime, the dynamics of the k/3 mode will not be linear
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FIG. 3. Plot of PI, (NI, N I, )/[ur„SI, (t}] for various times.
There is a plateau region where this ratio is unity. This
plateau shrinks and moves toward lower k with time. The
lower k limit of the plateau corresponds to k mode where
the linear theory first breaks down. The upper k limit cor-
responds to where the k/3 modes starts to deviate from the
linear dynamics.
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(18)

We used b = 1 and b = 0.01 in our comparison.
Figure 4 shows that to 0~ coincides very well with tp

The goodness of the fit depends on the value of b. How-
ever, varying b by as much as a factor of two has a much
smaller effect on the goodness of the fit then, for example,
using a criteria based on Sk i;„(t) and (NkN k) without
the P& factor. On the other hand, ti corresponds ex-
actly with tp k Figure 5 shows the same analysis for
the smaller 6 = ([P,(0)] ) = (0.01) . We also find excel-
lent agreement between tz and tpz~k and to Oq and tge~.
The difference is that, in this case, the linear dynamics
hold for a longer time for all Fourier modes.

Defining the breakdown time as tb, (k) = ti(k) we find,
in the limit of small L,

1.0
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nlin

Sn...=
t2.5%

~ t
Ot

0.0 1.0
1n k, fi

2.0

3lnL"(")- 2(3+k)
which at large k becomes

3lnL
tb, (k) -—

2k2

(19)

(20)

FIG. 5. Same as Fig. 4 but for a smaller amplitude initial
condition, K = ([P,(0)] ) = (0.01) . The behavior is similar
to A = (0.1) but the linear theory holds for a longer time
for any particular k.

So that tb, (k) increases with decreasing A and decreasing
k. We emphasize that this holds for very small 4 and
large k. Care should be taken in using this asymptotic
result. For our simulations, for example, the 6nite k and
4 corrections are important and the asymptotic form
would not lead to a very good 6t to tb," .

Finally we discuss the relation between our analysis

1.0—

0.0—

—1.0

t„
0t0

.. ~I

—2.0
0.0 O.S 1.0

1n k,fi

2.0

FIG. 4. The breakdown time tb, (k) for b.
= ([$,(0)] ) = (0.1) . The empirical breakdown times are de-
fined as follows: tq, (Cl): the k modes at which Sq(t)/Sq ~;„(t)
deviates 2.5% from the value at k = 0. tp, y (~ ) the k mode
at which Sg ~; (t)/Sic(t) reaches a maxima and t„„;t~ (Q) the
k modes at which the Sq,~;„(t)/Sq t, passes through one. This
is compared to the theoretical values tg for h = 0.01 (dashed
line) and 6 = 1.0 (solid line). Very good agreement is found
between tg and Co.oy and between t~,~i, and tq.

and earlier results. Our analysis is consistent with the
simulations of the long-range Ising model by Gross and
co-workers [13,14] who found that the linear theory first
breaks down at wave numbers k = k and larger. Sim-
ilar behavior was also observed in polymer and alloy
experiments [12,18]. On the other hand, earlier exper-
iments and simulations have concentrated on the low-
wave-number behavior and therefore have not focused
on the k-dependent breakdown discussed here [9,11,10].
When the linear theory was observed to fail first at short
length scales [9] this was attributed to thermal noise or to
the invalidity of the coarse-grained description on these
scales. Our analysis indicates that there is a third pos-
sibility for this failure due to slaving of the high-wave-
number modes.

To compare with other theoretical results we note that
the initial regime during which the modes of wave number
k ) k becomes slaved corresponds to the diffusive relax-
ation regime discussed by Corberi, Coniglio, and Zannetti
[15]. This leads to a reduction in ([P(x, t)] ). Note also
that since we replaced p~ by their linear values in Nk(t)
we are effectively performing a second-order expansion in
the nonlinearity. Most previous works have discussed a
first-order or Gaussian expansion [11,19,20]. An analysis
using this truncation would not lead to a strong k depen-
dence in the breakdown time. To see this, we consider
the Gaussian approximation [19]. The evolution equation
for the scattering intensity is

(&k()&-~())
(~ (,)~ (,))+(2 )-i/2

Ot

X dq~ dq2 t—qi —q2 qx q2 A:

In the Gaussian approximation Pi, are assumed to be
Gaussian so that the nonlinear term can be decoupled to
give
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k —3(2 )'~ dqS (t) ~ Sk(t)

= ( ~ —3([4(*)l ) S (t)

where ([P(x)] ) must be obtained self-consistently. The
correction to the linear coeKcient does not depend on
k and therefore does not give any A; dependence in the
breakdown time. Note also that the 6rst-order expansion
always leads to a reduction in the scattering intensity
relative to the linear growth. YVe observed that at very
small wave numbers that this is indeed the case but that
this efFect is small.

Finally, although we have discussed the results for the
nonconserved order-parameter case only, many of our ar-
guxnents, for example, slaving and partial slaving, also
hold for conserved systems. However, the actual detailed
integrations may be more diFicult. A more important

omission may be the neglect of thermal noise in our anal-
ysis. There is an intricate interplay between the initial
Quctuation amplitude 4 and the thermal noise. In some
regimes the thermal noise will be dominant and we ex-
pect it will have important efFects on our mode-slaving
analysis.

To summarize, we have demonstrated that the lin-
ear theory of phase-ordering dynamics breaks down first
for the highest-wave-number modes. This is due to the
fact that the stable high-wave-number modes become
adiabatically slaved to the higher-amplitude less-stable
modes. We showed that tb, (k), the breakdown time as a
function of wave number k, can be understood in terms
of partial slaving. In particular, we fInd that the break-
down time in the limit of small initial variance 4 and
large k behaves as tb, —31n&/(2k2). Our theoretical
predictions are con6rmed by numerical simulations.
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