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Segregation in the static pair annihilation process: Exact results
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We study the one-dimensional pair annihilation process A +B—+0, where the particles, which are ini-
tially distributed at random, interact in the absence of diffusion through a tunneling law. Monte Carlo
simulations indicate that the large-time behavior of this process can be obtained from a staggered ver-
sion of this model that can be exactly solved. Analytic expressions for the asymptotic decay of the reac-
tant concentration and for the spatial pair correlations are given. Their agreement with the segregation
pattern found in the simulations is checked.

PACS number(s): 05.40.+j, 82.20.—w

The tendency to self-organization is known to appear
in various disordered systems submitted to stochastic dy-
namics [1]. In particular, for diffusion-limited reactions
the relatively small density fluctuations may evolve into
relatively large long-time density fluctuations. The usual
kinetic reaction schemes which do not embody spatial
fluctuations are not appropriate to describe the evolution
of such systems at large time and low dimensionality,
where the segregation phenomenon is strong. Several at-
tempts have been made to find an analytical approach to
the problem, and some exact solutions are known for
one-dimensional systems [2—8].

A dynamical self-ordering is also known to appear
when A-A or A-B annihilation occur through a tunnel-
ing law between immobile reactants [9,10]. In contrast
with the diffusive case, analytical results are still lacking,
in spite of the remarkable numerical observation made in
Ref. [9] that a Kirkwood approximation, which we speci-
fy later on, provides the correct AB particle segregation
pattern and the long-time asymptotic behavior of the re-
action.

More specifically, as in Ref. [9], we consider the static
annihilation (SA) process where randomly distributed A
and B particles with equal initial concentrations annihi-
late through the reaction A +B~O with a probability
rate given by w (r) =wo exp( r lro). We s—pecialize to
the one-dimensional case; r is the A-B particles separa-
tion and ro is a scaling constant. Both A and B particles
have at any time the same density p(t) and there are only
two pair correlations X(r, t) and Y(r, t). These are
defined as statistical averages of the microscopic A, B
particle densities n„ ii(r, t):

p(t)=(n~(r, t)) =(n~(r, t)),
p ( t)X(rz r i, t) = ( n z (r„t)n „(rz—, t) )

= (n~(r„t)n~(r2, t) ),
p'(t)Y(r2 r„t)=(nz(r&, t)—nz(r2, t)) .

'Electronic address: Bonnier@bortibm l.in2p3. fr

The decay of the density is thus given by
dp(t)ldt= p(t) f— w(r)Y(r, t)dr and more generally
the kinetics obeys an infinite hierarchy of coupled
differential equations for the many-point densities [1].
The mean-field approximations X= Y= 1 or X= 1,
Y=exp[ —w(r)t], which imply, respectively, p(t)-t
and p(t)-ln 't at large time, appear to be valid only in
the early stage of the process. According to Ref. [9], an
appropriate approximation seems to be a Kirkwood su-
perposition of the form

(n„(r„t)n„(r 2, t) n~(r 3, t) )

=p (t)X(rz r„t)Y(r3 —ri t)Y(r3 r2, t), (2)

which reduces the infinite hierarchy to a closed, integral,
nonlinear subsystem for p, X, and Y. In Ref. [9], the nu-
merical solutions of this system are compared to the
Monte Carlo (MC) simulation of the SA process. Their
agreement is strikingly good with, in particular, the fol-
lowing results at large time:

p(t) —(lnwot)

and

Y(r, t) =e(r g(t))—
where e is the step function and g(t) the reaction radius
defined by w(g)t =1.

The purpose of this work is to provide a more detailed
understanding of the approach successfully initiated in
Ref. [9], as a generalization of what we have recently
done for the A+ A ~0 reaction [11]. Our starting ob-
servation, borrowed from expression (4), is that at time t
all the pairs AB up to separation g(t) have disappeared,
the remaining ones being little affected. This suggests
considering the following static staggered annihilation
(SSA) model. As in the SA process, A and B particles are
randomly deposited with equal concentrations on the
sites of a one-dimensional lattice of unit spacing. But
then, the A +B~0 reactions occur through a cascade of
successive stages. In the first stage, all pairs of AB neigh-
bors are randomly destroyed; in the second stage, all
pairs of next-to-nearest neighbors AB vanish, and so on.
Inside any stage, the decay evolves sequentially in terms
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Pz„(r,z)=P~&(r, z) =p(z)y(r, z),
P~~(r, z)=p(z)p(r, z) .

