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We use Monte Carlo techniques and analytical methods to study the phase diagram of multicom-
ponent Widom-Rowlinson models on a square lattice: there are M species all with the same fugacity
z and a nearest-neighbor hard-core exclusion between unlike particles. Simulations show that for
M between 2 and 6 there is a direct transition from the gas phase at z ( zq(M) to a demixed
phase consisting mostly of one species at z ) zz(M), while for M & 7 there is an intermediate
"crystal phase" for z lying between z, (M) and zz(M). In this phase, which is driven by entropy,
particles, independent of species, preferentially occupy one of the sublattices, i.e., spatial symmetry
but not particle symmetry is broken. The transition at zz(M) appears to be first order for M ) 5,
putting it in the Potts model universality class. For large M the transition between the crystalline
and demixed phases at zs(M) can be proven to be first order with zs(M) M —2 + 1/M +
while z (M) is argued to behave as A„/M, with A„ the critical value of the fugacity at which the
one-component hard square lattice gas has a transition, and to be always of the Ising type. Explicit
calculations for the Bethe lattice with the coordination number q = 4 give results similar to those for
the square lattice, except that the transition at zs(M) becomes first order at M ) 2. This happens
for all q, consistent with the model being in the Potts universality class.

PACS number(s): 64.60.Cn, 05.50.+q, 02.70.Lq, 75.10.Hk

I. INTRODUCTION

In 1970 Widom and Rowlinson (WR) introduced an in-
geniously simple model for the study of phase transitions
in continuum fluids [1]. It consists of two species of parti-
cles A and B, in which the only interaction is a hard-core
exclusion between particles of unlike species, i.e., the pair
potential v p(r) is infinite if cr g P and r ( B~~ and is
zero otherwise. Widom and Rowlinson showed how this
model can be transformed (by integrating over the coor-
dinates of one species) into a one-component model with
explicit many-body interactions. The A-B symmetry of
the demixing phase transition in the original model, as-
sumed by Widora and Rowlinson to occur in dimensions
v & 2 when the fugacity z~ ——z~ ——z is large, then
yields interesting information about the corresponding
liquid-vapor transition in the transformed model [1].

A rigorous proof of the existence of a demixing tran-
sition in this model was given by Ruelle [2]. Ruelle

'On leave from Institute of Physics, Slovak Academy of Sci-
ences, Bratislava, Slovak Republic.

used a brilliant adaptation of the Peierls argument for
the Ising model on a lattice that exploits the A-B sym-
metry. Further results were obtained in [3]. Ruelle's
proof, which permits also a smaller hard core A~~
BQQ ( (~3/2)A~11 between like particles, was general-
ized by Lebowitz and Lieb [4] to the case where v&&(r) is
large positive but not infinite. An extension of the proof
to nonsymmetric multicomponent models was made by
Bricmont, Kuroda, and Lebowitz using Pirogov-Sinai
theory [5]. We refer the reader to [5] and references
therein for additional results on these WR models, which
are, as far as we know, the only continuum systems with
fixed decaying potentials where one has been able to
prove rigorously the existence of phase transitions.

The lattice version of the multicomponent WR
model —hard-core exclusion between particles of M dif-
ferent species on nearest-neighbor sites of a simple cubic
lattice in v dimensions is much easier to handle rigor-
ously. A proof of the demixing transition and much more,
e.g. , the existence of sharp interfaces between coexisting
phases, in v ) 3, at large fugacity z ) zg(M), can be
obtained using standard Peierls methods; see [6,7]. A
rather surprising result (at least on first sight) was found
by Runnels and Lebowitz [8]. They proved that when
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the number of components M is larger than some mini-
mum Mo then the transition &om the gas phase at small
values of z to the demixed phase at large values of z does
not take place directly. Instead there is, at intermedi-
ate values of z, z & z & zg, an ordered phase in which
one of the sublattices (even or odd) is preferentially oc-
cupied, i.e. , there is a crystalline (antiferromagnetically
ordered) phase in which the average particle density on
the even and odd sublattices p and p is unequal. The
average density of species I = 1, . . . , M, p(I), is the
same on each sublattice and equal to p, (I) = M p, and
p (I) = M ~p . The nature of the symmetry breaking
is thus very different &om that in the demixed phase at
z ) zg, where p, = p = p, but there exists one species,
say I', for which p(I') ) M p. The origin of the spa-
tial symmetry breaking leading to the crystal phase is
purely entropic. For z Axed and M going to infinity it
pays for the system entropywise to occupy just one sub-
lattice without any constraint; there being no interaction
between particles on the same sublattice, each site can
be occupied independently by a particle of any species,
i.e., if we keep one of the sublattices empty then there
are M independent choices at each site of the other sub-
lattice. This more than compensates, at M ) Mo, for
the "loss" of fugacity occasioned by keeping down the
density in the other sublattice. Put in another way, for
M large enough, the typical occupancy pattern on a lat-
tice (ignoring the label I of the particles) should behave
like a one-component lattice gas with nearest-neighbor
hard-core exclusion for which Dobrushin [9] proved the
existence of a crystalline state.

