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Phenomenological approach to nonlinear Langevin equations
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In this paper we address the problem of consistently constructing Langevin equations to describe
Quctuations in nonlinear systems. Detailed balance severely restricts the choice of the random
force, but we prove that this property, together with the macroscopic knowledge of the system, is
not enough to determine all the properties of the random force. If the cause of the fiuctuations
is weakly coupled to the Buctuating variable, then the statistical properties of the random force
can be completely specified. For variables odd under time reversal, microscopic reversibility and
weak coupling impose symmetry relations on the variable-dependent Onsager coe%cients. We then
analyze the Quctuations in two cases: Brownian motion in position space and an asymmetric diode,
for which the analysis based in the master equation approach is known. We find that, to the order
of validity of the Langevin equation proposed here, the phenomenological theory is in agreement
with the results predicted by more microscopic models.

PACS number(s): 05.40.+j, 05.70.Ln, 02.50.—r

I. INTRODUCTION

A widely used method to study Quctuations is the so-
called Langevin approach, introduced by Langevin [1] as
a way to study Brownian motion [2,3). In his treatinent,
the interaction force between the Brownian particle and
the bath particles is split into two contributions. The
first one corresponds to the damping due to the &ictional
force exerted by the bath. The second one arises &om the
thermal motion of the bath molecules. The Brownian
particle then experiences a large number of collisions per
unit of time with the bath molecules, which give rise to a
rapidly varying contribution, responsible for the observed
erratic motion of the particle. Then, the equation for
the velocity of a Brownian particle of unit mass can be
written as

u(t) = —(u(t) +E(t) .

The first term of the right-hand side is the &iction force.
This force is a linear function of the variable u, g being
the &iction coefBcient. The second term stands for the
Langevin complementary force or random force, whose
nature is unknown a priori. Beyond Langevin's original
treatment and with the aim of determining u(t), several
assumptions have been made on the nature of the ran-
dom force. The most basic one is that E(t), being an
unpredictable rapidly varying function of time, is taken
as a stochastic process, often assumed to be Gaussian and
white with zero mean [2]. The second moment of E(t) is
determined by means of the Quctuation-dissipation the-
orem, which relates the strength of the random force to
the dissipation, i.e. , the friction coefficient, (. This cru-
cial point ensures that the law of equipartition of energy
is satisfied by the system under the effect of E(t). With
all these assumptions, the statistical properties of the
random variable u(t) can be obtained [2].

where A(X(t)) is the fiux of the variable which can be a
nonlinear function of X(t). In this paper, we will be inter-
ested in the dynamics of the Quctuations of that variable.
The fiuctuating counterpart of X(t) will be denoted by
x(t), the former being obtained from the latter by some
averaging procedure. It has been then proposed that x(t)
satisfies the equation

x(t) = —A(x(t)) + E(t) (1.3)

obtained by replacing X(t) by x(t) in the phenomeno-
logical equation (1.2) and adding a Langevin force, as-
sumed to be Gaussian and white. This approach has
been used for systems in which A(x) is a linear function
of the variable x [4—6]. However, when A(x) is nonlin-
ear, the addition of a random force E(t) to Eq. (1.2),
as a procedure to describe the random process x(t), has
often been questioned. We want to emphasize two main
criticisms [7]:

(i) The Gaussian nature of the random process E(t)
is postulated [2], but a more general character of the
process could in principle be equally plausible.

(ii) Averaging Eq. (1.3) with respect to the realizations
of the E(t) given an initial condition xo, identifying X (t)
with (x(t)) „andcomparing with the phenomenological
equation (1.2), one finds that

(A(x(t))) g A(X(t)) (1.4)

if A(x) is not a linear function of x. It is then argued
that this difference arises &om the fact that the use of
A(x) also in the equation for the fiuctuations (1.3) is

Let us consider here a generic macroscopic variable,
X(t), whose relaxation is phenomenologically described
by the equation

(1 2)
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not justified because A(x) is phenomenological, that is,
it is known except a function of the order of the strength
of the fluctuations. (See also the comments in Ref. [9]
about this point. ) In view of these criticisms, it is often
concluded that the Langevin approach is not valid for
the case of internal (therinal) noise in nonlinear systems
and that a more microscopic description is necessary to
derive the proper equation for the fluctuations [8].

Recently, however, some attention has been paid to
the properties of the Langevin random force in the case
of thermal noise for a physical system bearing a nonlinear
A(x). Let us write A.(x) under the form

dA(x):——P(x) —ln P, (x), (1 5)

where P, (x) is the equilibrium probability density of the
variable z, supposed known, and P(z) is a given function
of x. Equation (1.5) emphasizes the fact that the macro-
scopic Qux is a function of the thermodynamic force

W(x) = lnP, (x)
t9

Ox

such that the Qux vanishes when the thermodynamic
force also vanishes. Near equilibrium, P tends to a con-
stant and A(x) takes the form of a linear function of
the thermodynamic force T, in the spirit of Onsager's
theory of irreversible processes. Thus, P(x) is the corre-
sponding variable-dependent Onsager coefIicient. Mazur
and Bedeaux have proved that the underlying micro-
scopic reversibility, when applied to the Langevin equa-
tion, severely restricts the properties of the Langevin
complementary force, contrary to what is stated in the
first remark. Indeed, if x(t) in Eq. (1.3) is a variable
even or odd under time reversal an-d if E(t) is indepen-
dent of the variable x(t), it is found that [9] (1) E(t) must
be a Gaussian process and (2) P(x) must be a constant.
Note that if P, (x) is not Gaussian, then A(x) is nonlin-
ear even if P is a constant and, however, P(t) still must
be a Gaussian process. Axrthermore, another conclusion
that can be drawn from this result is that if P(x) is not a

constant, E(t) cannot be independent of x(t). This case
will be referred to as genuinely nonlinear.

A simple way to construct a random force depending
on the variable z(t) is to assume that [10,11]

P(x(t), t)—:jdeb(x —x(t)) ( tI),T (1.8)

where I (x, t) is a stationary and white random process,
depending on a parameter x but independent of random
process x(t), which is characterized by its cumulants [3]

often referred to as multiplicative noise. Here, I,(t) is a
stationary white process, independent of x(t) and c(x) is
a given nonvanishing function of x.

