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Dynamics of adsorption-desorption processes as a soluble problem of many fermions
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We study the nonequilibrium dynamics of one-dimensional adsorption-desorption processes with
diffusional relaxation. According to the relative values of the transition probability rates, these
systems can be mapped onto a soluble problem of many fermions. The time development of pair
correlations, interparticle distribution functions, macroscopic density, structure factor, and density
fiuctuations is obtained by combining and comparing both exact results with Monte Carlo simu-

lations. Depending on the spectrum gap of the evolution operator associated with the stochastic
dynamics, these quantities display either exponential decay or power-law relaxation. For vanishing

gaps, the pair correlations exhibit a faster decay as opposed to the standard diffusive relaxation of
the macroscopic density.

PACS number(s): 02.50.—r, 75.10.Jm, 82.20.Mj, 05.50.+q

I. INTRODUCTION

There has been much current interest in stochastic
systems in situations where traditional classical (mean
field) rate equations do not apply [1]. A standard exam-
ple of such a fluctuation-dominated case is the diÃusion-
reaction system under conditions, e.g. , low dimension-
ality, where the diffusion of reactants is not sufficiently
rapid, compared to the reaction rate, to suppress spatial
concentration fluctuations [2). Another source of fluc-
tuation phenomena is the discreteness of local particle
number, e.g. , at a given site in lattice-based theories.
.Lattice descriptions are convenient for the incorporation
of hard-core particle interaction efFects, through "exclu-
sion" models in which each site can be at most singly oc-
cupied [3]. Through a pseudospin representation of the
site occupation these exclusion models can be mapped to
quantum spin models [4,5].

Since fluctuation efFects are most pronounced in di-
mensionality d = 1, much attention is currently focused
on that case. One-dimensional models of course have
a greater chance of exact solution, while still being far
&om trivial, i.e., quantum spin chains are often related
to equilibrium two-dimensional classical models, and can
have analogous phase transitions in their ground state
and other cooperative efFects [6]. The present paper is
concerned with exact solutions for a generalized type
of one-dimensional stochastic model which turns out to
have rich fluctuation behavior. A recent work has shown
that it is related by various mappings to a wide variety
of other models [7].

The processes explicitly included are (i) adsorption or
desorption (with independent rates e and e') of particles
in pairs on adjacent sites; and (ii) single particle difFusion
which for complete generality is allowed to be asymmetric
(hopping rates li and h' to right and left, respectively),

for example, as a result of some driving mechanism. The
"dimer" adsorption and desorption processes alone have
already been shown [5] to be interesting in having slow
dynamics related to a Goldstone symmetry, and (for e =
e' ) an exact solution has previously been provided for the
pair correlation via a pseudospin description in which a
sublattice mapping takes the evolution operator to the
Heisenberg model Hamiltonian [5]. The addition of the
diffusion process gives an idealized model for catalysis.

The generalized model with processes (i) and (ii) in-
cludes as special cases the Flory dimer-deposition prob-
lem [8], biased diffusion [9], random sequential adsorption
with difFusional relaxation [3], etc. Sublattice mappings
or more general pseudospin rotations take the general-
ized model into a large set of other general models in-
cluding coagulation and single-particle production and
annihilation processes [7]. Despite its idealized nature,
it therefore has the possibility of wide experimental rel-
evance [10]. To extract the main characteristic phenom-
ena, and for possible experimental comparisons, various
types of particle correlation function in space and time
are of interest, as well as the scattering and structure
functions obtained by Fourier transformation [ll]. So in
this paper exact results are given for time-dependent pair
correlations, interparticle distribution functions, density,
density fluctuations, and structure factors.

Exact solutions of this type turn out to be possible only
under special conditions. Special soluble cases previously
treated are (a) the dimer adsorption-desorption problem
referred to previously [5] (e = e, ' h = h' = 0), and (b)
symmetric diffusion of hard-care particles (h = h', e =
e' = 0) [12]. These two cases are related by sublattice
mapping [5,13].

The soluble case treated here is the general process
of adsorption and desorption with driven diffusion, but
with one constraint relating rates, namely, a+e' = 6+6' .
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This is the condition under which the evolution operator
of the system can be converted to a free-fermion form by a
Jordan-Wigner transformation [14] on the quantum spin
Hamiltonian of the pseudospin description. A general-
ized Bogoliubov-Valatin type transformation of fermion
operators [15] then allows a complete solution.

To investigate the efFects of relaxing the constraint
r + e' = 6 + 6', Monte Carlo simulations of cases with
b'—:e+ e' —h —h' P 0 are also provided here. They
show no substantial change from the b = 0 soluble case,
suggesting that this case is actually generic. It is also
interesting that the &ee-fermion condition b = 0 is also
the condition for the equivalence of the model to a gener-
alized single-spin-Hip Glauber dynamics [13,16]; and that
the soluble case includes a subcase e = e' = h = h' equiv-
alent to the one-dimensional equilibrium Ising model and
therefore soluble by standard transfer matrix techniques.

The system discussed here also includes a very impor-
tant special case e' = 0 {or e' = 0) in which only desorp-
tion (or adsorption) occurs with driven diffusion. This
is equivalent to the reaction-difFusion process A + A ~
inert, so our results apply to this interesting case [17].
Since the Bogoliubov transformation used in the diago-
nalization of the Bee-fermion Hamiltonian is singular for

(e') = 0 (see Sec. II) this case is obtained via a limit
e' ~ 0. A brief account has been given elsewhere [18] of
some of the e' ~ 0 results. The present paper provides
details necessarily omitted Rom that account as well as
additional results. Monte Carlo simulations provide a
confirmation of the analytic results obtained, as well as
some extensions, such as the investigation of the gener-
alized case 8' g 0 which suggests the robustness of the
soluble case.