Once this is understood the natural question is, just
how large does Mo have to be to see this ordered phase
for M ) Mo. It was shown in [8] that Mo ( 27, a
ridiculously large upper bound. On the other hand, the
application of Pirogov-Sinai theory as in [10], where a
similar model, in which there is a positive energy U & oo
when neighboring sites are occupied by different species,
is considered, can probably be made to give Mo 25
for our model corresponding to U = oo. Furthermore, a
direct computation on the Bethe lattice with q neighbors
gives Mo ——[q/(q —2)], which would suggest Mo 4 for
the square lattice. The Monte Carlo (MC) simulations
presented here grew out &om a desire to answer this ques-
tion and to get a general picture of the phase diagram of
this system in the M-z plane. This we succeeded in do-
ing, with the large M analytic results smoothly matching
up with the MC small-M results and with the "dilute lat-
tice model" investigated in [10]. The outline of the rest
of the paper is as follows. In Sec. II we investigate the
large-M behavior of the model. Bethe lattice computa-
tions are given in Sec. III and MC simulations in Sec. IV.

II. ASYMPTOTICS OF THE PHASE DIAGRAM

We consider a two-dimensional square lattice 7 . Each
lattice site can be either empty (I = 0) or singly occupied
by a particle of type I = 1, 2, . . . , M. All the components
have the same activity z and there is an infinite repul-
sive interaction between particles of difFerent types on

nearest-neighbor sites. Thus a particle of type I at lat-
tice site i can only have vacancies or particles of type I
on nearest-neighbor lattice sites. The interaction poten-
tial Py g(i, j) between a particle of type I at site i and a
particle of type J at site j is

oo if i and j are nearest neighbors

Pr ~(i j) =
& andI g J I g 0, J g 0

0 otherwise.

It is clear that if we replace oo in (1) by some U P 0,
then our system is equivalent to a dilute Potts model.
In such a system some lattice sites are empty while oth-
ers are occupied, with a weight given by the fugacity z,
by an M-component Potts variable with nearest neigh-
bor interaction between like states equal to —U. The
WR system (1) can thus be considered as the zero tem-
perature limit of such a model with U ) 0. We refer
the reader to [10] for a general discussion of the phase
diagram of such models.

A. The boundary between disordered and crystal
phases

We will argue here that the asymptotics, as M —+ oo,
of the boundary z = z, (M) between disordered and crys-
tal phases is given by the hyperbola Mz = A„, where A„
is the critical fugacity of the one-component lattice gas
with the nearest-neighbor hard-core exclusion. In the
latter model every site of the lattice can be occupied by
a particle with fugacity A ) 0. Hard-core repulsion re-
quires that occupied sites are not nearest neighbors. It is
well known [11] that for this model there exists a critical
fugacity A, 3.7962 such that for A & A„ the model
possesses a unique limit Gibbs state (disordered phase)
while for A ) A„ it has at least two different limit Gibbs
state (crystal phases). In one of the crystal phases the
probability of the even site to be occupied by a particle
is greater than that of the odd site and vice versa for the
other crystal phase.

Consider now a model with M different species in
which we forbid particles of any type to be nearest-
neighbors. Then, for Gxed A = Mz, this system is equiv-
alent to the one-component lattice gas just described.
Hence the multicomponent WR system, where particles
of the same type can occupy neighboring lattice sites is,
in a sense, the one-component system with the hard-core
condition being slightly relaxed. That naturally leads
to a conjecture that for Mz & A„our multicomponent
system is in the disordered phase.

Speaking more precisely, any configuration of the mul-
ticomponent system (1) can be uniquely decomposed on
the connected components of the occupied sites. The
connected component consisting of a single site can be
interpreted as a hard-core particle with the fugacity Mz
as we do not specify the type of the particle. Other con-
nected components consisting of n & 2 sites we call clus-
ters. All the particles in the cluster are of the same type
and the fugacity of the cluster is Mz, as we again do
not specify the type of the particles in the cluster. Note
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that this representation naturally extends the multicom-
ponent model to noninteger values of M.

It is obvious that the fugacity of clusters tends to 0
as z ~ 0, A = Mz fixed, and the &ee energy of the
multicomponent model tends to the &ee energy of the
one-component hard. -core gas with the fugacity A, i.e. ,
the contribution of the clusters becomes negligible in the
limit z -+ 0, with A = Mz fixed. This suggests that in
the (M, z) plane there exists a curve M = M, (z), with
M (z) ~ A„/z as z -+ 0, on which there is the second-
order phase transition between disordered and crystal
phases. The typical configuration of the crystal phase
has one sublattice, say the even one, occupied by par-
ticles except for rare excitation "islands, " where every
"island" either is a cluster or has the structure of the
opposite crystal phase with occupied odd sublattice.