In general, when proposing a Langevin equation to
study thermal fluctuations in a given system, one would
wish that the properties of the random force would fol-
low &om the phenomenological knowledge of the system.
It is clear, as claimed in Ref. [3], that if a detailed mi-
croscopic description is available, there are ways to de-
rive the equation for the Quctuations of a given variable
without ambiguity. However, we are interested in the
situations where this information is lacking, although it
will be assumed that there exists an underlying micro-
scopic description in terms of Hamilton or Schrodinger
equations, and that a relation like Eq. (1.2) is known.
The aim of this paper is to use the information at hand
to consistently determine a Langevin equation for x(t)
in the genuinely nonlinear case. To this end and in the
same spirit as in Refs. [9—11],we will use generally valid
properties such as microscopic reversibility to 6x the na-
ture of the random force. I"urthermore, we will discuss
the range of applicability of the theory developed. To
that purpose, we will consider that the equation for the
evolution of z(t) is given again by the phenomenological
law (1.2) plus two additional contributions. The first one
is a variable-dependent random force, E((xt), t), defined
by

(L(x, t)), = 0,
(L(xlt tl)L(z2t t2))t c2(xit x2)b(tl t2)

(L(xi, ti)L(x2, t2) L(x„,t~)), = c„(xi,x2, . . . , x„)b(t~—ti)8(t~ —t2). . .b(t„—t„i) .

(1 9)

(1.10)

(1.11)

Note that while L(x, t) is independent of the process x(t),
the statistical properties of P(x(t), t) will depend on the
evolution equation for x(t).

The second contribution is a function I'(x), standing
for a possible modification of the phenomenological Qux
A(z) due to fluctuations. The proposed Langevin equa-
tion then reads

x(t) = —A(x(t)) + I'(x(t)) + P(x(t), t) . (1.12)

A priori, both I'(x) and the set of functions c,.((x;j)
are undetermined. We will specialize in the simplest,

although very important, case in which the random pro-
cess L(x, t) depends only on one single function c(x), all
the cumulants present in Eqs. (1.9)—(1.11) being related
with c(x). This case will be later identified with the
widely used multiplicative noise [10,11]. The general case
will be analyzed elsewhere. The presence of the unknown
function I'(z) in Eq. (1.12) as well as the treatment to
be developed are the main difFerences with respect to the
analysis given in Refs. [9—ll], permitting a larger degree
of freedom with important consequences.

The paper is organized as follows. In the next sec-
tion we will obtain the master equation for the one-
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dimensional process x(t) described by Eq. (1.12) with
multiplicative noise. In Sec. III we apply detailed bal-
ance to the master equation to show that L(x, t) needs to
be Gaussian, which constitutes an alternative derivation
of the results of Ref. [11].In addition, we will also obtain
a difFerential equation involving c(z) and I'(z), as well as
the symmetries imposed to these functions, reminiscent
of the Onsager symmetry relations. In our context, such
an equation serves to fix neither c(x) nor I'(x) but it is a
mere relationship between them. This suggests that de-
tailed balance alone is not enough to unequivocally deter-
mine the properties of the additional terms in Eq. (1.12).
In Sec. IV, we will analyze Brownian motion in position
space to illustrate the main ideas exposed so far. This
particular example will serve us to illustrate that if the
mechanisms causing the Quctuations are weakly coupled
to the Quctuating variable, then we can unequivocally
determine c(x) and I'(x). This will be called the v)eak
coupliny assumption. In the same section, we also ap-
ply these ideas to Alkemade's diode [12,13], often used
to show the failure of the phenomenological treatment of
the Buctuations. This last example will permit us to an-
alyze the phenomenological theory developed along the
paper to the light of a more microscopic description and,
therefore, determine its range of applicability. Section V
is devoted to the conclusions and to a brief summary of
the ideas sketched in this paper.

(+(*(~) p) = /d*(~(* —*(')))(I(*~)) = 0, (2')

(t) = —~(z(t)) + I'(z) + P(*( (2.5)

are equivalent.
Assuming thus Stratonovich's rule, we introduce the

multiplicative noise as the particular case in which the
set of cumulants in Eqs. (1.9)—(1.11) takes the form

C~ X&) X2) ~ ~ ~ ) X~ A~C X& C X2 C X~ ) (2 6)

which in fact prescribes Ito's rule. However, &om
the mathematical point of view, the Ito-Stratonovich
dilemma is immaterial in our case since I'(x), and the
properties of L(x, t) are a priori unknov)ns that will be
determined later on, on the basis of physical arguments
and in agreement with the chosen interpretation rule.

For simplicity s sake, in the calculation which follows
we will assume Stratonovich's rule. Then, for clarity,
we introduce I'(x), E(x(t), t), L(x, t), and the cuinu-
lants (c„(xi,. . . , x )},as the quantities consistent with
Stratonovich's rule while I'(x), F(x(t), t), L(x, t), and
fc (xi, . . . , x )}will be those consistent with Ito's rule.
Since both describe the same physical situation, we must
have that the equations

x( ) (x( ))+ (z)++(z() )1st to o ' h, (2 )

II. THE MASTER EQUATION

Let us assume that the dynamics of the one-
diinensional variable x(t), even or odd under time re-
versal, is described phenomenologically, that is, in the
absence of fiuctuations, by Eq. (1.2). Note that this
statement constitutes a definition of the phenomenologi-
cal equation. For the Huctuations we have the Langevin
equation given in Eq. (1.12), which we rewrite as

being constants. This particular choice of the ran-
dom process L(x, t) makes it equivalent to c(x)L(t) as in
Eq. (1.7), with L(t) a stationary white random process
whose cumulants are the set of constants (n, }.Note that
the choice done in Eq. (2.6) does not imply a Gaussian
nature of the random process L(x, t) which, in turn, is
going to be Gaussian if o.; = 0 for i & 3.