The structure of this work is as follows. Section II
presents the master equation and transition processes,
the representation of these by a quantum spin Hamilto-
nian, and the mapping to a fermion system. The &ee-
fermion reduction and Bogoliubov transformation are
also given here, as well as comments on the asymptotic
form of decays and the role of symmetries. Dynamical
pair correlation functions are calculated in Sec. III. Ex-
plicit analytic results and asymptotic behaviors are given
here, and compared to Monte Carlo simulations. The
case e' —+ 0 is also treated here. Section III also contains
the Monte Carlo check on the robustness of the b = 0
results. Section IV gives an analytic calculation of the
interparticle distribution function in a simple situation,
and Monte Carlo simulations of the general case. Sec-
tion V is a discussion of the work. An Appendix gives
calculational details omitted &om Sec. III.

cations. A dimer adsorption (desorption) attempt with
rate e (e') takes place if the chosen sites are both va-

cant (occupied). Alternatively, hard-core particles can
hop on the chain with biased rates. Specifically, a parti-
cle at site j (j + 1) hops with rate h (h') provided the
site j + 1 (j ) is vacant. By construction these processes
are uncorrelated and mutually exclusive. Notice that the
rule of desorption along with particle diR'usion does not
preserve the identity of dimers during the AD process.
Dimers can evaporate with rate e' whether or not the se-
lected pair of adjacent particles arrived together. There-
fore this dynamics leads to a continuous redistribution of
particles giving rise in turn to reconstruction of dimers.
In Fig. 1 we show a snapshot of a particular evolution re-
sulting Rom these microscopic rules. Further details will

be given in Sec. III A.
As is known [19], the probability distribution P(s, t)

to observe the system in a particular configuration
~
s)

at time t is governed by a master equation. Start-
ing from an initial state

~
P(0) ) = g, P(s, 0)

~
s) such

an equation can be written in the operational form

~

P(t) ) = e
~

P(0) ) [20]. Here, the evolution operator
H is build up in terms of the transition probability rates
W(s -+ s') contained in its matrix elements, namely,

(s'] H
) s) = —W(s —+ s'), s' g s,

( s
f
H

]
s ) = ) W(s -+ s')

B gB

(W(s -+ s') ) = (e, e', h, li') .

Hence, the left steady state (@ ~

can be constructed as
an equally weighted linear combination of all reachable
configurations as g, , (s'

~

H
~

s)—:0. Conservation of
probability therefore requires the normalization condi-
tion

A. Spin chains

The analysis of the master equation becomes system-
atic after characterizing particles and vacancies respec-

500

II. STOCHASTIC DYNAMICS, QUANTU'M SPIN
CHAINS, AND FERMION MODELS

In this section we describe the basic stochastic steps.
As stated in Sec. I, our analysis will be limited to the one-
dimensional case. The microscopic dynamical rules de6n-
ing the stochastic evolution of our adsorption-desorption
(AD) model are as follows. Pairs of nearest-neighbor
sites of a linear chain are selected at random &om W lo-

0 100 200 300 400 500
site

FIG. 1. Snapshot of the associated stochastic evolution fer
e = 0.05, e' = 0.8, and h = h,

' = 0.5. On average each lat-
tice bend is exchanged once per unit time. Details of the
simulation procedure are described in Sec. III A.
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tively by the 2 spinors a, = (0) and P, = (i), for
instance in the o representation. In such language, the
set of probability rates related to our AD microscopic
rules (acting on sites j,j + 1, say) corresponds to the
following spin-Hip processes:

exp i$) o'.

2

exp i $ ) (—1)~ o'

6 =6 =0

h=h'=O.

Hence the stochastic dynamics is associated with the
"Hamiltonian" of a quantum spin- — chain whose ac-2
tion keeps proper track of all transition rates involved
in (3). This approach enables us to exploit alterna-
tive calculation schemes (see below) which are specifi-
cally useful to investigate nonequilibrium features, in par-
ticular nonequilibrium correlation functions. Using the
o. , 0", cr spin-2 Pauli matrices, and after introducing
the parameters

a=E —e, b=e +E, c=h —h, d=h, +h, (4)

the evolution operator which reproduces the matrix ele-
ments (1) turns out to be

H = —(b —d) ) ( o.,' o.,+, + o.,"o,".+, )

+ —) o," + —(a+c) ) o,*o,"+,
2 2

+ —(a —c) ) o.,"o,+, .