B. The boundary between crystal and demixed
phases

The boundary between crystal and demixed phases ad-
mits a rigorous analysis in the &amework of the Pirogov-
Sinai theory (see [12—14]). Related general results for the
wider class of models including our raulticomponent sys-
tem can be found in [10]. Here we present a more detailed
analysis by means of a direct "elementary" approach.

Given a configuration of the multicomponent system
we say that this configuration at a site of the lattice Z
is (i) in the demixed phase I, if this site and at least one
of its nearest-neighbor sites is occupied by particles of
type I; (ii) in the odd crystal phase, if this site is even
and empty or is odd and occupied by a particle (of any
type) while all four nearest-neighbor sites are empty; (iii)
in the even crystal phase, if this site is odd and empty
or is even and occupied by a particle (of any type) while
all four nearest-neighbor sites are empty. It is not hard
to check that the statistical weight of an arbitrary con-
figuration can be calculated as the product over all unit
bonds of the lattice Z of the following statistical weights
of the bonds: (i) z ~ for the bond joining two sites in the
same demixed phase, (ii) (Mz) ~4 for the bond joining
two sites in the saine crystal phase (necessarily one of the
sites is occupied and the other is empty), (iii) 1 for the
bond joining sites in the different crystal phases (neces-
sarily both sites are empty), and (iv) zi~ for the bond
joining sites in the crystal and dernixed phases (the site in
the crystal phase is necessarily empty). All other bonds
are forbidden, i.e., they have a zero statistical weight.
Without changing the Gibbs distribution we multiply
all statistical weights of the bonds by z / and obtain
renormalized statistical weights 1, (M/z)i~4, z i~2, and
z /, respectively. From that picture it is clear that for
1 & M ( z the configurations with all sites being in the
same demixed phase are the only periodic ground states
(i.e. , the configurations minimizing the specific energy)
of the model (there are M of them). For 0 ( z ( M
the configurations with all sites being in the same crystal
phase are the only periodic ground states of the model
(there are two of them). Finally, on the line M = z all
M + 2 configurations above are the ground states of the

model and there is no other periodic ground state.
Given a configuration we introduce the Peierls contours

as the connected components of the unit bonds of the
dual lattice Z2 = Z +(1/2, 1/2) separating sites of Z not
in the same phase. It is not hard to see that every config-
uration has an equivalent representation in terms of a col-
lection of mutually disjoint Peierls contours. Moreover,
on the line M = z the statistical weight of the configura-
tion is the product of the statistical weights of the con-
tours. In turn, the statistical weight of a contour is the
product of the statistical weights of the bonds of Z dual
to the bonds of the contour. Here dual means rotated by
vr/2 with respect to the center of the bond. This repre-
sentation is customary for the Pirogov-Sinai theory and
allows complete investigation of the diagram of the peri-
odic limit Gibbs states in the region M & max(zo/z, 1)
for a suKciently large absolute constant zo.

Theorem. For M ) max(zo/z, 1) and zo large
enough there exists in the (M, z) plane a curve M =
Mg(z), ~Mg(z) —z~ = O(1), such that on this curve all
M + 2 ground states generate the corresponding limit
Gibbs measures and these limit Gibbs measures are the
only periodic limit Gibbs measures.

For max(zp/z 1) ( M ( Mg(z) every demixed ground
state generates the corresponding limit Gibbs state and
these M limit Gibbs states are the only periodic limit
Gibbs measures.

For M ) max(zo/z, 1, Mg(z)) every crystal ground
state generates the corresponding limit Gibbs state and
these two limit Gibbs states are the only periodic limit
Gibbs measures. (See [12—14] and cf. [10]).

More precise asymptotics Mg(z) = z+2 —z +O(z )
as z + oo can be calculated via an approach suggested
in [15]. Namely, set M~(z) = z + P„oc„z ". Then
one can successively calculate c by equating term by
term the cluster or polymer expansion series written for
the specific free energies f, and fg of the crystal and
demixed phases, respectively. The definition of polymers
and their statistical weights can be found in [16].

It is not hard to see that

1 -2
fg = —lnz —z + —z +O(z )2

)

where (i) —lnz is the specific energy of the demixed
ground state, (ii) z is the statistical weight of the poly-
mer consisting of a single excitation obtained from the
demixed ground state by removing a particle &om a given
lattice site, (iii) z /2 is the statistical weight of the poly-
mer consisting of two copies of the excitation defined in

(ii), and (iv) O(z s) is the contribution of the rest of
polymers. Similarly,

1 1 -1 1
f, = ——ln(Mz) ——(Mz) ——M(zM ) + O(z )