To obtain the master equation for the probability, we
will essentially follow Ref. [9]. Let us first consider the
density distribution

*(') = —B(x(t)) + +(x(t) t) (2 1) p(x, t)—:8(x —x(t)), (2.7)

with

0B(z)—: P(z) ln P,—(z) —I'(x), (2.2)

where the form (1.5) for A(x) is used. Note that the
"renormalized" fiux B(x) is not completely determined
since it depends on the unknown I'(x). We will define
an acceptable B(x) as such that, after fixing I'(x), it still
retains some dependence on the macroscopically relevant
Onsager coeKcient P(x).

The random force E(x(t), t), as it stands in Eq. (1.8),
cannot be unequivocally interpreted unless a rule to com-
pute averages of the form (g(x(t))L(x, t)), g(x) being
an arbitrary function, is provided [3]. In the literature,
this ambiguity is often referred to as the Ito-Stratonovich
dilemma. For causality reasons, we demand [9,10] that
the state of the system at t is not correlated with the
random force at the same time, that is,

where x(t) is the solution of Eq. (2.4) for a particular
realization of L(x, t) and a given initial condition xp =
x(t = 0). Then, the conditional probability P(x, tlxp) for
the randoin variable x(t) to be at the point x at t, given
that it was at the point xp at t = 0, is related to p(x, t)
by

P(»tlzo) = (~(»t))*. (2 8)

where, again, the averages are over all the realizations
of I (x, t) and the subindex xp indicates that the same
initial condition xo is considered. Clearly,

P(x, t = Olxp) = b(x —xp) .

In Appendix A we show that P(x, tlxp) satisfies

(2.9)

(!9 8 „1i0'
at ' az; n! "(az )
—P(*,tl*p) = B(z)+):(—1)"—~-

I
c(*)

l

le

x P(x, tlxp) (2.10)
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—P(x, t)xo) = dx' [m(x' m x)P(x', t[xp)Bt
—m(x -+ x')P(x, tixp)]

dx' x x' P x', t xp (2.11)

which is the Kramers-Moyal expansion of the master
equation [3]

m(x' -+ x)P, (x') = ur(ex m ex')P, (ex) (3.1)

with e = 1 for even and t = —1 for odd variables under
time reversal. Furthermore, the equilibrium probability
distribution satisfies P, (x) = P, ( ex).

Detailed balance as shown in Eq. (3.1) leads to a sim-
ilar relationship for the operator W(x~x') defined in the
preceding section [Eq. (2.1S)] [3],

Here, zv(x ~ x') stands for the transition probability
&om the state x to x', and the operator W(x~x') is de-
fined as

W(xix')P (z') = W(ez'iex)P. (x),

which, in turn, leads to the relationship

(3.2)

W(z(z')—:x(z' -C z) —h(x —x') f Cz" x(z -C x"j .

(2.12)

Z(x) P (x) @(x) = P (x)l- (ex)@(x) (3.3)

where @(x) is an arbitrary function. The operator Zt(x)
is the adjoint of C,(x) in the usual sense and is given by

Equation (2.10) can be expressed in a more compact form
by introducing the operator Z(x):

~(*)=-, &()+).(-1)"—, -l, () I (2»)8 „1(0
Ox n! "

),Ox

8 1 f Bi"
&'(x) —= -&(x) +).—~-

I
c(*)» n! ( Ox)

Even variables

(3.4)

Then

0
BtP(x, tax—o) = E(x)P(x, tixo) (2.14)

Let us first discuss the case of even variables and thus
replace e by 1 in Eq. (3.3). Making use now of Eqs.
(2.13) and (3.4) in Eq. (3.3) we get

We thus identify

W(xlz') = &(z) ~(x —z') . {2.1s) &(x)+).(—1)"—~-
l

—c(z)
l

P.( )@(x)
0 . „1 (&

' "E~
RU.'thermore, due to the Markovian nature of the pro-

cess under discussion, we can write

P(z, t) = f dx'P(z, t(z't') P(z', t,'),, (2.16)

where P(x, t) is the one-point probability density. Set-
ting x' = xQ and t' = 0 in this last equation, multiplying
both sides of Eq. (2.14) by P(xp, 0) and integrating over
xp one gets the evolution equation for P(x, t),

—P(x, t) = Z(x)P(x, t) . (2.17)

III. DETAILED BALANCE

A consequence of the time reversibility of the micro-
scopic equations of motion in a closed system in equi-
librium is the so-called detailed balance [14]. When the
dynamics of the variable z(t) is described by a master
equation like Eq. (2.11), detailed balance is the condi-
tion imposing that for each pair of states x and x' the
transitions must balance:

= P.(*) &(x)q +):-—,~-
l c(z)q l

@(z) .
c) . 1 (

Bx - n! (») J

(3.s)

We now multiply both sides of this last equation by c(x)
obtaining

('DB(z) +) (
—1) —x„Bc(z))P (z)g(z)n!n=2

= P (x)(—B(z)B+) —,x c(z)B" g(z)

(3.6)

where we have introduced the operator 'V as

t9'L):—c(x) (3.7)

Expressing the left-hand side of Eq. (3.6) in terms of the
independent operators 27, one has

['L'&( )P.(x)l@(*)+&(z)P.(*)D@(x)+) (—1)"—, -). l I

D" (*)P.(*) & @(x)
n=2 ~=Q

='- (-"-" '--'--'-")"-
n=2 ". (3.8)
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Since @(z) is arbitrary, we can new equate the coefficients
of the terms proportional to 17 @(z) in both sides of this
last equation. From the coefficient of 17og(z) = Q(z), we
obtain

[»(z)P, (x)] + ) (—1) —,a„[17c(x)P (x)] = 0 .
n=2

(3.9)

Dividing this equation by c(x) and using Eq. (3.7), one
gets the stationarity condition Z(z)P, (z) = 0 as follows
from Eq. (2.17). Similarly, froin the coeffcient of Z7@(z)
we get

variables for a general nonvanishing c(x). It is, however,
of particular importance the situation in which c(x) ver-
ifies c(x) = c(—x) since we will prove that I (z, t) is
Gaussian if and only if c(x) is an even function of its
argument. [This was implicitly assumed in Eq. (2.7) of
Ref. [11].] Furthermore, we will also deterinine the cor-
responding symmetry properties of B(x) and discuss the
consequences that arise &om these facts.