This form of Hamiltonian arises &om having represented
dimer adsorption, dimer desorption, and single-particle
hopping by the action of the nondiagonal terms of H.
It is a simple matter to check that these terms provide
precisely the spin-flip transitions (3). Since these pro-
cesses occur with rates e, e', h, h' & 1, conservation of
probability requires in addition the appearance of diag-
onal (many body) terms. There are three special cases
in which the nonequilibrium dynamics can be analyzed
extensively. The principal ones are (i) e = e' = 0 (bi-
ased difFusion) [9], (ii) h = h' = 0 (pure AD) [5], and
(iii) e + e = h + h' (AD with diffusional relaxation).
The character of the asymptotic behavior of (i) and (ii)
is already determined by the symmetries involved in (5).
Speci6cally, we recall that under a rotation by an angle

around the spin z axis, the transverse spin operators
transform as tensors of rank 1. Thus for cases (i) and
(ii) it can be readily verified that H remains invariant
by the similarity transformation S(y) H S (y), where

Since the steady (ground) state of H breaks this con-
tinuous symmetry [5], the Goldstone theorem implies
the existence of low-lying gapless modes which are ul-
timately responsible for the emergence of a slow asymp-
totic dynamics. In particular, for e = e', h = h' = 0 or
h = h', e = e' = 0, it can be shown that after appropri-
ate sublattice mappings the evolution operator reduces
to the fully rotational invariant isotropic Heisenberg fer-
romagnet. In such cases, the dispersion relation of the
single spin-wave excitations gives rise to di8'usive behav-
ior for large time regimes [5].

B. Fermion systems

While the gapless character of (i) and (ii) can be in-
ferred by Goldstone arguments, it is dificult to apply
such considerations to arbitrary probability rates. How-
ever, case (iii) is still amenable to an extensive analytic
treatment. The key issue lies in the recognition that
for e + e' = h + h' there is a cancellation of many
body interactions in Eq. (5). In terms of the spin-&
raising and lowering operators o+ = (o + io")/2 and
o. = (o —icr")/2, this constraint yields the following
quadratic form:

H= —E) cT o'+i —e ) o

2 2

+ (e' —e) ) o+o + Ne.

As is well known, this problem can be mapped onto a
set of spinless fermion operators Ct, C via a Jordan-
Wigner transformation [14]. Due to parity conservation,
the kinetics is restricted to take place within two sub-
spaces having either an even or odd number of particles.
For the sake of simplicity and because of its relevance
within the context of AD cooperative processes, in what
follows we shall analyze the stochastic dynamics resulting
f'roin an initially empty lattice (evolving through the even
sector). In such a case, assuming periodic boundary con-
ditions the Jordan-Wigner transformation imposes anti-
cyclic requirements when applied to the even subspace,
i.e., C~+q ———Cq, C~+~ ———Cz . As usual, it is con-
venient to Four'ier transform to running wave fermions

Qq p

—' ~/4 —iqn C

To satisfy the above anticyclic conditions the wave
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numbers q should take the values of the set Q
{+vr/X, +37r/N, ... , k(N —1)m/1V) where we have as-
sumed for convenience that N is even. In terms of the
wave operators gq, it can easily be found that

H=)
q&Q

Wq 'gq 'gq + (slI1 q)

X 6g q'gq + 6 77q 7f q + 6 )
t

uq ——a —b cos q + ic sinq,

where the parameters a, b, and c are taken as in Eq. (4)
For nonvanishing transition rates e and e' the diago-

nalization and the non-Hermitian character of the evolu-
tion operator (9) can both be taken into account by the
following Bogoliubov type similarity transformation [15]:

(+ = n(cosOq) alt + n '(sinOq) q q,

( q
= o. (cosOq) g q

—n(sinOq) alt,

where n and the (real) angles Oq are given by

(10)

2+me' sinq
tan 20q

b cosq —a

H = ) Aq(q (q, Aq = b —a cosq + ic sinq. (12)
q&Q

Notice that the commutators [H, (+q] =
+Aq (+ and

[H, (q] = —Aq (q enable us to interpret (+ and (q as cre-
ation and annihilation operators acting on right and left
vacuum (steady) states

~ @), (@ ~

such that (q ~ @) = 0
and (g ~(+ = 0, whereas the elementary excitations
(+

~ @) are related to eigenmodes decaying with a char-
acteristic lifetime rq

——(b —a cosq) & 0. For e, e' g 0
the spectrum of H already signals the fast (exponential)
nature of the asymptotic dynamics. In the limit N + oo
it exhibits a gap g = 4 min (e, e ) resulting from the cre-
ation of tmo elementary ( excitations (q+ $+,

~ @) with

qo ——0+ if e ( e' or qo
——m if e ) e', as the dynam-

ics preserves the parity of the ( particles (within a given
invariant subspace) .

Although the similarity transformation (10) breaks
down for vanishing desorption (adsorption) rates e' (e),
it should be emphasized that the nonequilibrium density
and dynamic correlation functions are mell defined for
~' ~ 0 (e -+ 0). This will be shown in Sec. III B. There-
fore our AD model admits slow (power-law) asymptotic
solutions as they are no longer dominated by the exis-
tence of the spectrum gap.

For e g e' this transformation is not unitary. Even
so, it can be readily verified that the ( operators sat-
isfy fermionic anticommutation rules. However, notice
that (+ g (t where t denotes Hermitian conjugation.
In terms of these operators H can be finally cast as the
&ee-fermion Hamiltonian

III. DYNAMIC CORRELATION FUNCTIONS

In this section we turn to the calculation of dy-
namic particle-particle nonequilibrium correlation func-
tions. We will consider the case of an initially empty
substrate, a common situation within the context of AD
processes. As is known [20], there is a simple way to
express the time development of any physical operator
A. For a given initial state

~ pp ) the dynamic average of
(A(t) ) is simply (A(t) ) = (g ~

Ae '
~

Ipp ) . Thus the
particle-particle connected correlations are given by

(t) = «, (t) —p~(t) p (')
«,-(t) = (y ln~ n e "'

