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According to theorems of Shnirelman and followers, in the semiclassical limit the quantum wave
functions of classically ergodic systems tend to the microcanonical density. on the energy shell.
Here we develop a semiclassical theory that relates the rate of approach to the decay of certain
classical Quctuations. For uniformly hyperbolic systems, we find that the variance of the quantum
matrix elements is proportional to the variance of the integral of the associated classical operator
over trajectory segments of length TH and inversely proportional to TH, where T~ = hp is the
Heisenberg time, p being the mean density of states. Since for these systems the classical variance
increases linearly with TIr, the variance of the matrix elements decays like 1/TH. For nonhyperbolic
systems, such as Hamiltonians with a mixed phase space and the stadium billiard, our results predict
a slower decay due to sticking in marginally unstable regions. Numerical computations supporting
these conclusions are presented for the bakers map and the hydrogen atom in a magnetic field.

PACS number(s): 05.45.+b, 03.65.Sq

I. INTRODUCTION

In the semiclassical limit, quantum wave functions (or
their corresponding phase-space counterparts, such as the
associated Wigner functions) are supported by classically
invariant structures [1,2]. In integrable systems they are
concentrated on tori [3,4] and in chaotic systems they
tend to spread over connected components of the chaotic
region [5]. The consequences of this for matrix elements
have been analyzed by Shnirelman [6], Zelditch [7], Colin
de Verdiere [8,9], and others [10,11]. Roughly speaking,
their theorems state that in the semiclassical limit the
matrix elements of smooth operators tend to the micro-
canonical average. Our aim here is to study the rate at
which they do so.

The simplest way of defining the semiclassical limit
is to allow a variable Planck's constant h and to con-
sider a sequence of values h„approaching zero such that
for each n some fixed energy Ep is an eigenvalue of
the Schrodinger equation. Then one has that for any
smooth classical observable A(p, q) with which a reason-
able quantum operator A can be associated, almost all
diagonal matrix elements (n~A~n) approach the classical
microcanonical average

(&).1 = f&pdqb(so —EI(p, q))A(p, q)/ o

as n —+ oo, where 0 is a normalization factor such that
(1)., = 1.

Since this definition of the semiclassical limit may be
unfamiliar, and since it might on first sight appear ar-
tificial in a world in which h is in fact a constant, we

point out two alternatives (see, e.g. , [12]). For the first,
consider Hamiltonians homogeneous in positions and mo-
menta, e.g. , billiards, or systems with a suitable scaling of
parameters, such as hydrogen in a magnetic field. Then
it is possible to absorb Planck's constant into some power
of the energy and so to map the semiclassical limit h ~ 0
into the more familiar one of increasing energy or increas-
ing quantum numbers.

The second alternative applies to general systems with
nonscaling Hamiltonians. One then exploits the fact that
the density of states near any energy Ep will be semiclas-
sically large; i.e. , there are many states in an interval
over which the classical mechanics does not change very
much. Thus it is possible to expand the actions and other
classical quantities to first order around the reference en-

ergy Ep. If the potential is bounded for all energies, the
density of states will increase with increasing Ep so that
one can imagine covering the energy axis with intervals
of fixed size which contain increasing numbers of states,
but in which the classical mechanics is essentially fixed.

Common to all three approaches is the assumption that
eigenstates can be labeled by integers n that number ei-
ther the values of the quantized Planck's constant, or the
scaled energies, or the actual energies, in such a way that
the semiclassical limit corresponds to n —+ oo.

The restriction on operators in the Shnirelman-type
theorems is rather weak; it includes position and mo-
mentum operators, and smooth functions thereof, but it
excludes projection operators since these do not have a
smooth classical limit. More interesting is a restriction
to "almost all" eigenstates. This is quantified in terms
of densities d of subsets (E i, ) of states, defined as the
quotient of the number of states in the set to the total
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number of states,

d = lim —number(n, & n).
n —+oo ~ (2)

P~,Mda = Prob((n~A~n) c [a, a+ da]

and 6'&n& %+M),
as N and M both tend to inanity. Because of the scaling
of the density of states in d-dimensional systems, one can
take M K~ with P & (d —1)/d, so that the average
includes an increasing number of states while the under-
lying classical mechanics is asymptotically fixed. The
Shnirelman-type theorems then suggest that this distri-
bution becomes narrower as one approaches the semiclas-
sical limit N —+ oo.

Here we derive and test numerically a semiclassical ex-
pression for the variance of the matrix element distribu-
tion, relating it to the variance and a correlation function
characterizing certain classical fluctuations. Specifically,
we focus our attention on the variance of matrix elements
for states that are localized in one chaotic component.
Using recent results &om periodic orbit theory [19,12], we
improve on the arguments of Feingold and Peres [16] and
Prosen [18],who previously related fluctuations of matrix
elements to classical phase-space averages. Our analysis
is somewhat similar to that of Wilkinson [20,21], but we
are able to relax substantially his assumptions concern-
ing the energy smoothing. We go beyond these studies
by estimating the fluctuations of matrix elements around
their classical averages and relating them directly to fIuc-
tuations of corresponding classical quantities. We ignore
states localized in regular regions, but will consider the
efFects of classical sticking near islands in the chaotic sea.
In particular, difFerences in the variances of matrix ele-
ments in hyperbolic and nonhyperbolic systems will be
investigated.