2 2 2

= —lnz ——z —
~

———+1
~

z +O(z ),0 —2 —3

)
where (i) —[ln(Mz)]/2 is the specific energy of the crystal
ground state; (ii) (Mz) is the statistical weight of the
polymer consisting of a single excitation obtained &om
the crystal ground state by removing a particle &om an
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occupied site and the factor 1/2 is due to the fact that
in the crystal ground state only one half of the lattice
points are occupied; (iii) zM is the statistical weight
of the polymer consisting of a single excitation obtained
&om the crystal ground state by placing a particle of
a given type I at a previously nonoccupied lattice site,
such a particle requires the neighboring sites to be in the
same phase I, any of M types of particles can produce
such an excitation which is reflected in the factor M,
and finally, the factor 1/2 is due to the fact that in. the
crystal ground state only one half of the lattice points is
nonoccupied; and (iv) O(z ) is the contribution of the
rest of polymers. Thus equating fg and f one obtains
cp = 2 and cq ———1. Note that every c can be calculated
in the same way, but the amount of calculation grows very
fast with n.

F[p]=) F""[p' p. ]
—(q-1)) F*[p']

(i j) 2

(4)

where the summation over (i, j) is over every pair of near-
est neighbors. The one-site and the two-site Helmholtz
free energies are

M. M

F'[p;] = —ln='+ ) p;(I) lnz,'(I) = ) p;(I) lnp;(I)

densities are (p;(I)) and (p~(I)). In the notation for
densities the superscript is omitted as these densities co-
incide with actual ones on the Bethe lattice, which we

always assume to be specified.
(ii) The Helmholtz free energy of a system expressed

via densities, F[p] = —ln= + P,. I p, (I) lnz, (I), with:-
being the grand partition function, can be calculated as
(see [18])

III. BETHE LATTICE COMPUTATION I=O I=p

We now present an exact calculation of the phase dia-
gram for our multicomponent WR model formulated. on
the Bethe lattice of general coordination number q. The
computation is based on the exact "inverse solution" for
simply connected lattice structures [17,18]. The approach
is a more transparent alternative to the usual recursion
method; it replaces the most stable fixed point criterion
by the general principle of the global minimum of the &ee
energy.

In the Bethe lattice, every vertex i is an articulation
point of multiplicity q. Let us denote by (z;(I),I
0, 1, . . . , M) with the reference z;(0)—:1 the set of fu-
gacities assigned to the corresponding particle states at
site i and by (p, (I)) the generated particle-density field
constrained by

A direct method assumes given fugacities (z, (I)) and
then calculates the densities (p;(I)j and the specific free
energy via the Gibbsian grand canonical ensemble for-
malism. In the inverse method, on the contrary, we cal-
culate the specific free energy and fugacities fz;(I)) as
functions of densities (p;(I) $ considered as the basic vari-
ables. The articulation character of vertices in the Bethe
lattice then permits the topological reduction of the equi-
librium description. In particular, we have the following.

(i) The inverse profile equation, i.e. , the dependence
of the fugacity field (z;(I)) on the specified density field

(p;(I)), takes the local form [17]

Here and later, the superscript (i, j) refers to the model
(1) on an isolated (i.e., with empty boundary conditions)
bond joining two neighboring sites i and j. The parti-
tion function of this two-site model is denoted by "( '~~.

The fugacities are denoted by z,~" (I) and z " (I). The

and

M
F(i&l) [p. p. ]

— ln ~(~)2) + ) p. (I) lnzI~&&~(I)

I=o
M

+.) p,. (I) ln z~I" ~ (I) .

In order to mimic realistically a nonsimply connected
structure of the same coordination q, it is necessary to
avoid the eKect of the large number of boundary sites
of the Cayley tree. This can be done by assuming that,
in the thermodynamic limit, the local properties of inte-
rior vertices (expressed in terms of particle densities) are
equivalent, i.e., by considering only translation-periodic
extremal Gibbs measures on the Cayley tree. Under ho-
mogeneous external conditions z;(I) = z(I) for all i, the
existence of a phase transition can be simply detected
from (3) as a bifurcation point and a "jump" point for
the densities, respectively with the minimum principle of
the free energy determining the right equilibrium.

A. Crystal phase

The crystal regime of our model is characterized by the
supposed symmetry breaking in particle densities on al-
ternating sublattices. Accordingly we set p;(I) = pi for
sites i on the first sublattice and p~ (I) = p2 for sites j on
the second sublattice (I = 1, . . . , M). In the correspond-

ing two-site model we suppose that z,." (0) = z *' (0) =
1, z," (I) = zi, and z." (I) = z2 (I = 1, 2, . . . , M)
since there is no preference for any component at a given
sublattice. With this notation the two-site pair partition
function =~"&~ is

:-~"~ = 1+M(z, + z2) + Mziz2 .