I ~p)

p (t) =(@~n, e '~p ), (13)

where «(t) is the joint probability distribution to ob-
serve simultaneously a pair of particles at locations l
and m (i.e., two-point correlations), whereas pz (t) is the

average density of site j. Here, nz ——o. o = C. C~
denotes the occupation number operator which after in-
verting Eqs. (8) and (10), in the ( representation can be
rewritten as

n~ = — ) e' ~" l ~ (cos OI, ) („+ —(sin Og) ( g

k, A. "qQ

x (cos OI,i) (g~ —(sin OA,.~) (+&, (14)

Prom Eq. (8) it is clear that g && rlt rlq

o+ 0 = ~, i.e. , the total number
of original particles. Hence the vacuum state of the g
fermions coincides with the initially empty lattice config-
uration. This simple but useful remark along with the
inversion of Eq. (10) allows one to construct the initial
condition

~
yp ) as a coherent pair state of the form

) W ) W )
qzCP q EP k j=l

e

x(tanOq, ) (+ (+

Recalling that the occupation number operators (14)
involve at most tmo ( excitations, it follows from Eq. (13)
that to determine the evolution of the density and the
two-point correlations we are left with the calculation of

p, (t) = (@ ~n, 1+ ) e "'(tanO-, )(+(+, ~@),

imp) = 1 + (tanO ) (+(+ i@).
q&P

Here, the set P denotes the positive values of q E Q,
whereas (@ ~ pp) = 1, as required by conservation of
probability [Eq. (2)]. It can be readily verified that
gq ~

I'pp )—:0 Vq E Q . Hence, after introducing the pa-
rameter pq

= 2 Re Aq, the expansion of e ~
~
yp ) yields
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qEP

) e ~'+~~' l (tan 0~) (tan 8~i )
1

q, q'pP

2 e&"
g„(t) = — sin q sin(nq) dq,

7l p Pq

e
—fq

'R„(t) = — (1+ cos q) sin(nq) dq, (25)
p pq sing

(24)

(n = 0, 1, 2, ... ) along with the dimensionless parameter

x~+~ r ~+ (18) ~E —v e

~e' + +e
(26)

Similarly, many particle correlation functions can be
treated by this methodology, though their actual calcu-
lation becomes increasingly diKcult. However, there is
a particular subcase, namely, e = e' = 6 = h', which is
amenable to an exact treatment. This will be discussed
in Sec. IV.

Note that Eq. (16) entails immediate consequences for
instantaneous (equal time) correlation functions. Since
the drift velocity oc h —h' enters neither the form (14)
nor (15), it is clear that these functions are independent
of the bias. Actually, for periodic boundary conditions
and translationally invariant initial states ~go) this ob-
servation is of general character [21].

for N ~ oo we find that G~ (t) = G (t), (n = ~l
—m~ ),

can be expressed as the sum of five main translationally
invariant terms (see the Appendix), namely,

G„(t) = T, + T2(t) + Ts(n, t) + T4(n, t)
+T5(n, t), n & 1, (27)

Ti ——p, , T2(t) = —p, e&o(t), (28)

where the above contributions are given by the following
set of equations:

A. Exponential decay and subdominant power laws

Using the anticommutative algebra associated with the
( operators the evaluation of (17) is now straightforward.
From Eq. (14) it follows that

(@ ~
n~ = —(vP

~ ) sin 0I, — ) e' " " ' (sinai, )
kg@ k, k'gQ

(29)

Ts(n, t) =
2 (] + p2) pTL 1—

2b(1 —P)
(1+&) &-(t)

+ (1 —P) R„(t) —p. ego(t) .

T, (n, t) = e' X,'(t) —W„'(t) —g„(t) R„(t), (30)

x(cos gi ) (

Hence the evolution of the macroscopic density p~ (t) =
p(t) is then given by

p(t) = —) (sin 0~) (1 —e ~&') .
qFQ

Taking into account the angles 0q of the Bogoliubov
transformation (11), in the limit % ~ oo we get

p(t) = p. —— (1 + cosq) dq,
p Pq

(21)

where the steady state coverage p, reduces to

26 1 1
p, = — —(1+cosq) dq =

p Pq 1+ QE /e
(22)

2 eX (t) = — (1 + cos q) cos(nq) dq,
7l p Pq

Although the calculation of the two-point correlation
functions (18) is a simple matter, in fact it becomes
rather lengthy. Here we quote the Gnal results, relegating
the calculation details to the Appendix. After introduc-
ing the (well defined) integrals

e—«~ ~
—l/2

C„(t) oc ( e "8„i
—4e' t g

—3/2, e

0(e «,
e=e QO,
0&a

As was stated above, the density and pair correlation
functions are independent of the drift velocity introduced
by the anisotropic hopping.

We have conducted Monte Carlo simulations to con-
Brm the validity of the theoretical expectations given by
Eqs. (21) and (27). The siinulation procedure goes as fol-

lows. Starting &om an empty chain of N = 10 sites with
periodic boundary conditions, attempts at dimer depo-
sition, dimer evaporation, and single-particle hopping at
random bonds of the lattice take place according to the
microscopic rules described in Sec. II. These mutually
exclusive processes, either successful or not, are repeated
M times after which we set t ~ t + M/N, 1 (M & ¹

Results for the density and connected pair correlation
functions are illustrated in Fig. 2 after averaging the data
over 2 x 10 independent runs for e = 1, e' = 0.5, h = 1,
and 6' = 0.5 The agreement with our theoretical results
is quite good.