The outline of the paper is as follows. In the next sec-
tion we discuss the semiclassical derivation of the vari-
ance of matrix element distributions &om several difFer-
ent points of view. Specifically, we describe an applica-
tion of periodic orbit theory for hyperbolic systems, a
reformulation of this approach in terms of a correlation
function which is also applicable to nonhyperbolic sys-

The Shnirelman-type theorems [6—10] hold for subsets of
density one. Thus they still leave room for solne indi-
vidual wave functions to show relatively large deviations
&om the average and, perhaps, to be scarred in the neigh-
borhood of short periodic orbits [13—15].

Several studies have verified that quantum matrix ele-
ments, both diagonal and ofF-diagonal, do indeed fluctu-
ate around the classical limit [16—18]. Our concern here
is with the variance of these fluctuations as the semiclas-
sical limit is approached. Obviously when h vanishes the
fluctuations must also vanish if Shnirelman's result is to
be recovered. However, this decay may be rather slow,
as mentioned by Colin de Verdiere [9], and it may allow
for large deviations due to scars in wave functions near
periodic orbits [13,14]. In order to quantify these devia-
tions we propose to look at the distribution of diagonal
matrix elements,

II. SEMICLASSICAL MATRIX ELEMENT
FLU CTU ATIONS

In this section we relate fluctuations of diagonal matrix
elements to properties of the periodic orbits and a cor-
relation function of the corresponding classical motion.
Our approach is explained in Sec. II A, and for hyperbolic
systems the semiclassical calculations are carried out in
Sec. IIB using periodic orbit theory. Unfortunately, for
nonhyperbolic systems we cannot use the resulting ex-
pression as it stands because of a lack of understanding
of the role of the periodic orbits in this case. Instead,
we derive a connection to a classical correlation function
as an intermediate step within the original &amework
and then relate the fluctuations to an integral over this
(Sec. II C). We argue that the result can also be used in
nonhyperbolic systems, as well as for chaotic components
of mixed systems. The semiclassical matrix element dis-
tribution then depends on the decay of correlations in
the classical system.

A. Variances of matrix elements

On the quantum-mechanical side, we consider the ma-
trix element weighted density of states,

(4)

Without loss of generality, we assume that the operator
A has been shifted by its average, so that the matrix
elements fluctuate around zero. Using a trick of Berry
[22] the variance of the matrix elements, i.e. , the average
of their square, may be obtained from the square of the
above density.

To avoid problems with the product of b functions, we
use smooth approximations, e.g. , Gaussians of width e,

—E /2e

Crucially, the product of two Gaussians is again b-
function like, viz. ,

8, (E) = b,(~( 2)E. (6)

The weighted density of states with these smoothed b

functions will be denoted by p, (E). Berry's approach
then involves the square of p~, multiplied by a factor
proportional to the Gaussian smoothing parameter e,

tems, and a derivation based on statistical properties of
the classical motion. Some relations to random matrix
theory and randomness assumptions for wave functions
are discussed in Sec III. In Sec. IV, we present numerical
data for the baker's map and for hydrogen in a mag-
netic field. We conclude in Sec. V with a summary, some
remarks on the stadium billiard. , and additional general
comments.
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K~ l(E) = 2i/vre[p& l(E)]

).) (~IAI~)(~IAI~)2&«.
n fn

xh, (E —E„)/i, (E —E ) .

(7) case the weights are given by

i Sp (Eo)/h —ivp~/2

ldet (I —Mp) I

i/2 '

(8)

If we take e smaller than the mean spacing between levels
then, assuming there are no degeneracies, only the terms
with E„=E contribute. Hence, using (6)

K~ l(E) = ) ((nlAln)) h, /~2(E —E„)

where Mz is the (monodromy) matrix of the linearization
perpendicular to the orbit and vp is the Maslov index.

As before, we assume that the average of the operator
vanishes so that the first term in (11) drops out. We
then have to evaluate the square of the convolution of
the semiclassical expression with the Gaussian smoothing

(5). This gives as a semiclassical approximation to K,
&om which we can estimate the variance by averaging
over some energy interval LE. Since the total number of
states in such a range is pLE, p being the mean density
of states (unweighted), the variance cr2 of the quantum
matrix element distribution is given by

p/ pl t

i(T~I Tp» )Z/h —eTp(—/2h eT, g /—2h (14)

E+AE
„'(E) = K,l"l(E)

pLE (10)

where the sum extends over all pairs of orbits and their
negative traversals.