Let us replace e by —1 in Eq. (3.3) and assume that
c(x) is even. We then get

B(*)+ ):(—1)"—
I (*)

I

P.(*)@(z)
8 . „1 (c)

n! "(Oz ) J,

B(z)P.(z) + ).(—1)"—
,
a.~ &" c(*)P (z)n!n=2

B(z)P—,(z) (3.10)

= P. (x) lB(—x)
0

+ ) (-1)"—a.
I
c(*) I @(z) .„If (9i"

ii! ( (9z )
(3.14)

Finally, the coefficient of 17 @(z) for m & 2 gives

) —,(—1)"a„
I I

17" c(x)P (x)
&n'(-

Using again the operator P and equating the coef-
ficients of the functions 17 @(z) at both sides of Eq.
(3.14), we arrive at

1
,
a c(x)P, (x) form&2. (3.11) [»(z)P.(z)]+).(—1)"—,a- [&"c(z)P.(z)] = o

n=2
This last expression stands for an homogeneous system

of equations for the set of constants a; for i & 2 whose
coeKcients are functions of ~. Note that 0.2 can only
appear in the equation for m = 2 in view of the lower
limit of the sum on the left-hand side of Eq. (3.11).
However, for m = 2 the term containing n2 in the sum is
exactly canceled by the term on the right-hand side, so
that n2 is not determined by this system of equations. In
Appendix B we prove that the only acceptable solution
of Eqs. (3.11) is a; = 0 for i & 3. Therefore, L(x, t) in
Eq. (2.4) must be Gaussian. This important result was
already found in Ref. [11]by using a different procedure.

Thus, Eqs. (3.9) and (3.10) now take, respectively, the
form

(3.15)

for the coefficient of 17 g(z). From the terin proportional
to 17@(z) we get

1
B(z)P,(x) + ) (—1)"—,a„n 'D" c(z)P, (x)

= B( x)P, (x) . (—3.16)

The coefficient of 17™@(z)for m & 2 gives

) —,(—1)"a„
I I

17" c(x)P, (x)

(t9 0
B(x)P,(x) + 2a2 c(x) c(x)P, (x) = 0,

(3.12)
= (—1),a c(x)P (x)

1 form&2. (3.17)

|9
2B(x)P (x) + a2 c(x) c(x)P, (x) = 0,

(!9x

(3.13)

according to the definition of Z7. Notice that Eq. (3.12)
can be obtained. from Eq. (3.13) by difFerentiating with
respect to x. While the former is the stationarity condi-
tion which states that the divergence of the probability
aux must be zero in equilibrium, the latter says that the
probability Hux itself must also vanish.

In Appendix 8 we also prove that the only acceptable
solution of this last equation is n; = 0 for i ) 3, so that
L(x, t) is again a Gaussian process.

The reverse implication is not diKcult to prove. I et
us assume that L(x, t) is a Gaussian process or, what is
the same, that a; = 0 for i & 3. From Eq. (3.3) with
e = —1, making use of Eqs. (2.13) and (3.4) we obtain

Odd variables

The treatment of the case of odd variables cannot be
carried out following the same procedure as done for even

=&.(*) (&(—*)z +-,' ~ l ~(—*)z l @(*),(9, t' 8 ')'
(9z 2 ( (9z )

(3.18)
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where now c(x) is a general nonvanishing function.
Equating the coeFicients of the terms proportional to
Bz@(x)/Oxz, we get

znz c (x) P, (x) = znz c (—x) P, (x) (3.19)

and since c(x) is assumed nonvanishing, then c(x)
c(—x). Therefore, if detailed balance is satisfied and z(t)
is an odd variable under time reversal, L(x, t) is Gaussian
if and only if c(x) is an even function.

Making use of the Gaussian nature of L(z, t), Eqs.
(3.15) and (3.16) become

0
B(z)P,(z) + -', nz c(x) c(z)P, (x) = 0,

(3.21)

Again, Eq. (3.20) has the structure of the divergence
of a Hux equal to zero. Since this Aux itself is zero in
equilibrium, we get

(3.20)
8

[B(x) —B(—x)]P,(x) + nz c(x) c(x)P, (x) = 0 .

I'(x) and c(x) are related by the equation

c (x) —P(x) —lnP, (x) = I'(x) ——c (x), (3.27)
dx dx

and, for odd variables, (iii) the same symmetries as in
Eqs. (3.22)—(3.24) hold.

Equation (3.28), bearing two unknown functions I'(z)
and c(z), indicates that for our I angevin equation, mi-
croscopic reversibility alone cannot unequivocally de-
termine the properties of the random force E(x(t), t)
Rather, it relates the functions r(x) and c(x) with the
thermodynamic force and the phenomenological coefB-
cient P(x). In the next section we will introduce a plau-
sible way to determine these two functions based on phys-
ical grounds.

Equation (3.27), the fact that the random process
L(x, t) must be Gaussian as well as the symmetries of
I'(x), c(x), and P(z) for odd variables, constitute the
main results of this section. Some consequences follow.

First, in view of the fact that L(z, t) must be a Gaus-
sian process, then Eq. (1.12) is equivalent to a Fokker-
Planck equation of the form

B(x) = —B(—x) . (3.22)

r( ) =-r(- ),
&(x) =&(—z) .

(3.23)

(3.24)

Thus, under these conditions Eqs. (3.20) and (3.21) re-
duce to Eqs. (3.12) and (3.13) and, therefore, under these
circumstances the subsequent discussion will be valid for
even as well as for odd variables.

While Eq. (3.22) follows from detailed balance, we will
prove in the next section that if weak coupling is satisfied,
this previous symmetry implies in turn

—P(x, t) =
~
B(x)P(x, t) + c'(x) P(x, t)

~

.
8 0 (- 8
Bt Bx ( 19x

(3.28)

Second, integrating Eq. (3.27) we get

c'(*) =
p + &(z)

e

f ~*'~ (*')(,w*') —f'(*'))
=—&(z) —~(*) (3.29)

The Fokker-Planck equation

Let us consider again Eq. (3.13). In view of Eq. (2.2)
it can be written as

d 1 d o'g—c (x) —P(x) —ln P, (x) = I'(x) ————c (x) .
2 dx 2dx 2

where 0 is an integration constant. In this last expression
we have gathered in A(x) all the terms that explicitly
depend on the equilibrium probability distribution P, (x).
Note that, in general, the properties of the random force
are then dependent on the Onsager coefficient P(x) as
well as on the equilibrium probability distribution.