As functions of zq and z2 the one-site particle densities
p~ and p~ are given by
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pi-" = zi(1+ z2),

p2=" = z2(1+ zi)(~»)—
(s-)

(sb)

The critical point exists provided that E & 0, which
imposes the requirement on the number of components
M ) Mp with the minimum value Mp given by

From (7) and {S)we easily get:-("~) and zi 2 as functions
of (pi, p2),

Zg

z2 =

M(pi + p2) —1 + pi —p2 + D /

2(1 —Mpi)

M(p2 + pi) —1+ p2 —pi + D /

2(1 —Mp2)

M(M —1)(pi + p2) —(M —2) + MD'/2

2(1 —Mpi)(1 —Mp2)

(9b)

1 (q —1)~
M (q —2)~

pBethe
cr (is)

It is easy to verify, using (13), that the crystal phase
is thermodynamically dominant (i.e., it has the minimal
specific free energy) with respect to the disordered one
in the interval of activities z & z ( z . It is not hard
to see that for large M

and
where the plus sign of the square root of the discriminant

D = [1 —(M —l)(pi + p2)] + 4pip2(M —1)

is Axed by the condition zq 2 ~ 0 for pz 2 ~ 0. Finally,
using (2) and (3) with homogeneous external conditions
z;(I) = z for all i and I = 1, . . . , M, we find

U Mq —1 (q )

(q —1)' '
B. Demixed phase

z=! !fi

—Mp
)

z=!fl —Mp2) '
!

q
Z] 7

Z2 ~

(12a)

(12b)

Because of translation periodicity the &ee energy per site,
f, can be determined from (4) as

= ——ln =(")— ln [(1 —Mpi)(1 —Mp2)] . (13)g . g —1

2 2

The relations (12) can be considered as the equation
z(pi, p2) = z(p2, pi) (0 ( p» p, ( M '). In the vari-
ables s = (pi+ p2)/2 and t = pi —p2 it can be rewritten as
z(s, t) = z(s, t) and alway—s has a trivial solution (s,0).
There is no other solution if s C [0, s, ) U (sU, M ],

p(1):-"' = z(1)[1+z(1)]
p(2)=-"' = z(2) [1+z(2)l

(21a)

(21b)

The system of equations (3) is closed by considering
z;(I) = z, I = 1, . . . , M, and (2), which leads to the
equations

In the demixed phase regime, the sites are equiva-
lent but one of the components, say I = 1, has greater
density: (p, (1) = p{1), p;(I) = p{2) for all I
2, . . . , M). Assuming z;" (0) = z " (0) = 1 and denot-

ing z(" (1) = z. ' (1) = z(1) and z,. ' (I) = z ' (I) =
z(2), I = 2, . . . , M, for the two-site model we have

=-(* ~) = [i + z(1)]' + (M —i) [1+z(2)]' —(M —i),
(20)

and

Sc =L (1 Ei/2)
2M

(1+E / )2M

4M(q —i)
(M —l)q2 '

(i4a)

(14b)

1 —p(1) —(M —1)p(2)
'

p(1)
[ (1)]' (22 )

1 —p(1) —(M —1)p(2)
'

p(2)
[z(2)] . (22b)

The free energy per site is readily obtained in the form

, , /1 —E'/'l (q —2)/q —E'/'
q 1 + El/2 )I 1 —E1/2

, , /'1+ E'/2b (q —2)/q+ E'/'
(1 Ei/2) 1 + El/2

(i6a)

(16b)

because for these 8, calculated from the equation
Bz(s, 0)/t9t = 0, the derivative Bz(s, t)/Ot has a constant
sign. For s E (s+, s+) one has a nontrivial solution to
z(s, t) = z(s, t) The corre—spo.nding critical fugacities
read

f~ = ——ln=("~~ —(q —1) in[i —p(1) —(M —1)p(2)] .
2

(23)

We solved the nonlinear equations (20)—(22) numeri-

cally. Given M, there is for small z only one solution
corresponding to the disordered phase. As we increase
z, two other solutions appear at some z = zg(M). For
larger values of z even more solutions exist. It appears
that among these nontrivial solutions the solution with
maximal p(l) always has the minimal free energy. We
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call it demixed 1 (dl) solution. Finally, we calculate the
phase diagram for q = 4 (see Fig. 1) by comparing the
&ee energies of disordered, crystal and demixed 1 phases.

The behavior of the solutions is very similar to that
of the zero-Beld Potts model on the Bethe lattice [19,20]
(where the role of fugacity is played by the coupling con-
stant). More precisely, simultaneously with dl another
solution, d2, appears at the point zg(M) [see Fig. 2(a)].
At zg, the &ee energy of dl and d2 phases is greater
than that of the disordered phase and pgz(l) = p&2(1) )
pg;, (1). Increasing z further, these two phases split and
pgq(1) ) pg2(l). At z = zg (or z = z, ), the free en-

ergy of the d1 phase coincides with the one of the disor-
dered (or crystal) phase and the system exhibits a first-
order phase transition, accompanied by a jump in den-
sities pg;, (1) ~ pd~(1). To complete the description, we
mention that at a larger value of z, z = zp, given by