Equations (21) and (27) encompass a variety of sub-
dominant power-law prefactors. In analyzing the asymp-
totic regime et )) 1, it turns out that according to the
relative values of e and e' the actual long time behavior
ls
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0.1

0.01

0.001

0.0001

0.2 0.4 0.6 0.8

FIG. 2. Connected correlation functions for e = 1, e'

=0.5, and 6 = h' = 0.5. The solid lines denote our numeri-
cal results obtained after averaging over 2 x 10 independent
histories in a periodic chain of 10 sites. The dotted lines
(slightly observable at the bottom) are the theoretical values
obtained from Eqs. (21) and (27) in the text. The upper curve
(n = 0) corresponds to the macroscopic density decay.

—Z 7l —Z COS g
I'„+(z) = sin(nq) (1 + cos q) dq . (35)

7t o sin g

We should hasten to add that the validity of this pro-
cedure is justified as it is equivalent to taking the limit
e' —+ 0 outside the brackets of Eqs. (17) and (18). Thus
neither the Bogoliubov type transformation (10) nor the
anticommutative algebra associated with the ( operators
breaks down. Identical results would follow by replacing
e' ~ e starting &om an initially full lattice.

In Figs. 4(a) and 4(b) we display respectively our
Monte Carlo simulations for the density (along with den-
sity Huctuations) and connected pair correlation func-
tions. Setting e' = 0, e = 1, and 6 = h,

' = 0.5, we
have averaged our data over 2 x 10 independent samples
starting &om an empty chain of 10 sites. The agreement
with the theoretical results (33) and (34) is remarkable.

For short time scales et (( 1 it turns out that long
range order is negligible, namely, C„(t) oc 0 (t "), n )
2. In contrast, within the scaling regime where n ~ oo,
et + oo with n /et held finite, we obtain

Identical classification of subdominant power-law expo-
nents arises for the macroscopic density relaxation. This
behavior is shown in Figs. 3(a) and 3(b) after integrating
nuinerically Eqs. (23), (24), and (25).

Finally, it is worth remarking here on the constraint
e+ e' = 6+ h, '. It turns out to be the condition for our
model to be equivalent to a generalized single-spin-Hip
one-dimensional Glauber dynamics [16] in a description
in which kinks s~ s~+i (or domain walls) correspond to
particle occupation numbers n~ = (1 —s~ s~+i) [22,13].
However, note that the two-point correlations (27) are
highly nontrivial to determine in such dual language, as
for n ) 1 they require the evaluation of four-spin corre-
lations (s~ sz+i s~+„s~+„+i) in the Glauber model.

0.1

0.01

0.001

(36)

B. The lixait e' —+ 0: NondifFusive power-law
relaxat ion

0.1 10 100

As was mentioned in Sec. II, for pure AD (Ii = h' = 0)
the Goldstone symmetries (6) give rise to a power-law
(diffusive) asymptotic dynamics. In this subsection we
show that the case e' = 0, e = h, + 6' leads to a slow
behavior scenario as well. Due to the initial state of the
empty lattice, the adsorption rate must be kept finite
(e ) 0) since otherwise no dynamics will occur.

After taking the limit e' ~ 0 in Eqs. (21) and (27) the
evolution of the macroscopic density and the connected
pair correlation functions is given by

p;(t) = p(t) = 1 —e
—'"I, (2et),

0.1

0.01

0.001

0.0001

10 100

C„(t) = —e "I„'(2et)
—I+ (2et) [(—1)" + R„(2et)

where Io(z) and I (z) are the modified Bessel functions
of the erst kind [24] and

FIG. 3. Subdominant power-law relaxation of pair correla-
tion functions f(n, t) = C(n, t) exp[4 min(e, e') t] and particle
coverage (n = 0) by integrating numerically Eqs. (23), (24),
and (25) in the text. Results for (a) e = 0.03, e' = 0.4 and
(b) e = 0.4, e' = 0.03.
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Hence, while the macroscopic density relaxation exhibits
the standard diffusive long time tail t ~, the asymp-
totic behavior of particle-particle correlations turns out
to be anomalous (nondiffusive) in the sense that they de-
cay faster, namely, as t [see Fig. 4(b)]. However, notice
that according to Eq. (36) their spreading is still difFusive.
Both features, anomalous decay and diffusive spreading,
are shown in Fig. 5. Numerical simulations for e g h+ h
strongly indicate that this feature is rather robust. Ev-
idence of nondiffusive decay is provided by Fig. 6 where
we show results for e = 0.7, h = 0.6, and 6' = 0.4.

It is interesting to understand how such correlations
build up a self-similar growth pattern along with the
emergence of a diffusive correlation length (. From
Eq. (36) it is imxnediate to show that for large times
and long wavelengths q the nonequilibrium struc-
ture factor S(q, t) satisfies tixne-dependent scaling:

0.1

0.01

0.001

2 2 3
n /t

FIG. 5. Scaling behavior of connected correlation functions
displaying both diffusive spreading and nondiffusive decay for
t = 40 (crosses), 150 (squares), and 10 (solid line).

~«I I I I I If«I I I I I I «II I I I I I «II I1

ngO, (37)

—z /4
with a scaling function X (z) = —'~ and a correla-~8~
tion length ( (t) = (s t)x~2 . This behavior is illustrated
in Fig. 7. In particular, macroscopic density Buctuations

(p (t) ) —(p(t) ) = S(O, t) + p(t) [1 —p(t)] decay diffu-

sively as t ~ . This is corroborated by the Monte Carlo
simulations shown in Fig. 4(a).