We now claim that the main contributions to this sum
come &om the diagonal terms for which p' = p", so that

In the following subsections, we will derive various semi-
classical and classical expressions for this fm. uctuation
measure.

It should be noted that the choice of other functional
forms for the smoothing of the h functions changes some
of the constants in the intermediate steps, but ultimately
affects neither the final result for K, (E), nor the fact
that this has a unique, well-defined limit as e ~ 0. A
Gaussian smoothing has the advantage of being well lo-
calized in both the energy and time domains, so that
there is little overlap between off-diagonal contributions
to expressions like (8).

B. Hyperbolic systems

We begin with the semiclassical approximation for
p~+l(E) derived in [24],

p~ l (E) = ) (nlAln) h(E —E„)
n

A(p, q)b(E —II(p, q))

) A i' E/h
2vrh

where p labels periodic orbits, of which the sum extends
over positive and negative traversals, D denotes the num-
ber of degrees of &eedom,

P

A„= A(p(t), q(t)) dt (12)

is the integral of the observable along the pth orbit, and
Tp and top are the orbit's period and weight. As explained
in the Introduction, we shall focus our attention on states
in the neighborhood of E'0 and hence have expanded the
orbit actions around this reference energy using S„(E')=
Sz(EO) + T„(EO)(E' —Ee), with E = E' —Ee, in which

K'"'(E) —~,„,).IA. I'1~.1" ' "'"
p

(15)

1
c

TH'

1
2mhp

This approximation is naturally expected to be better

where the p's label individual orbits without negative
traversals. If the system has time-reversal symmetry,
then orbits come in pairs with the same phase and weight,
giving rise to a symmetry factor g = 2. In systems with-
out time-reversal symmetry, e.g. , generic systems in a
magnetic field, there is no such pairing and g = 1.

There are two ways to justify the neglect of the off-
diagonal contributions. One source of cancellations re-
sults &om the variation in the signs of the Ap's, which
must be present since the average (A), ~

= 0. Assuming
that the Ap's are random, uncorrelated, and also have a
vanishing mean one can justify (15) for any e up to the
limit set by the requirement that the Gaussians in (8)
do not overlap, i.e. , for e ( I/p (see Sec. IID). It will
be shown below that the diagonal approximation results
in a well-defined, e-independent value for the variance,
despite this arbitrariness.

Another argument, which we will take advantage of
in the nonhyperbolic case, appeals to Berry's analysis of
spectral statistics [22]. If A = 1, then A„= Tz and
(14) is directly related to the semiclassical expression for
the form factor of the density of states. Classical and
semiclassical sum rules as well as numerical observations
[25] suggest that this form factor increases with increas-
ing t for t & TH and is constant for t )) TJI, where
T~ = 2irhp is the Heisenberg time. As shown in [22], the
range t « TH is well described by the diagonal contri-
butions to (14). Since similar behavior is also observed
for inatrix-element-weighted form factors [23], this im-
plies that we can use the diagonal approximation up to
times of the order TJI, and so suggests a critical size for
~ of
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) Pp(T)dT = AT,

since the periodic orbits approximate the invariant mea-
sure. The density of orbits increases like e"' /T, hq being
the topological entropy, so that the weights [m„~2 have
to decrease on average like e "' . The integrals Az for
orbits in this interval will fluctuate around zero. Assum-
ing that correlations along the orbits decay sufBciently
rapidly, as in hyperbolic systems, the contributions to
the integration of the observable along the orbit will fluc-
tuate randomly between positive and negative values, so
that the distribution of Az s for orbits with periods near
T will be Gaussian with a variance that increases linearly
with T,

P~(a)da = Prob {A& E [a, a+ da], T& near T)
1

e 2~& dG.
i/2~o T (2o)

Combining the sum rule (19) with the variance iinplied
by (20) gives

T(Tp &T+AT
/Ap/ /iU„/ = o.T AT (21)

so that upon replacing the sum over orbits in the diagonal
approxiination (15) by an integral, we find

for the Gaussian unitary ensemble (GUE) than for the
Gaussian orthogonal ensemble (GOE).

In the First argument, e limits the periods of contribut-
ing orbits to Tz ( 5/e, whereas in the second some e, is
suggested, which guarantees that the interferences be-
tween off-diagonal contributions are killed. In hyper-
bolic systems the choice of e is not critical, but in non-
hyperbolic systems with slowly decaying correlations e
determines a cutoff in the sum (15) which does affect
the final expression. In such cases we will Bx its value
to be that given by (16), so that the sum is efFectively
truncated at the Heisenberg time TH. Clearly, only the
order of magnitude of e is suggested by the above argu-
ments, not the precise value, implying some variability in
the semiclassical estimate for the matrix elements. One
could improve on this if the correlations between actions
and averages A„along periodic orbits were understood
[25,26].