I ~

I
I

I ~ dla~~IR+W ~

I I

1/M —-+

0 g z~ X~

I

d1

fM —2+ ql
z~

g —2
(24)

2I

20

18
~(

16 )

14 a
J12,

M 10 .
)

-1
I6-

4

0
0

rr
rrr

N

Bethe lattice.
r q=4

k

I

2 4 6 8 10

FIG. 1. Phase diagram in the M-z plane for a square lat-
tice (MC) and for a Bethe lattice with coordination number

q = 4. Lines: exact results for the Bethe lattice for the tran-
sition lines from the gas phase to the crystal phase (dashed
line), from the gas to the demixed phase (full line), and from
the crystal to the demixed phase (dotted line). Symbols for
MC: transition points from the gas phase to the crystal phase
(circles), from the gas to the demixed phase (triangles), and
from the crystal to the demixed phase (squares).

we have pg2(l) = pd2(2) = pg;, and the free energies of
the disordered and d2 phases coincide. For z ) zg, one
observes that pgz(1) ( pg2(2), i.e. , one particle compo-
nent is paradoxically suppressed by the others for the
d2 solution, which has in this region a lower &ee en-
ergy than that of the disordered phase but greater than
that of the dl phase. The only exception &om the above
scenario is represented by the M = 2 component WR
model [Fig. 2(b)]. In that case, the dl and d2 phases
are in fact the equivalent realizations of the particle 1
m 2 exchange symmetry of the same demixed phase and
the corresponding demixing phase transition is of second
order.

I et M, (v) denote the "critical" number of components
of the WR model in v dimensions, such that the phase

FIG. 2. Schematic plot of the interplay among the disor-
dered (dis), demixed 1 (dl), and demixed 2 (d2) Bethe so-
lutions in the [z, p(l)] plane for (a) M & 2 and (b) M = 2;
the solution with the lowest, intermediate, and highest free
energy is depicted by the solid, dashed, and dotted lines, re-
spectively.

transition from the disordered to the demixed phase is
second order for M & M and first order for M & M .
For the Bethe lattice, we have M = 2 independently of
the coordination number. This value of M, is exactly the
same as the value of its counterpart defined for the ordi-
nary zero-field M-state Potts model on the Bethe lattice.
The equality M = 2 for the Potts model is supposed to
hold for regular lattices in dimensions v & 4, where the
mean-Beld treatment provides an adequate description
of the critical behavior. We therefore suggest that our
M-component WR model is a dilute version of the M-
state Potts model, preserving the ZM symmetry among
the particle states, which falls into the same universality
class. This conjecture is supported by the MC estimate
M, = 4 for the WR model on the v = 2 square lattice
in accordance with the behavior of the Potts model on
the square lattice [21]. This is discussed in the following
section.

IV. MONTE CARLO SIMULATION

In this section we present results of the Monte Carlo
study of the M-component WR model on a square lattice
of size S = 100 x 100 with periodic boundary conditions.
On an initially empty lattice we deposit particles chosen
at random &om the M components at fugacity z respect-
ing the exclusion given by (1). We sequentially update
the lattice using a checkerboard algorithm resulting in a
good computer vectorization. An update of a lattice site
(iq, i2) occupied by a particle of type I (I = 0 indicating
an empty site) is done as follows. We randomly choose
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a new trial particle of type It„where I&, can have any
integer value between 0 and M with equal probability.
It, ——0 refers to a removal attempt of a particle I g 0
&om the lattice site, which is successful, if a number X
randomly chosen with equal probability between 0 and 1
is smaller than the inverse fugacity 1/z. In this case I
gets the value 0, otherwise it remains unchanged. It, g 0
refers to a deposition attempt of a particle of type Iq,
If I = 0 then it is successful if each of the four-nearest-
neighbor sites is either empty or occupied by a particle
of the same type (It, ) and A ( z. In this case I gets the
value Iq„otherwise it remains unchanged. A direct re-
placement attempt of a particle I g 0 surrounded by four
empty nearest-neighbor sites is always successful. Typi-
cally, in a simulation run after an equilibration of 5 x 10
Monte Carlo steps (MCS) we update the lattice 5 x 10
times (in the cases M = 6 and z = 2.5, 3.0, 3.5, and 4 up
to 5 x 10 times) and the configuration of every tenth step
is taken for the evaluation of the averages. A typical run
with 5 x 10 MCS took about 3 CPU h on a Cray- YMP
computer.