Inserting this last expression for c (x) into Eq. (3.28),
after some algebra, one gets

(3.25)

Note that the factor nz/2 may be absorbed into cz(z). In
what follows, we will, without loss of generality, choose
the scale of L(x, t) such that az ——2. Then, Eq. (3.25)
turns into

0—P(x, t) =
19c

P(z, t)
19

(3.30)

[P(x) —A(x)] P(x, t) ln P,—(x)
|9 8

[c (x) —P(x)]—lnP, (x) =1(x) ———c (x) . (3.26)2 1 d
dx 2dx

With the aim of discussing the original Langevin Eq.
(1.12) or, equivalently, Eq. (2.5), we have to relate the
previous results with those corresponding to Ito's pre-
scription. It is easy to show [3], although we will not do
it here, that for I'(x), c(x), and L(x, t), one can find that
(i) L(z, t) is also Gaussian with cz(x, x ) = c(z)c(x ), (ii)

Note that this equation depends on the still unknown
function I'(z) in view of Eq. (3.29). Nevertheless, inde-
pendently of that function, the equilibrium probability
distribution P, (z) is always a solution of this equation.

Finally, after remark 2 and due to the fact that I'(x) is
not necessarily zero for a linear A(x), we have no objec-
tive reason at this point to consider the theory for linear
A(z) as substantially difFerent &om that of the genuinely
nonlinear case.



52 PHENOMENOLOGICAL APPROACH TO NONLINEAR LANGEVIN. . . 5887

IV. TWO EXAMPLES

In this section we will analyze two nontrivial examples
for which a more detailed analysis exists. The Grst one
is the difFusion of a Brownian particle with a position-
dependent &iction coefBcient in a general potential Geld.
The second one is a diode with a nonsymmetric nonlinear
characteristic function I = I(V).

sion of Brownian particles with position-dependent &ic-
tion coeKcient (see, for instance, Refs. [3,15]) unless A(x)
identically vanishes.

At this point we will further assume that the proper-
ties of the random force need to be independent of P (x).
(This statement will be referred to as "weak coupling"
&om now on. ) If this is the case, &om Eq. (3.27) we get
that, in general,

Di6usion of Brownian particles

c (x) = p(x),
d

f'(x) = —p(*)dx

(4.6)

(4.7)

V(a)/kT— (4.1)

where JV is the normalization constant and A, is Boltz-
mann's constant. The phenomenological equation in this
case is the relationship between the velocity of the parti-
cle and the force acting on it,

X(t) = — „V(X)—= —A(X), (4 2)

((X) being the &iction coefficient which is assumed to
be position-dependent. Physical examples could be ei-
ther motion in an inhomogeneous medium, or an anal-
ogy with the three-dimensional situation where hydrody-
namic interactions with other particles or with the walls
of the container cause the &iction coefBcient of a Brow-
nian particle to change &om one point to another. From
these two equations we can rewrite A(X) as

A(X) = V(X) = — lnP, (X) (4.3)
1 d kT d

Here, we will study the case in which the variable
x(t) is the position of a Brownian particle in a one-
dimensional system in equilibrium with a reservoir that
keeps constant the temperature T. The particle is sen-
sitive to a potential field V(x). Thus, the equilibrium
distribution function is given by

—P(x, t) = p(x) P(x, t)
~

— lnP. (x)
~

8 0 t' 8
Ot Ox ( Bx )

P(x, t)
8

(4 8)

for the probability distribution.

so that the random force is completely characterized. To
get a more intuitive picture of the physical nature of this
statement, in the case of Brownian motion, we may say
that weak coupling is equivalent to state that the random
force should be a property of the bath system and then it
must be independent of the potential force, —dV(x)/dx,
externally applied to the Brownian particle. Then, if Eq.
(4.7) is satisfied, A(x) identically vanishes and the usual
difFusion equation is recovered.

Note that in the case of odd variables, since we have
-assumed that c(x) is even, Eqs. (4.6) and (4.7) lead to
the syinmetry properties shown in Eqs. (3.23) and (3.24).

We can then conclude that our Langevin equation
(1.12) is completely determined when detailed balance
and weak coupling are imposed, leading us to the Gaus-
sian nature of L(x, t) and to Eqs. (4.6) and (4.7). We
have also found that such a Langevin equation is equiv-
alent to the Fokker-Planck equation

which permits us to identify P(X) = kT/((X). To de-
scribe the Quctuations, let us replace X by x and rewrite
an equation of the form of Eq. (2.1),

x(t) = —
„

lnP. (x) + I'(x(t)) + P(x(t), t),kT d

(4.4)

—P(x, t) =
~

—A(x)
~

P(x, t)
8 8 (kT l & V(*)

P(x, t)
|9

(4.5)

Note that this equation does not coincide with the well-
known Smoluchowski equation that describes the diKu-

where the term between brackets is B(x(t)). If detailed
balance has to be satisGed, the corresponding Fokker-
Planck equation then reads

Diode

We will next consider the problem proposed in
Refs. [12,13], where an extensive analysis on more mi-
croscopic grounds can be found. One is now interested
in the study of charge fluctuations in a condenser of ca-
pacity C in parallel with a vacuum diode which is in
thermal equilibrium with a reservoir at a temperature T.
The diode is constructed by facing two electrodes of met-
als with different work functions (the work functions are
deGned as the work needed to extract an electron &om
the metal) for the electrons, Wi and W2 with Wi ) Wq.
The system is described in the scheme of Fig. l. It is
important to note that we have explicitly included in the
Ggure the contact potential barrier, equal to the difFer-
ence in electrochemical potential per unit charge, when
one electron passes &om one metal to the other. This
contact potential is b, W/e, where EW = Wi —W2 and
e is the electron's elementary charge. For the system of
the figure we have the I(V) characteristics
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:2:
~ P ~ ~

I:::~.
[

~ . ~ ~i .