To evaluate (15) we have to appeal to some classical
results [27—30]. From an analysis of the classical evolu-
tion operator one finds that the probability of returning
to an infinitesimal tube around a periodic orbit p after a
time T is given by

Tp

idet (M„—1) i

= ~(T. —T) T. I~.l'

When summed over all orbits with periods T„E [T, T +
AT] for sufFiciently large T, this satisfies

Z~"l(Z) = g
'~

2+262

6

—E2 T2 A/2
(22)

where g is again the symmetry factor. With the choice
(16) for e, the integral is effectively truncated at the
Heisenberg time. However, because of the distribution
(20), the final result is actually independent of e, just
as the quantum expression itself is. The semiclassical
estimate of the variance of the matrix elements follows
from this after averaging over some energy interval, as
explained before (10). The result, which is the main one
of this section, is that

= gRisc (24)

This shows Erst of all that the variance decays as the
inverse of the Heisenberg time, and secondly, since o. is
determined by the classical trajectories, that classical and
quantum fluctuations are r'elated.

An alternative way of writing this relation is to con-
sider not the distribution of the integral of the observable
along the orbits, the A„'s, but the distribution of the av-
erages az ——A&/Tz. This is again a Gaussian, but now
with a variance o(T) = n/. T. The implication is that
up to a symmetry related factor the widths of the quan-
tum matrix element distribution and the distribution of
classical averages &om trajectory segments of length TH
are the same. And since the latter decays like 1/TII, the
quantum matrix elements narrow around the classical av-
erage at the same rate.

C. Correlation functions and nonhyperbolic systems

The situation is more complicated if a system is not
nicely hyperbolic but rather has a mixed phase space
or marginally stable orbits. Both around islands (due
to trapping in the nested cantorus structure) and near
marginally stable orbits (because of the slow escape) one
finds increased staying times, resulting in more slowly de-
caying correlations and possible non-Gaussian distribu-
tions [31,32] with more slowly decaying variances. Fur-
thermore, in the case of marginally stable orbits, the
semiclassical weights diverge and the Gutzwiller trace
formula used above has to be improved [33—35]. To inves-
tigate the behavior of the connected chaotic component
in such a system it will be useful to obtain an expression
for the variance of matrix elements that does not depend
explicitly on the weights of periodic orbits in any non-
hyperbolic regions. We now derive such an expression in
terms of a classical autocorrelation function.

We begin by relating A„ to a correlation function along
periodic orbits. Abbreviating the phase-space argument
of the classical observable A(p(t), g(t)) by z(t), with an
index indicating the periodic orbit, we have that
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A„=
Tp

dt's dt A(z„(t ))A(z„(t ))
integral over the correlation function tends to a constant,

d7. A(zp(r'+ ~/2))A(zp(~' —~/2))
g = lim d~C(7. ) = 2 d~C(~),

Taboo

0
(31)

d7. Cp(~), (25)
and so in the limit e -+ 0, in which f, ~ 1, we arrive at
the estimate

where periodicity of the integrand has been exploited and

P

Cp(7 ) = — d7 A(zp(T + 'r/2))A(zp(7 —7 /2))
Tp 0

(26)

T(Tp &T+aT

T/2

I
Apl'I~pl' =

—T/2

T&Tp (T+AT
cp(~) Tpl~pl'

T/2
d~ C(7.) AT,

—T/2
(27)

where

(28)

is the average correlation function as determined from
nonperiodic ergodic trajectories or, equivalently, by av-
eraging over the invariant measure.

The semiclassical expression (15) for the variance may
thus be written as

is the autocorrelation function along the periodic orbit.
When substituted in the orbit sum (15) one can again
use the fact that the weighted periodic orbits approxi-
mate the invariant density so that the average of Cp(w)
over all orbits becomes the classical correlation function
(for more details and a quantitative comparison in the
hyperbolic case, see [36]). Thus we can write, in analogy
to (21),

To connect this g [Eq. (31)] with the variance aT of the
Ap's (20), note that for a system with correlations decay-
ing exponentially on a time scale A, one can write

(33)

C(r) - ~ ~. (34)

This results &om the fact that A takes similar values
(different from the vanishing mean) in the region where
the motion is trapped for a long time.

The above ansatz (34) for the asymptotic behavior of
the correlation function is integrable for exponents p )
1, leading to the same scaling for the variance of the
matrix elements as in the hyperbolic case. For p & 1,
the integral diverges and so is dominated by the eAective
cuto8' at the Heisenberg time. Consequently, one has for
the asymptotic behavior of the semiclassical variance

Substitution into (31) thus gives g = a. If the correla-
tions decay more slowly, one expects g & o..