0.1
I

IV. INTERPARTICLE DISTRIBUTION
FUNCTIONS

0.01 ~«l I I I II«II I I I II«II I I I I IIIII » rr
0 1 1 10 100

More detailed descriptions of the stochastic dynamics
require one in general to consider the analysis of many
particle correlations. The interparticle distribution func-
tion (IPDF), i.e. , the probability of observing two par-

0.01

0.001
0.001

0.0001

10 100

0.0001

10 100

FIG. 4. (a) Diffusive relaxation of particle coverage. The
inset at the bottom left displays the evolution of density Quc-
tuations. (b) Nondiffusive decay of equal time connected cor-
relation functions for e = 1, e' = 0, and 6 = h' = 0.5. The
averages were taken over 2 x 10 histories starting from an
empty lattice of 10 sites. The numerical data (solid lines)
reproduce entirely the theoretical results given by Eqs. (33)
and (34) in the text (dotted lines slightly visible).

FIG. 6. Numerical evidence of nondiffusive decay for pair
correlation functions in the nonsoluble case e g h+ h'. Our
results were averaged over 2 x 10 independent evolution sam-
ples of an initially empty chain with 10 sites. Solid lines
correspond to the case r = 0.7, e' = 0, h = 0.6, h' = 0.4,
whereas the dotted lines represent the theoretical results for
e = h+ h' = 1. Results for n = 1 and 3 are not shown in
order to improve the clarity of the figure.
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—0.02

—0.04

(normalized) steady states corresponding to each sub-
space can be constructed as

—0.06
I&+) =2' o. (k) + P (k)

~ —0.08
M

103—0.12—
I

0 0.5 1 1.5
q giga

FIC. 7. Time-dependent scaling of nonequilibrium struc-
ture factor S(q, t) for large times and long wave-lengths.

(—1) = +I &+) (»)
Since n = (cr, +P, )/~2 and P = (P, —n, )/~2, these
states represent an equally weighted sum of all reachable
configurations with a given parity in the original particle
or z representation. Starting &om an initially empty
chain it is clear that the IPDF I" (k, t) or probability of
observing two particles located at jo, jk+q, say, separated
by k vacancies on sites jt, ... , jy (j; = jo + i), remains
translationally invaria -t, . i.hus the IPDF can be written
as

ticles separated by a given number of vacancies, is an
important example of such correlations and plays a fun-
damental role in the dynamics of interacting particle sys-
tems [1,25]. Specifically, it has been shown that the IPDF
determines the early time kinetics of reaction-diffusion
models and coagulation systems and achieves a scaling
form at long times [26]. Thus it is also of interest to study
these distribution functions within the context of our AD
systems. The analysis will be limited to the special case
e = e' = h, = h, '. The calculation scheme presented in
Sec. III allows one in principle to obtain many particle
correlations for the less restrictive case e+ e' = 6 + h, ';
however its implementation becomes quite involved as
arbitrary orders of Eq. (16) must be taken into account.
We only consider the initially empty lattice configura-
tion since we shall find that for nonvanishing AD rates
the decay of the IPDF is exponentially fast (as expected),
implying that the effect of the initial conditions is only
relevant for some short characteristic time.

For e = e' = 6 = h' it is convenient to re-
cast the evolution operator (5) in the Ising form H =
—e g - (cr cr +z —1) . Therefore, due to parity con-

servation [H, (—1) ] = 0, (JV = g. n' , n' = cr+ o ).. .

and noting that (—1) n = P, (—1) P = n, the two

Z(k, t) =(@+In; [(1—n, ) n;„„.-"' yo). (39)

Here,
I Po ) = Q. P, (j) denotes the empty lattice config-

uration which in turn is given by

14o) = „q, ). [ ~*(t) (40)
Ql ~PQ jqS'

p (j),

(&~ k = ( ~-(I) ~*(j-~) I~~.) I~i~+i)
xn (jA,+2) . . o. (N) ),

j&~) = (p*(1) . p*(j-~) l~~. ) l~j~+~)

xP (j ) . P (N)), (41)

with
I

cr ) = n (n), p (n), as it is straightforward to
show that

where the sum runs over all possible sets of indices 8, 8'
such that 8 R 8' = (g) and 8 LI 8' = (1, ... , N) . Each
term of Eq. (40) is an eigenstate of H; hence its contri-
bution to (39) is weighted by a factor exp( —2eN~ ~ t),
where Ng g is the number of kinks or antiparallel
nearest-neighbor spins present in each state defined by
8 and 8'. However, the nonvanishing contributions to
E(k, t) are given by those 2"+ configurations of the form

(1 —n,. ) n,„I@+) = 2
—-."-' ~*U) + p*(j)

~ 4 \

2 820 r ~ - ~ )2@+1
h

2 820 ) ~ ~ ~ )2k+1

(42)

where we have used n' cr = —n p = (o —p )/2
Thus, defining the transfer Inatrix

—2et e—2 et
—1 —e2~t

e
—2 6't

e—2 et
(43)

—2et 26t
—2 et—e (44)

and taking into account the effective "fields" acting on
sites jo and jA, +~ with the "border matrices"

associated respectively with configurations (C~) and
(C~ j, the IPDF can finally be computed as
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) (o ~AT" 'At + B T" 'Bt ~0').
I ~) I

~')
(45)