Let m(i}, i2) denote the occupancy of a site,
m(i}, i2) = 0 if the site (i},iz) is empty and m(i}, iz) = 1
otherwise. As observables we took histograms PL, (P,)
of the order parameter P, for the crystal structure and
Pl, (gg) of the order parameter P~ for the demixed phase
in subsystems of size L x L,

subsystem size typically can be chosen larger than the
correlation length (, I )) (, and the order parameter
distribution is to a good approximation a Gaussian cen-
tered around 0, resulting in UL, ~ 0 for L ~ oo. In
the two-phase coexistence region far away &om a critical
point we can again assume L )) ( and the order param-
eter distribution is bimodal resulting in Ul, ~ 2/3 for
L + oo. Near the critical point, however, we have L (( (
and using scaling arguments [23] the cumulant is a func-
tion of L/(, resulting for ( -+ oo in the same value of
U, for all different L. This method efBciently allows the
localization of critical points by analyzing the cumulants
for different values of z on different length scales L. For
low values of z we are in the disordered one phase region,
where Ul. ) UL, for L' ( L. For large enough M we
obtain a crystal phase with UL, & Ul. for I' ( L. Near
a critical point we should expect UL, = Ul, for I' g I.

In Figs. 4—6 we present the results for UL, as a function
of z. For M = 9 we observe in Fig. 4 a cumulant intersec-
tion near z, = 0.85 + 0.05 indicating the phase transition
&om the disordered to the crystal phase. For M = 8
we have an intersection point at z, = 1.1 + 0.05 (see
Fig. 5) and for M = 7 at z, = 1.6 + 0.1 (see Fig. 6). For
M = 20, 15, 14, and 10 we obtain z = 0.24, 0.35, 0.38,

L

) [2m(i}, i2) —1] (—1)*'+" (25)

and

1
maxi NL, (I) —p/M,

4p ~

0
0 20 40 60 80 100

where NL, (I) denotes the number of particles of type I
in a subsystem of size L x L and p is the average overall
density.

In Fig. 3 we show typical con6gurations for M = 9 at
three difFerent values of z. In Fig. 3(a), z = 0.1; in this
case the system is in the gas (or disordered) phase. In
Fig. 1(b), z = 5 and the system is in the crystal phase
where one of the sublattices has a higher density. In
Fig. 3(c), z = 8.5 and the lattice is predominantly occu-
pied by particles of one type (demixed regime).

We erst discuss the phase transition &om the gas to
the crystal phase. For a given M the transition activ-
ity z, is found by finite size scaling techniques [22,23].
In particular, the kth moments of the order parameter
distribution PL, (i/},),

100
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can be evaluated in subsystems of size L x L and &om
them the fourth order cumulant [23] Ug, (c)„-„.

(28)
Ill ~ ,

'I ' .'

0
0

« ~ IJS ««1' ~

80 100

In a one-phase region far away &om a critical point the
FIG. 3. Typical configurations for M = 9 and (a) z = 0.1,

(b) z = 5, and (c) z = 8.5.
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and 0.68 + 0.01, respectively. The transition points are
presented in Fig. 7 together with the asymptotic expres-
sion [24] Mz = 3.7962 (Sec. II) and the results &om the
Bethe lattice computation (Sec. III). We find good agree-
ment of our MC results with those of the asymptotic form
for large values of M and for large z with the results of
the Bethe lattice computation as well.

The case M = 6 is analyzed in Fig. 8. In all cases
studied the order parameter cumulant is decreasing with
increasing system size [see Fig. 8(a)], indicating the pres-
ence of the disordered phase. In Fig. 8(b) we show the
cumulant for a given system size versus z; no cumulant in-
tersection points were found in these cases, but UL, ) UL,

for L' & L even for z values as large as z = 4.4, indicat-
ing that the system with M = 6 components is in the
disordered phase. Our conclusion of the data analysis is
that, based upon the present statistical effort, no sign
of a phase transition &om the gas phase to the crystal
phase was found for M & 6, indicating the nonexistence
of this transition for M & 6. Thus the minimum number
of components required for the existence of the crystal

phase is M = 7; with possibly a noninteger value Mo
between 6 and 7.

The transitions &om the disordered to the crystal
phase were analyzed further by Gnite size scaling tech-
niques. We plotted the scaling functions of the or-
der parameter and the order parameter susceptibility,
&. = I""(I&.l)~ and ~. = L' '" (&.')~ —(l&.l)i
versus the scaling variable t = lz —z, lI~~", where P, p,
and v are the critical exponents of the order parameter,
susceptibility, and correlation length, respectively. On a
double logarithmic plot we obtained data collapses and
the two-dimensional (2D) Ising asymptotic large-t behav-
ior for all cases studied by utilizing the critical exponents
of the 2D Ising universality class (P = 1/8, p = 7/4, and
v = 1); examples are shown in Figs. 9—11. These data, in
conjunction with the cumulant intersection value being
independent of M and close to the accepted value for the
2D Ising class, indicate that, independent of the num-
ber of components M, the transition &om the disordered
to the crystal phase belongs to the 2D Ising universality
class.
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FIG. 9. Scaling functions of (a) the order parameter and
(b) the order parameter susceptibility (b) for M = 20 utiliz-
ing the 2D Ising critical exponents. Lines indicate the asymp-
totic power law behavior with the 2D Ising critical exponents
(t = lz —z. ll, '~ ).