The relation between the variance of the matrix ele-
ment distribution and the classical correlation function
is now also applicable in cases of slowly decaying cor-
relations and nonhyperbolic systems, since the decay of
correlations is directly related to trapping in regions in
which the periodic orbit representation of the invariant
measure becomes suspect. If the long-time behavior is
dominated by regions where the probability to be trapped
for a time 7. decays as 7. "/, then the correlation function
also decays in the same way:

Z,~".l(E) =& '~ dT
T/2

d~ C(~)e '
T/2

for p&1,
cr - ( (lnTH)/T~ for p = 1,

JI for p(1.
(35)

1= g
vrh

d~ C(~)f,(~), (29)

where

f, (~) = 1 —erf(2~a/h) (30)

with erf(x) = ~ fz exp( —z )dz. The precise form of f,
re8ects the fact that we used a Gaussian smoothing; had
we worked instead with Lorentzians, we would have ob-
tained f, (w) = exp( —27'/5), and hence a Laplace trans-
form in (29). The above expression, together with the
choice (16) for e seems to be as far as one can generally
go in nonhyperbolic cases. It relates the quantum Huc-
tuations to an integral of a classical correlation function.

The results of the previous section can be recovered
if the correlations decay sufBciently rapidly. Then the

The decay of correlations has been studied for a vari-
ety of chaotic systems. In particular, for trapping near
elliptic islands embedded in a chaotic sea the correlations
have been found to decay agebraically, with the expo-
nent p in the range p 1.2 —1.5 [37—41]. This decay is
determined by the winding numbers and cantori of the
surrounding islands and thus may be visible only after
exceedingly long times [41,42]. The stadium billiard falls
into the middle category, since there p = 1 [43].

D. A derivation based on classical randomness

For hyperbolic systems, correlations between trajecto-
ries decay sufBciently fast that for long orbits diferent Ap
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can be considered independent random variables, leading
to

T I T II

((Ap~A~»)) = dwz d72 (A(z„~(wz))A(z„~~(T2)))
p p

= (A,') ~. ,' = ~»',. (36)

1 'V 7r (As ) (T) .'r'ps'—= g- dg P e e T /5
A&sc ~ ~2 fP p T (37)

If the correlations decay suKciently rapidly, the distribu-
tion of the A~'s is Gaussian and given by (20), so that
we again arrive at

where (()) is an average over all pairs of periodic orbits of
period T„C [T,T+dT] and (A„) is the variance of the pe-
riodic orbit integrals as calculated &om the distribution
(20). This result should also hold if the trapping is not
too strong, since then the times at which difFerent orbits
enter the trap are uncorrelated. Averaging (14) over pe-
riodic orbits in a small interval of periods in the vicinity
of T, perhaps supplemented by an average over a small
energy interval as well, leads to (15). Importantly, under
these assumptions the diagonal approximation is not lim-
ited to orbits of period shorter than the Heisenberg time.
[It is worth pointing out that the difference between (14)
and the corresponding expression for the spectral form
factor is that the periodic orbit contributions are in this
case proportional to A„, and the additional randomiza-
tion thus introduced is enough to kill the o8'-diagonal
terms for all suKciently large T.] The calculation lead-
ing f'rom (15) to (24) can then be repeated without the
restriction on the periods of the orbits, resulting in the
semiclassical matrix element variance

OO

dtC(t) .
+H p

(40)

Therefore, Eqs. (39) and (40) agree with Eqs. (32) and
(24), which were obtained directly &om periodic orbit
theory under the assumption that the classical correla-
tions decay sufFiciently rapidly.

B. Random wave function theory

This theory assumes that eigenstates of chaotic sys-
tems are Gaussian random functions [47,48]. In partic-
ular, if we concentrate on two-dimensional billiards, the
wave function at each point g of the coordinate space
satisfies the normalization,

(@ (&)) ~ =
~

where 0„ is the area of the billiard. It is assumed that the
system is invariant under time reversal and therefore the
wave function can be considered real. Here (),t denotes
a statistical average over an ensemble of similar billiards,
or over a small region in space around q. The correlation
function between the wave function evaluated at diferent
points is [47,48]

elements, while g depends on the symmetry of the model
and takes the values 1 and 2 for the GUE and GOE,
respectively. In the semiclassical limit the variance of
the ofF-diagonal matrix elements is related to the classical
correlation function by [16]

=92 (38) 1
(0(qi)4(q2)). ~ =

&
Jo(klqi —q2l)

in agreement with the estimate (32).

III. RESULTS OF THEORIES ASSUMING
RANDOMNESS

where Jp is a Bessel function and k is the wave number.
The statistical average of a diagonal matrix element re-
duces to the microcanonical average of the observable,
namely,

In this section the predictions for the variance of the
diagonal matrix elements in the framework of theories
that assume true randomness will be summarized. These
will be compared with the predictions of periodic orbit
theory derived in Sec. II.