After straightforward algebraic manipulations, we obtain

ination of many body terms by use of a rate relation-
ship. The results obtained with this constraint appear
to be robust, Rom comparisons with Monte Carlo re-
sults for the general case. In this respect, notice that
for e' = 0 (e = 0) and long time regimes the density of

E'(k, t) = sinh(2e t) [ cosh" (e t) sinh(e t)
2

+ slnh (E' t) cosh(E t) I . (46)

0.03

0.025

For small times it can be readily checked that 0.02

2 (e t)' —(2e t) s + O(t ), k = 1
(et) —(k+3) (et) + O(t ), k ) 1,

(47)

whereas in the limit t —+ oo with k e "&( 1 the asymp-
totic behavior turns out to be

Z(k, t) = 2
—("+') 1+ —(k' —3k —2) e-"'1

2

0.015

0.01

0.005

0.025

I I I I I I I

0 0.2 0.4 0.6 0.8 1 1.2 1.4

+ O (
—est) (48) 0.02

so E(k, t) —E(k, oo) scales as 2 ("+ ) k e
Our Monte Carlo results con6rm the dynamic behavior

predicted by Eq. (46) for e = e' = h = h'. This is shown
in Fig. 8(a) which exhibits the average over 2 x 10 inde-
pendent runs starting &om an empty chain of N = 10
sites with periodic boundary conditions. The maximum
observed in the distribution functions seems to apply to
more realistic situations in which the energetic barriers
for desorption are much higher than the corresponding
adsorption potentials, i.e. , ~ &( e. This is indicated in
Fig. 8(b) where we display our numerical simulations for
e = 1, ~' = 0.1, and h = h' = 0.5. However, for low
adsorption probability rates (e (( e') the distribution
functions monotonically approach equilibrium from be-
lour. This is illustrated in Fig. 8(c) for e = 0.1, e = 1,
and h = h. ' = 0.5.

To the best of our knowledge no way of solving ex-
actly the general case (arbitrary e, e', h, h') is presently
known. However, it is likely that the elementary exci-
tations of the evolution operator have a gap so long as

(or e') is kept finite. Therefore in general the IPDF
might be expected to exhibit an exponential asymptotic
regime regardless of the initial conditions.
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0
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I
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I
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0 1 2 3 4 5 6 7 8 9

V. DISCUSSION

In summary, an exact treatment has been given for a
stochastic model containing adsorption, desorption, and
driven diffusion in one dimension. By various spin rota-
tions within the quantum spin description the model can
be mapped into a variety of other models including many
well-known subcases.

The technique uses a Jordan-Wigner transformation
to a fermion system. The solubility depends on the elim-

FIG. 8. Interparticle distribution functions obtained by av-
eraging over 2 x 10 independent histories of an initially empty
lattice of 10 sites. (a) Results for s = e' = h = h' = 1. The
dotted lines (slightly observable at the bottom left) corre-
spond to our theoretical expectations [Eq. (46) in the text j
which follow completely the numerical results (solid lines).
Results for (b) e = 1, e' = 0.1, h = h' = 0.5, and (c)
e = 0.1, e' = 1, h = h' = 0.5. In all cases the asymptotic
values are given by p, (1 —p, )" with p, as in Eq. (22) in the
text.
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holes (particles) is rather small and therefore the role of
many body terms in (5) becomes irrelevant. The solvable
case seems to include all the scenarios seen in the simula-
tions. These scenarios include exponential or power-law
asymptotic time dependence, related to a spectral gap
or to its disappearance when, for example, desorption is
absent (e' = 0). In this gapless case the power-law de-
cay of the pair correlation function has been shown to
be faster (oc t ) than the standard long time tail form
(oc t i~2) seen in the macroscopic density. This is be-
cause while the two quantities share the same difFusive
dynamics (dynamic exponent z = 2) the pair correlation
function involves an anomalous superposition of the long
wavelength modes. A scaling picture of the asymptotic
development of spatial structure has been deduced (for
the gapless case). The techniques developed here can
in principle be used to calculate n-particle correlation
functions for arbitrary n. But this becomes prohibitively
complicated for larger n except in the special case with
equal rates (and therefore symmetric difFusion) in which
the evolution operator is an Ising Hamiltonian. In com-
mon with all the analytic results in this paper, these
predictions have been confirmed and complemented by
Monte Carlo simulations.

The equal time correlation functions calculated in this
paper show no dependence on drift oc (h —h').
equal time functions discussed elsewhere [23] do contain
drift efFects (propagating fronts, etc.). Replacing the pe-
riodic boundary conditions used here by more general
ones (open, possibly with boundary injection processes,
reflecting, etc.) is expected to lead to drift efFects even in
instantaneous correlation functions. This is an interest-
ing extension of the present description which would be
most valuable. For more completeness and for compar-
isons with experimental results, the calculation of higher
order equal time and unequal time correlation functions,
structure factors, and scattering functions would be de-
sirable.

contributions encompassed within Eq. (18). The rather
large number of terms arises &om both the form of
the occupation number operators in the ( representaion
[Eq. (14) ] and the associated anticommutative algebra.
For l g m basically this gives rise to five main contribu-
tions, namely,

Gl m, (t) = Ti + T2 + Ts + T4 + Ts .