FIG. 1. Alkemade s diode. Thick lines represent plates and wires of metal 1 while thin lines represent plates and wires of
metal 2. The system enclosed by the frame corresponds to the diode and it is kept at constant temperature T. The figure on
the right-hand side represents a schematic view of the system. Note that the junction of metals 1 and 2 give rise to a potential
barrier.

I(V) = Ie (e ) v —I) (4.9)

The relation between the intensity and the voltage dif-
ference v between the diode plates is obtained by using
in Eq. (4.9) the fact that V = AW/e + v as it follows
&om the 6gure. It then reads

I[ ) I (
vw/ev )ev )) (4.10)

One way to proceed is to connect a condenser of capac-
ity C in parallel with the system of Fig. 1 to study charge
Quctuations in the condenser originated in the diode. In
that case, the equilibrium distribution for the charge in
the condenser follows by standard equilibrium statistical
mechanics. Effectively, the energy of the condenser when
storing a charge q is purely electrostatic and equal to
E = q /2C. Then, the equilibrium distribution is given
by

These results obtained using equilibrium statistical me-
chanics are also found in Ref. [13] from the master equa-
tion proposed to describe the system under discussion.
Moreover, the fact that the condenser in equilibrium
bears a charge qo could be interpreted as a violation of
the second law of thermodynamics. It is clear &om the
fact that the two plates of the condenser are of diferent
metals that, in equilibrium, no work can be obtained by
connecting them with a wire since the equilibrium volt-
age vo = qo/C = —AW/e would exactly be compensated
by a contact voltage barrier due to the difference in elec-
trochemical potentials.

Consequently, in order to study charge Buctuations in
this system, we have to use Eq. (4.12) together with
Eq. (4.10). In view of Fig. 2, note that the charge in
the condenser decreases when I is positive. Thus, the
phenomenological equation for this system is obtained
&om Eq. (4.10) and reads

p (q) ~ e akTC (4.11)
q = —I(v) = Ie (I —e')v —e )lee&) (4.14)

With the equilibrium distribution (4.11) and the phe-
nomenological law (4.9), one can obtain the equation for
the Buctuations following the same procedure as in the
previous example. The system studied in Refs. [12,13] is,
however, slightly different and corresponds to that shown
in Fig. 2. Note that since the system has no contacts,
the plates of the condenser need to be of different metals
This crucial point leads us to the equilibrium distribu-
tion function for the charge in the condenser. One con-
siders again the energy of the condenser when a charge
q is stored. To discharge the condenser, on one hand,
the electrons lose electrostatic energy in traveling &om
metal 2 (where the voltage is 0 according to Fig. 2) to
metal 1 (where the voltage is v = q/C). On the other
hand, there is an additional loss of energy due to the fact
that the chemical potential of the electrons in metal 2
is higher (lower work function) than in metal 1 (higher
work function). The energy stored in the condenser is
thus E = q /2C + AWq/e and the equilibrium distribu-
tion reads

where Eq. (4.13) has been used. Finally, with the aim
of comparing with the results obtained in Ref. [13], we
rewrite Eqs. (4.12) and (4.14) in terms of the dimension-
less variable x—:—e ) (q —qo)/e, where ). = e /kTC is
a small parameter that is related to the amplitude of the
Huctuations. (This parameter is related to the inverse
of the size of the system, in this case the capacity of the
condenser C [3]. Physically, e measures the ratio between
the difference in electrostatic energy between two consec-
utive electron jumps and kT. The jump probability of a
second electron is strongly affected by the jump of the
first one if e 1.) We get

'1 2
~ ~

~ ~ ~ ~

q AW'qp (q) evl e 2kTC KTe (4.12)

The equilibrium charge qo of the condenser is thus

(4.13)

FIG. 2. Alkemade's diode in parallel with a condenser. To
avoid the junction in the wires, the plates of the condenser
are of different metals. We study the charge Buctuations q in
the condenser of capacity C.
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and

P, (x) e (4.i5) Finally, making use of Eqs. (4.15) and (4.17) in Eq. (4.8)
we arrive at

x=j e ' —1 (4.i6) 1 —e ' zPxt + Pzt

p(T) = —(1 —e '
) (4.i7)

where j—:Io e ~2/e. As in the previous example, &om
these two equations we obtain the phenomenological co-
efficient P(x),

(4.18)

To end this section, we compare Eq. (4.18) with the
expansion of the master equation for this model. We thus
expand our Fokker-Planck equation in powers of e ~ . We
obtain

B2

1/2 gt ' g~ 2P(x,—t) = [x —-'e'~ (x —1) + 'e(x-—2x)]P(x, t) + (1 —-'e'~ x+ 'ex )-P(x, t) + O(e ~ ) . (4.19)6 Bx

On the other hand, Eq. (45) of Ref. [13] has the form

Gl2

87 BxP(x, t) = [x —'e'~'-(x' —1) + 'e(x -—3x)]P(x, t) + [1 ——t x + —e(x' —1)]P(x,t)6 4

03 4
(-'ex)P(x, t) + —,', e P(x, t) + O(as~') . (4.2O)

Comparing these last two equations we see that they
agree up to order e ~, while up to first order the equation
for the fluctuations is not even a Fokker-Planck equation
but higher order derivatives have appeared. We then
conclude first that to the order of validity of the Fokker-
Planck equation itself, (e ~ ), the ffuctuations are cor-
rectly described by the phenomenological theory devel-
oped in this paper without ambiguity. Second, up to this
order, the coefFicients of the, Fokker-Planck equation are
functions of the variable x, corresponding to a so-called
nonlinear Fokker-Planck equation. The possibility of cor-
rectly set nonlinear Fokker-Planck equations &om a phe-
nomenological theory is the main result of this paper. As
we have seen, however, the validity of the Fokker-Planck
equation to describe fluctuations in nonlinear systems is
restricted to small fluctuations.