A. Random matrix theory

There is much evidence that many quantum proper-
ties of chaotic systems are consistent with random ma-
trix theory [44], although there is no rigorous proof for
this. It is therefore of interest to relate our predictions to
the corresponding random matrix results. For a typical
observable A, random matrix theory predicts [45,46] that

~& = POA, ~ff ~

where o& ff is the variance of the ofF-diagonal matrix

(HIAI@)).~ = (A) ~ (43)

where we restrict ourselves to observables that depend
only on coordinates. For Gaussian random functions sat-
isfying (41) and (42),

(4'(q~)@'(q2)) ~ = „,[»e(klq~ —q2l) + 1] (45)

leading to the corresponding result for the variance of the
matrix element distribution,

which is set to vanish in the present paper. The variance
1s

((&ll"I@)') t = //&q. &qr(@'(qi)0'(q, )).,
x A(qi)A(q~), (44)
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~~,.= ((@IAI@)') t

dqdq J kq —q Aq Aq

In order to obtain a semiclassical expression, we use
the (short-wavelength) asymptotic form of the Bessel

function Jo(z) —cos(z —m/4) and approximate

cos2(z —vr/4) by its averaged value 2. The result is that

0. 1 6

0.14

0.12

0. 1

0.08

0.06

0.04

N =50
N =100
N = 200
N = 400
N = 800

2 A(q, )A(q, + &q)oz „—— dqqdAq, ~46~

where Aq = q2 —q~. This can also be written as

0.02

0 ~r I 1 1 I I I

—2 —1,5 —0.5 0 0.5 1 1.5 2

A, i

2 1 A(qp)A(qp + Aq)
7rI H 0 ilh. qi

where LH ——T~v is the Heisenberg length, v being the
speed. It clearly scales with the Heisenberg time in ac-
cordance with (24) and (32). Since one can obtain (44)
under the same semiclassical assumptions as enter our
derivation, this result agrees with the previous expres-
sion [O. Agam (unpublished)].

IV. NUMERICAL EXAMPLES

Before turning to our numerical tests, we explain a
useful classical approximation to the sum over periodic
orbits in (15). Since in hyperbolic systems the invari-
ant density in phase space can be approximated by b
functions on the periodic points with weights given by
~to„~ T„, the above expression can, by ergodicity, also be
computed by following a nonperiodic trajectory, which
is then subdivided into segments of length T. This has
been exploited in the numerical calculations below.

FIG. 1. Scaled distributions of classical observables in the
baker's map. The distributions are for n = 50, 100, 200,
400, and 800 iterations of the map as computed from a long
ergodic trajectory. The number of segments used to obtain
the distribution is 16000 for the shortest and 1000 for the
largest iteration number.

o. - (N) = n/K, (48)

n = 1/2 (see Fig. 1).
Quantum eigenstates and eigenvectors were obtained

by direct diagonalization of the unitary propagator. To
improve the statistics of the matrix elements, small
groups of matrices have been collected together. If

100, 200, and 400 denotes the central value, the
included matrices are of size N, N + 2, and N + 4.
When rescaled by ~K, the quantum matrix elements for
cos(2az) also follow a Gaussian distribution, as shown in
Fig. 2. Quantitatively, the variance of their distribution
decreases with N according to

A. Baker's map

As an example of a nicely hyperbolic system we take
the baker's map, with the quantization proposed by Sara-
ceno [49—51]. In the form given, the above formulas do
not strictly apply to maps. Nevertheless, the time evo-
lution is represented by a unitary operator, the traces of
powers of which have a semiclassical periodic orbit ex-
pansion [52—55]. In the case of the baker's map, where
the classical phase space is bounded, the unitary matrix
has dimension N, which corresponds to the inverse of
Planck's constant, and all its properties can be obtained
from traces of the first N powers. Hence, in the semiclas-
sical expression (24), we should allow for all orbits up to
period ¹

Because of a rapid decay of correlations in the baker' s
map, some form of the law of large numbers applies to
averages of observables over several time steps. The vari-
ance of the observable summed over n time steps is given
by (A„)(n) = nn, . Moreover, the distribution function
is, to a good approximation, Gaussian, as in (20). In
particular, for the observable A(p, x) = cos(2n2:) one has

0.45

0.4

0.35

0.3
o

0.25

0.2

0.15

0. 1

N =50
N=100
N =200

0.05

0 —4.

Aq

FIG. 2. Distribution of the matrix elements for the observ-
able A = cos 2vrx in the quantized baker's map. Five sets
of matrix elements of size N, N + 2, and N + 4 have been
superimposed and the central N values are listed. All matrix
elements have been rescaled by ~N and the histograms have
been superimposed. The Gaussian has a width of about 1.8,
close to the estimated value of 6.
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where 6 is about 1.5—1.8, the larger value corresponding
to the largest N.