FIG. 10. Scaling functions of (a) the order parameter and

(b) the order parameter susceptibility for M = 15 utilizing
the 2D Ising critical exponents. Lines indicate the asymp-
totic power law behavior with the 2D Ising critical exponents
(t = lz - "IL'")



5994 J. L. LEBOWITZ, A. MAZEL, P. NIELABA, AND L. SAMAJ 52

We now discuss the phase transitions to the demixed
phase. The phase transition was analyzed by a study
of the order parameter distribution Pl, (gg), the den-
sity p(z), and the free energy integration. In Fig. 12
we show the density of the system versus z for difFer-
ent values of M. The density is an increasing function
of z and approaches for large z the asymptotic form

p = z/(1+ z), which describes the behavior of the system
with M = 1. In the demixed phase one particle type is
dominant and so the system properties are close to that
of a one-component system. In general, the density in
the demixed phase exceeds the value 1/2; for M ) 6
we observe a direct first-order transition &om the crystal
to the demixed phase, with a finite jump in the density
at the transition fugacity z~. For large M the density
should jump from p 1/2 to p z~/(1 + z~). In the
simulations we find a hysteresis region around zg going
approximately between these two values when increasing
and decreasing the fugacity. In cases of a small hysteresis
region with extent of less than!z —z~! ( 0.1 the middle

1.0
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0.2

0.0 '

0

~M~2
~M~3
o—o Map~M~5

&M~d
~M~7~M~10

= M~15I, I, I I I ~ I I

2 4 6 8 10 12 14

FIG. 12. Density of the system versus z for diferent num-

ber of components M. Symbols refer to Monte Carlo results
and the connecting lines are for visual help. The full (open)
symbols refer to the MC results obtained by starting with con-
figurations previously obtained for lower (higher) fugacities.
The full line equals p = z/(1+ z).
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(b) the order parameter susceptibility for M = 10 utilizing
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FIG. 13. Free energy p&(z) and ph, (z) from thermodynamic
integration for (a) M = 15 and (b) M = 10. The arrow at
the z axes indicates the transition value found by the phase
stability study, see the text.
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z value of this region was taken as the transition value
zp. In cases of a pronounced hysteresis region we located
the transition fugacity zp by two independent methods.
(i) We integrated the &ee energy from z = 0 to zg and
&om z = oo to zg, where the limiting free energies are
known. For the low fugacity &ee energy we obtain

For the high fugacity free energy we obtain
Z

pg (z) = — dzy p(zy ) /zy —ln( 1 + z) ),
Zf

(30)

where z/ is chosen that large (typically z/ = 50) that
p(z~) = z~/(1 + z~). The intersection value zq, where
p/(zg) = p/, (zg), was one estimate for the value of the
fugacity where the erst-order transition to the demixed
phase takes place; see Fig. 13. (ii) Another independent
estimate for zp was obtained by the procedure of search-

ing for relative stability of one of the two phases during a
simulation starting Rom configurations with both phases
present in parallel slices extending over the length of the
simulation box; see Fig. 13. Both independent methods
gave, within 5% uncertainty, the same numerical values
for zg. The resulting phase transition values of zg are
shown in Fig. 7. We note that with an increasing num-
ber of components, the transition fugacities approach the
exact asymptotic line M = z + 2 —1/z; see Sec. II.

For the cases M & 5 we find a jump in the density
at zg so that we classify these transitions as erst-order
transitions. For M & 4 we do not observe a jump in the
density at zp. In these cases the transition was located by
the cumulant intersection method (see above), where the
order parameter Pg is the order parameter of the demixed
phase and P, has to be replaced by Pg in Eqs. (27) and
(28). A finite size scaling analysis shows that the data for
the order parameter and the susceptibility of the phase
transitions for M & 4 are consistent with the 2D M-
state Potts universality class; see Figs. 14 and 15. For the
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FIG. 14. Scaling function of the order parameter for (a)
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Potts critical exponents. Lines indicate the asymptotic power
law behavior with the 2D M-state Potts critical exponents
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FIG. 15. Scaling function of the order parameter suscepti-
bility for (a) M = 2, (b) M = 3, and (c) M = 4 using the 2D
M-state Potts critical exponents. Lines indicate the asymp-
totic power law behavior with the 2D M-state Potts critical
exponents (t =!z—z, !I /").
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susceptibility and M = 4 we obtain a much better scaling
behavior compared to an analysis assuming the 2D Ising
exponents to be valid; however, we note that the ratios
for P/v and p jv of the Potts classes [21] agree with the
2D Ising class values within a few percent, so that a clear
distinction between these classes based on our numerical
data is diKcult. Recently, the case M = 2 was studied
with Monte Carlo methods [25], where evidence for the
2D Ising universality class was found, in agreement with
our endings.
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