V. CONCLUSIONS

In this paper we have tried to answer the question of
whether it is possible or not to write a Langevin equation
to describe the equilibrium fluctuations of a given macro-
scopic variable X with only a phenomenological knowl-
edge of the system. To this end, we have proposed the
Langevin equation (1.12) containing two terms account-
ing for the existence of fluctuations. In the first place,
we have a function I'(x) which plays the role of a mod-
ification of the phenomenological law at the scale of the
fluctuations. This answers one of the major criticisms
of the use of Langevin equation to describe fluctuations
in nonlinear systems [3]. In the second place, we have
introduced a causal random force as given in Eq. (1.8).
We have then analyzed the particular case in which the
cumulants of L(x, t) depend on a single function c(x),
which is equivalent to a multiplicative noise, which is the

simplest case of variable-dependent random force. Then,
the function c(x) can be interpreted as an amplitude of
the random force that can vary &om point to point. We
have proved that detailed balance leads, first, to the re-
sult that L(x, t) must be a Gaussian process. One im-

portant consequence of this result is that our Langevin
equation (1.12) is equivalent to a Fokker-Planck equa-
tion. Second, we have obtained the relationship between
the functions I'(x) and c(x) given in Eq. (3.27). While
these are general results for even variables, we have seen
that they are only satisfied for odd variables under cer-
tain symmetry conditions. In fact, in this last situation
we have proved that L(x, t) is a Gaussian process if and
only if c(x) is an even function, which also implies that
R(x) must be odd. The symmetry of this "renormalized"

ffux leads in turn to the fact that I'(x) has to be odd and
the Onsager coefficient P(x) has to be an even function.
This is an important condition on the phenomenological
coefIicient that arises &om microscopic reversibility and
weak coupling, which has the same origin as the symme-
try of the Onsager coefIicients for the crossed terms in
the linear case [6].

Moreover, we have seen that the phenomenological
knowledge of the system together with detailed balance
are not enough to determine the properties of the random
force. The existence of this ambiguity indicates that, at
this level, different equations for the fluctuations could
be proposed, all satisfying detailed balance and having
the same equilibrium probability distribution, but lead-
ing to different dynamics for the ffuctuations [13]. We
have then shown that, if the internal mechanism that
causes the random force is weakly coupled with the vari-
able that fluctuates, as it has clearly been shown in the
case of Brownian motion, detailed balance together with
this toeak coupling assumption sufIices to completely de-
termine the Langevin equation.
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(x(t)R(x(t))) = (P(x(t))) + (x(t) —d(x)

—(*(t)l( (t))) . (5.2)

If detailed balance applies, one can make use of Eq. (4.7).
Then, the second and third terms in this last equation
cancel and we finally obtain [16]

(+( (t) t)+( (t) t)) =2(~( (t)))~(t —t) . (5.3)

In our analysis we have imposed weak coupling only at
a later stage of the discussion in order to completely spec-
ify the properties of the random force, after having ap-
plied detailed balance. It is important to note, however,
that if we had imposed detailed balance together with
weak coupling &om the beginning, we would have seen
that the Gaussian nature of L (x, t) follows both for vari-
ables even and odd under time-reversal, that the "renor-
malized" flux is automatically acceptable, and that the
symmetry property of P(x) is a natural consequence of
both principles. [This can be proved by treating in Eq.
(3.3) both Q(x) and P, (x) as arbitrary functions and fol-
lowing the same reasoning as in Appendix B but for a
general c(x).]

The results derived &om the previous analysis have
been. applied to two nontrivial examples. To the range of
validity of the form assumed for the random force in Eq.
(1.8), the results coincide with more detailed models for
the dynamics of the Quctuations in those systems. Tak-
ing into account that for a general process the validity of
the Fokker-Planck equation as an approximation of the
master equation is restricted to small ffuctuations [3], in
the second example of Sec. IV we have seen that, to
the range of validity of the Fokker-Planck equation itself,
our approach is correct and furnishes a description of the
Quctuations in a genuinely nonlinear system. Therefore,
all the results found here by means of a phenomenologi-
cal analysis are consistent with those obtained from the
expansion of the master equation.

l,et us analyze the case P constant in more detail. From
Eqs. (4.6) and (4.7), we get that c2 = P (also constant)
and I' = 0, in agreement with Ref. [9] which, for linear
Langevin equations, reduces to the standard results. It is
important to realize that detailed balance alone ensures,
in view of Eq. (3.27), that (I'(x)) = 0, but still I'(x) and
c(x) can be nonconstant functions related by Eq. (3.27).
Therefore, the standard theory for Langevin equations,
either linear or with constant P, relies on an implicit
weak coupling assumption. [This implicit weak coupling
assumption is formulated by demanding that the random
force E(x(t), t) is independent of the variable x(t).]

On the basis of causality and stationarity, the second
moment of the random force in a nonlinear Langevin
equation of the type (2.1), has been proved to satisfy
[10]

(+( (t) t)+( (t ) t )) = (L( (t) t)L( (t ) t ))
= 2(*(t)&( (t))) ~(t —t') (5.1)

Inserting the definition of R(x) in the right-hand side of
this equation, after partial integration we get

+—P(x)—:0
dx (g)

(5 4)

as expected. Notice that the underlined term is the mod-
i6cation of the phenomenological law due to the fluctua-
tions and ensures that (x) is zero in equilibrium, so that
there is no violation of the second law as is the case in
the so-called "Brillouin paradox" [3].
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APPENDIX A: DERIVATION OF THE MASTER
EQUATION

The density distribution given in Eq. (2.7) satisfies a
continuity equation

0 0
p(x, t) = ——, x(x, t) p(x, t). (A1)

In view of Eq. (2.7), and due to the properties of the
h-function, to compute x(x, t) we can use Eq. (2.4) re-
placing the random variable x(t) by the field variable x,
glvlng

(A2)

where use has been made of Eq. (1.8). Equation (A2)
can be formally solved, obtaining

t

p(x, t) = [exp dt' (R(x) —L(x, t)])d(x —xo),
p BX

(A3)

where use has been made of p(x, t = 0) = b(x —xo). Note
that the term between curly brackets is independent of
the initial condition xp since x is not a random variable
but a field point and the process L(x, t) has been assumed
to be independent of x(t), so that it is also independent
of x(t = 0) = x(). Thus, we can average both members
of this last equatioii and use Eq. (2.8) to also derive the
formal solution for the conditional probability density

Again, if P is constant, only now we recover the
Quctuation-dissipation theorem as a consequence of both
detailed balance and weak coupling. In the genuinely
nonlinear case, Eq. (5.3) as well as Eq. (4.6) are remi-
niscent of the Quctuation-dissipation theorem existing for
linear systems. In particular, Eq. (4.6) relates the ampli-
tude of the random force, c(x), to the phenomenological
coefficient P(x) at every point.