The relation between the classical and quantum scaling
with N is given by o. = 4o.: one factor of 2 coming from
the fact that the quantum map has an antiunitary sym-
metry and so g = 2, and the second factor of 2 because it
also has a unitary symmetry and the two corresponding
symmetry classes contribute independently. The di8'er-
ence of about 10% can probably be traced back to the
large corrections to the semiclassical approximation in
the baker's map due to diKraction from the discontinuity
[55,56].

and similarly for p', whereby

I/2 I/2

H" =p H/Ep =
2

1 /I2

p"2+ z" + p

(52)

This shows that the classical dynamics depends only on
the rescaled energy H" = e' = p ~ E/Ep. Note that
this quantity is independent of A, . The relation between
the original time t and the dimensionless and rescaled
time t" in this latter system is given by

B. Hydrogen in a magnetic field

—1g//

0
(53)

As a second example we consider a smooth dynamical
system: the hydrogen atom in a strong magnetic Geld

(for reviews, see [57,58]). At the energy to be consid-
ered here, the ergodic component covers a large &action
of phase space, so that no elliptic islands are visible in
a surface of section. The tiny islands present are rarely
visited am.d only inQuence the very long-time behavior.
They will not be noticeable in our calculations where the
Heisenberg time is small and Huctuations of short tra-
jectory segments dominate. Nevertheless, the motion of
orbits moving close to the field axis is approximately sep-
arable and thus correlations involving these orbits may
decay rather weakly.

Both the classical and quantum systems have scaling
properties that ease the calculations, but that may ob-
scure the relation to the previous analysis. We thus pro-
vide some details of the transformations involved. After
separation of the trivial degree of &eedom —a rotation
around the magnetic field axis—the classical Hamilto-
nian for the quadratic Zeeman efFect of a hydrogen atom
in a strong magnetic Geld at zero angular momentum
around the field axis becomes

Upon quantization, Eq. (52) represents a generalized
eigenvalue problem for p / if e is held constant, i.e. ,

1 3 2 1 + —p
II2

gpI)2 + zl)2
(54)

w{z,a, r) = f "~' ~*"~ *e{z—H)
(2' h) '

= p ~~ O(e) (55)

Clearly one may interpret p / as an effective Planck con-
stant and study the semiclassical limit (as pi~s —+ 0) of
matrix elements with the classical mechanics fixed. (It
is worth pointing out that p / approaches zero as the
energy increases up to the ionization limit E = 0 or,
equivalently, as the eigenvalue p

i)'s = geEp/E goes to
infinity). This is obviously an example of the procedure
described in the Introduction, in that one is quantizing
(the efFective) Planck's constant (p )'s) so that the fixed
rescaled energy e is an eigenvalue of (54).

The integrated density of states in this system is given
by

2 2~p+ Jz
2

1 2 A/2
+ P )

4mep gp2 + z2 8m
(40)

with

ll d ll d I/ d) I/

where (z, p) are the coordinates parallel and perpendic-
ular to the field, (p„p~) are the conjugate momenta, q
is the charge of the electron, and B the magnetic Geld.
Rescaling to atomic units introduces some hidden h de-
pendencies. With the Bohr length ap ——4meph /q2m, the
unit of momentum pp

——h/ap, the energy Ep ——h /map,
and the unit for the magnetic field Bp ——mEp/qh, one
finds the rescaled Hamiltonian (all variables denoted by
a prime)

(56)

and thus depends on energy, magnetic field, and Planck's
constant only through the dimensionless combinations p
and e. Prom this expression one can calculate the mean
density of states as a function of energy at fixed magnetic
field and Planck's constant,

/2 + /2

H'=H/E. = '
2

2

+ —p", (50)pa+ z'

ON 1 4&s OA
(57)

where p = B/Bp is the dimensionless magnetic field. The
p dependence on the right-hand side can be eliminated
by the rescaling T~ = 2vrhp(E) = 2vrp

4300 h,

Eo
(58)

This gives the Heisenberg time T~ in original coordi-
nates,

/ 1/3 r/ = 2/3 I/ (51) and thus, by (53),
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~(3 BO
TH —2K

BG'
(59)

in rescaled, dimensionless coordinates.
For reasons of numerical convenience we choose to test

the present theory for A = I/2r, which is smooth enough
to allow for the application of semiclassical approxima-
tions [24]. According to (51), the average of this variable
over the energy shell at fi~ed energy and magnetic field
scales like p ~ . Taking this scaling out, one Gnds a sta-
tionary average for the matrix elements

(60)

The classical average of the Weyl symbol of A is given
by an integral such as that for the density of states and
can be evaluated numerically to be

A, (
——0.259 . (61)

V. SUMMARY AND DISCUSSION

The main result presented here is a connection between
the quantum fluctuations of matrix elements around the

The quantum analysis is based on the calculation of
the 6rst 9750 positive z-parity states for r = —0.1. These
were obtained using the Lanczos algorithm to diagonalize
the strongly banded Hamiltonian in a harmonic oscillator
basis. The scaled matrix elements versus the quantized
values of p i~ are shown in Fig. 3(a). The histogram,
Fig. 3(b), over all the states shows an almost Gaussian
distribution around classical microcanonical average.