Below we address each term in turn. The contribution of
Tz is given by

Ti —— (@ I ) sin 0A,
I g) .

kg@

Thus, from Eq. (20) if follows that Ti ——p, . For ki g —k2
the form of the secoiid term in (Al) can be written as

T2 ————' ) ) ) e' "' "' (sin&A, , ) (cosg~, )
A:, qg r, qg ~ps

x (tan eq) e ~ '
( @ I ( i„(A,, (+ (+

I g ) . (A3)

it follows that ki ——k2 ——q 6 Q. Hence we obtain

T2= ——') (sin 0)e= N'

v&Q

(A5)

The contribution of Ts to (Al) is given by the expansion

(~.-~.)~+ (~.-~.~- j

A,,qg A:4gg qCP

Using that

( 0 I (-a, 6, (,+ (+,
I 4 ) = 4„,4„, —~—a„,~ i.„,,

(A4)
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(t ~ ) "'(O' I(—,(, (+, (.(, t!+, I@)
(A6)

where ki g —k2. Noting that the anticommutative alge-
bra yields

(@ I(—i, 6, („+,6.(,+(+, I0)

AP PEND IX: TWO-POINT CORRELATION
FUNCTIONS

The evaluation of particle-particle correlation func-
tions requires one actually to take into account all the T3 can be rewritten as

(A7)

Ts ——— ) cos[k(l —m)) (cos Hi, ) cos[q(l —m)](sin e~) e

) sin[k(l —m)] (sinai, ) (cos8i, ) sin[q(l —m)] (sin8~) (cos8~) e

»q EQ
(A8)
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where we used Ok
———0

The evaluation of the fourth contribution T4 is straightforward, albeit in fact rather lengthy. It requires the
calculation of

T4 —— ) ... ) ) e' "' "' + "' "' j (singi, , ) (cosgA, ) (singi„) (cosgi„)
1

k1CQ k46Q q, q'CP

~ («ngq) (tangq ) e-' "l'(~ I( ., ~., ~,.~..Cq+&+q&+C+, I@). (A9)

Fo»i p —k2i ks, —k4, k2 p —ks, k4, ks g k4, and q g q', the expansion of ()s, namely, the eight ( fermion product
evaluated between the left and right steady (vacuum) states, is given by

()s = (4„,4„, —~—i„q b —i,„q) (4.,,4.,, —~-~. , b —i. ,)

+ (bA, „q ~ i,„q —~ i.„q —4„q ) (bi,„q b —i.,q
—b —A:„q 4.,q)

+ (~ i.,q ~—i.,q
——4„;4.,q ) (4„q4.,q

—~—i„qb i.,q)—
+ (4„q 4.,; —~ ~„q b —i.,q ) (b —i..., b —i. , —4„,bi...,)
+ (~—i. , 4., q

—bi.„q ~—i.,q ) (b —i„,4.,, —4„q ~—a. ,,)

+ (4, , 4, q
—~ a, q ~ ~, , ) (4, q 4, q

—b-i, , ~—a, q)

After collecting the contribution of these terms we obtain the result that T4 turns out to be

4
T4 —— ) (1 —cos[q(l —m)] cos[q'(I —m)]) (sin gq) (sin gq ) e ~~'+~~'l

q, q' 6P
4 ) sin[@(l —m)] sin[q'(l —m)] (sin gq) (tan gq) (sin gq ) (cos gq ) e ~~&+~~'l

q, q' PP

Finally, the last term of (Al) reads

(A10)

(A11)

) ... ) ) e'~ "' "' + ~"' "'l j (sin gg, ) (cos gi„) (sin gi„) (sin gg, )
k4qg qqP

x (tang ) e ''(vP i( „,(„,( „,(+„(+(+ i@) . (A12)

For ki g —k2, k3 k2 g kQ the product of the six ( operators between brackets can be expanded as

(0 I (—,( .(- .(+, (,+ (+, 14 ) = ~ .. . (b „b„—b- ., ~- „)
—b i.„a.(4„q-b i...q —~ i.„,4.,,)—+ bi.„i.(~—~. , b-a„q —4.,q 4.,q),

(A13)

Therefore the contribution of T5 yields

Ts ——T2 + ) sin[k(l —m)] (singy) (cosgi, ) sin[q(l —m)] (sin gq) (tangq) e
k, q gP

+ ) cos[k(l —m)] (sin gi, ) cos[q(l —m)] (sin gq) e
k, q gP

(A14)

Taking into account the angles Oq of the Bogoliubov
transformation (10) and after introducing the quadra-
tures [24]

1 cos nq 1+cosq 1+ 1+dq=+
vr 0 b —a cosq 2b(1 pP)

(A15)

I

namely,

T6 g[ (kg —k1)L + (k4 —k3)771 j
g2

kgCQ k4 &Q

x (sin gq, ) (cos gi„) (cos gi„) (sin gy, )

&& (0 ~ (—~, (i. (g, (+J„~0). (A17)

1 sin nq sinq 1+
dq =

vr o b —a cosq 2b (A16)
However, using the fact that (vP [( i„(y, (J+, (+&

~ g) =
4, i., 4, i..—~—i„l.~—i.,~. (ki A —k2 ks 8 —k4)
turns out that T6 is simply

with n:—~l
—m~ ) 1 and a, b, P taken as in Eqs. (4)

and (26), we are now able to evaluate the two-point cor-
relation functions (27). In the limit N ~ oo we finally
obtain Eqs. (28)—(31) and therefore G (t) .

For m = l there is another (sixth) term to consider,

T, = Si p. (1 —p.). (A18)

For this situation it can be verified that G (t) reduces
to p (t) = p(t) as it should, where p(t) is given by
Eq. (21).
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