Finally, one can calculate the average of the Qux in
equilibrium from Eq. (1.12). Effectively, from causality
and Eq. (3.27) it follows that

( (t)) = ~( (t))—l &.(*)
d

( )
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gJ'(e, takeo) = (exp dt' (B(*)—r(*,O))) S'(*,O= Ol e)o.
p BX (A4)

The average is performed over all the realizations of L(z, t) and it is independent of xp. This last expression can also
be written in terms of the cumulants

P(*,tl*,) = exp ) —,
I

«' tB(z) —L(z, t)] I
P(*,t = Ol*p) .

1 ( ', 0

=i &p
(A5)

For n = 1 one has

Ch' B X —L X, ~

0
P(z, tlzp) = exp t B(z)

DX„1 ((9+).(-1)"—~-
I c(*)

In! (Bz )
xP(z, t = olxp). (A8)

8 8«'
g [B(*)—(L(* t))-] = t B( ) .

p (!9X

For n & 2 one has

(A6) Differentiating with respect to time, one arrives at Eq.
(2.1o).

APPENDIX B:PROOF OF cxr = 0 FOR I &

I f «'
y (&(*)—&(e, O)) I

, 8
p (9z )

= (-1)"™-
I ~ c(z)

I

(8
()9z j (A7)

where in deriving the last line use has been made of Eqs.
(1.11) and (2.6). Therefore, substituting these results
into Eq. (A5) one gets

In this appendix we will show the possible solutions of
the system of Eqs. (3.11) and (3.17) for the parameters
n;, i ) 2. Once rexnoved n2 (recall that the coefficient of
the only term involving this constant is zero), the system
is a homogeneous set of equations for n; for i & 3 with
x-dependent coefBcients. Its solution is a; = 0 for i & 3
if the determinant is nonzero and, therefore, L(x, t) is a
Gaussian process. However, if its determinant is zero,
then other solutions with some n; P 0 may exist. In
order to find the expression of the determinant, let us
separately write the equations for m even and odd. Prom
(3.11) and (3.17) it follows that

I
, »(z)xx2g+x + ) —,

I k I

'D" '"y(z)n„=0, m = 2k,

2k+ 1!y(z)xx2x, +x+ ) —
I k I

17" '!'"+x&y(z)n„=0, m = 2k+ 1,n! q2k+1)
n=2A:+2

(B2)

y(*) l
—(»(*))'+y(z)D'y(z)] = 0 (B3)

which ixnplies that soxne n; xnay be nonzero if y(x) sat-
isfies the nonlinear difFerential equation

with k = 1, 2, ... . We have defined the function y(x) =
c(x)P, (x) for ease of notation.

Let us first consider the case of even variables. We
thus replace e by 1 in Eq. (B2). Making use of this last
equation, we can express the coeKcient of o.2p+~ in terms
of all higher ones. If one then proceeds to substitute Eq.
(B2) systexnatically for all k in Eq. (Bl), one arrives at a
set of equations only for the even coefBcients. Moreover,
this new set of equations is triangular and it is then suf-
ficient to calculate the terms of the diagonal in order to
know its determinant. One can see that the determinant
is zero only if

(dye '
dC 6g 2 d g—'( ) I

—
I

+ (*)y(*)——+ '(*)y(*)«z) dX 8X dX

(B4)

whose solutions are

y(e) = o(e)P (e) = e + y. f P, (e)de,

v and p being integration constants. This last equa-
tion determines c(z), since P, (x) has been considered as
given. Note that in this particular case, c(x) is indepen-
dent of the phenomenological coefficient P(z). Further-
more, these solutions are eigenfunctions of the difFerential
operator 'V,

»(*)= »(z) .
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In order to determine the set of cumulants o;„wewill use
this last property in Eqs. (3.9) and (3.10). We get

(87)

sponding Langevin equation

dx c(x) n2p+L(x, t) .
dt 2

(813)

»(*)P.(x)
y(x)

Let us introduce the function

Now, in view of Eq. (85), we see that Eq. (813) is inde-
pendent of the phenomenological coefficient P(x), corre-
sponding to a situation which is out of the scope of this
work.

Let us finally point out that the special case p = 0
leads to a Langevin equation of the form

(89) —= L(x, t),
dt

(Bi4)

in terms of which Eqs. (87) and (88) become

VB(x)P, (x)
y(x)

»(x)P.(*) ~4(V)
y(x)

(810)

(Bii)

Thus, eliminating B(x) between Eqs. (810) and (811),
we obtain a differential equation for @(p),

which is again nonaccey&able. In this case, however, de-
tailed balance does no p Shee to completely 6x the prop-
erties of I (x, t). Althoug~ clll the odd cumulants are zero,
the even ones remain undetermined, allowing therefore
for non-Gaussian noises.

For odd variables, we have to replace r by —1 in Eqs.
(Bl) and (82). In this case, the first term in Eq. (82)
vanishes. Therefore, the homogeneous system of equa-
tions is already triangular, showing that o.; = 0 for i & 3,
unless the determinant is zero. This happens only if

dp p
=0, (812) 'Vy=0. (Bi5)

which indicates that @ is a quadratic function of the pa-
rameter p. This implies that all the cumulants of L(x, t)
should be zero except for the second one. Therefore, we
have proved that also in this case I (x, t) is Gaussian.
Moreover, from Eqs. (89)—(Bll) we arrive at the corre-

In this case, nothing can be said about the set of cu-
mulants a;, since in view of Eq. (815), in Eqs. (Bl)
and (82) all the coefficients vanish. The corresponding
Langevin equation also has the form given in Eq. (814),
again nonacceptable.
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