Figure 4 compares classical and quantum variances as
a function of T~. The classical calculation is based on
trajectory segments of length TH. The quantum data
are obtained by a Gaussian smoothing of width e = 5
in K, (p ~ ) [cf. Eq. (9)]. The classical variances de-
cay slower than I/T~ (with an exponent of about —1/2),
presumably due to a slower decorrelation of motion par-
allel to the field. Thus Eqs. (34) and (35) have to be
applied and the exponents found are in accord with the
prediction. As far as the constants are concerned, the
agreement is unexpectedly good since in this case the
prefactors actually depend on the choice of the (arbi-
trary) smoothing parameter s.

classical microcanonical average and fluctuations of clas-
sical averages over orbit segments of length of the order
of the Heisenberg time, as given by (24) in the hyper-
bolic case and (29) and (10) in the nonhyperbolic case.
These results also establish the relation (39) between di-
agonal and oK-diagonal matrix elments within periodic
orbit theory, a direct link elusive to the approach of Fein-
gold and Peres [16] and Wilkinson [20]. In the case of
the baker's map there is acceptable agreement between
quantum behavior and the semiclassical predictions, and
in the case of the hydrogen atom in a strong magnetic
6.eld it is fair. The extensions proposed to nonhyperbolic
systems could not be tested in depth here for a lack of a
sufFicient number of eigenstates. The evidence from the
hydrogen example (where the correlations did not decay
very rapidly) suggests that the relation persists. Further
tests should perhaps be based on maps since there one
can probe the semiclassical limit much more deeply than
with smooth systems.

An investigation of nonhyperbolic systems should also
include a discussion of the behavior of the full distribu-
tion of matrix elements and classical short-time averages,
rather than just the variance. The comparison of clas-
sical and quantum variances for the quadratic Zeeman
efFect shows that even in nonideal cases the two are of
the same size. If there are islands of quasi-integrable
motion, the distribution of matrix elements has a wing
dominated by states localized on and near them. It is
known that in such cases the classical distribution devel-
ops algebraic tails [31,32]. Our statistics are not good
enough to say much quantitatively about this relation.
It would be worthwhile to see how far the connection be-
tween the above comments about trapping in and near
to the bouncing ball mode, or in systems with cantori,
and fluctuations in the matrix elements can be carried.
This may also be of interest in mesoscopic systems, since
one might speculate that a nice hyperbolic classical sys-
tem will show Gaussian fluctuations very much as in a
disordered metal. A system with mixed phase space will
show diferent fluctuations and one might ask whether
they are the same as those of a strongly disordered sys-
tem showing localization.

Along similar lines, an investigation of matrix eleinents
between high-lying states of the stadium billiard might be
worthwhile, since there one expects on the classical side
large effects due to the bouncing ball modes [59] and the
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j I
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FIG. 3. Scaled expectation values of
A = 1/2r vs eigenvalue z = p for the—1/3

lowest 9750 eigenstates in the positive-parity
subspace of the quadratic Zeeman eKect at
e = —0.1 (a). The histogram in (b) shows the
normalized distribution of matrix elements.
Note the clustering around the classical av-
erage of 0.259 and the almost Gaussian form.
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FIG. 4. Variance of quantum matrix ele-
ments and averages over classical trajectory
segments vs Heisenberg time Trr/2rr. The
full line for the quantum matrix elements has
been obtained with a Gaussian smoothing of
width e = 5 in Eq. (9). The dashed curve was
calculated from averages over classical trajec-
tory segments of length T. The inset shows
the same data on a log-log scale and reveals a
transition from a T dependence for short
times to the anticipated hyperbolic T law
for larger times.
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slow decay of correlations [43], while the quantum side is
strongly influenced by scars [13,14].

Extensive work, in particular on the kicked rotator
[60,61], has shown that many states are localized and
change the distribution of matrix elements. This effect is
clearly not captured by our result, although it is not obvi-
ous where the derivation has to be modified. Because of
their practical importance, for instance, in low-&equency
ac conductivity, as well as noise-induced diffusion (see
[62,63], and references therein), this question deserves
further attention.

The results presented here can also be used to esti-
mate quantitatively the error committed by a classical
calculation, say for excitations of a molecule [64] or for
conductivity [65]. In both cases the quantum expression
for the correlation function will Huctuate around the ap-
propriate value of the classical correlation function, with
a sigma variation given by the classical statistical varia-
tion of trajectories up to the Heisenberg time.

All of the calculations presented in this paper were car-
ried out within the framework of the diagonal approxi-
mation of the sum (15). This ignores the behavior in
the short-time regime, where individual orbits are impor-
tant. Specifically, our calculations apply to the asymp-
totic regime in which the Heisenberg time TH, the time

scale relevant for the results (32), (35), and (35), is much
larger than the periods of the shortest periodic orbits.
There is, of course, a wide range of energies where the
short orbits may be of interest, as demonstrated by the
existence of scars [13,14]. They also influence thermody-
namic properties at intermediate temperatures [66]. The
exact contribution of these to the fiuctuations of matrix
elements is left for further study.
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