(6)

of some internal time ~ which runs from 0 to infinity and
the initial conditions entering into a new stage are given
by the final configurations of the system in the previous
stage. As we shall see below, it is possible to solve the dy-
namics in any stage and to sum up an arbitrary number J
of stages so as to give analytic expressions for the density
and the correlations. Our statement is that the SSA and
the SA models are asymptotically equivalent under the
identification J=g(t). This is quite natural since during
the stage J the reacting pairs have separation J, and is
perfectly supported by the Monte Carlo simulations of
the SA model we have performed.

In order to solve the dynamics during an arbitrary
stage j, we observe that no particle can survive between
the two members of an annihilating pair, and thus any
surviving particle separates the lattice into left and right
uncorrelated sublattices. The probability of any
configuration is then a product of pair probabilities. For
example, Pzzz(ri, r2, z) is the probability to observe at
time z =e ' the sequence A i A2B, where r, is the A i A2
separation and r2 the A2B one, then

PAAB(rl 2 z) PBBA (rl r2 z) p(z)y(r 1 z)p(r2 z)

where p(z) is the A or B density and y(r, z) and p(r, z) are
defined through

p(j,z)=co z,
p(z) =p(1)e

(9)

%'e are now in position to sum up all the stages. With
the notation p i, a* i(x) for the density and the corre-
lation functionals at the beginning of the stage j and p. ,
az (x) at its end, expressions (9) and (11) give

2co . 2' x j
pJ=pJ ie ' and a*. (x)=a+. i(x)e ' . Thus

—X.(1) ~ ~ W X.(x)
p =poe ', a*(x)=ao (x)e (12)

where coi is a stage factor ~J=p(j, z =1) that will be
determined below. For the correlations it is con-
venient to introduce their generating functions
y(x, z) =g„»x"y(r,z) and P(x,z) =g„&,x "p(r, z). In
fact, p(r, z) =0 for 1 (r &j since all AB pairs at distance
r &j have been destroyed in the previous stages and thus

P(x,z)=x Jco z+ g x "IJ(r,z) .
r) j

From (8) and (9), one gets

d, y(x, z) =2x Jro p(x, z),
B,p(x, z) =xJcoi+2x Jcoj y(x, z),

which is diagonalized by a (x,z) =
—,'+y(x, z)+P(x, z)

with the solution

+2 J . ( —i)a*(x,z)=a (x, 1)e

The three-particle factorizations of the form (5), which
are exact for the one-dimensional SSA model, play the
role of the Kirkwood approximation (2), and are at the
root of its solvability. It is sufticient to know p, y, and p
whose evolution during the stage j can be derived from
the following master equations:

za, p(z) =2P„(J,z),
2P&aa(" J z) ' "—J

ZB,P„~(r, z) = 2P„„~(rj,z)+2P~gg(r j,j,z), r &j—

1 —(1—4po)x
ao (x)= ao (x)=—.

2(1—x) 2
(13)

To complete the determination of the SSA model in term
of initial data we specify now the stage factor m .. Since
2p(x, z)=a+(x, z) —a (x,z), we have at the end of the
stage j

where X (x)=2+)=,cokx".
For initial conditions we have po=p(0) and

yo(x) =Po(x) =pop„& ix "=pox l(1 —x) since the A and B
initial distributions are random. This gives

Pgg( j,z)+2Pggg( j,J,z), r =j
zB,P„~(r,z) =

2PABA (rj z)+2PABB(j ~ jz»—
where the right-hand members show the various ways of
destroying a particle through some pair interaction at
distance j. Inserting the relations (S) and (6) in (7), one
obtains

ZB,p(z) =2p(z)p( j,z),

2X (x)=in[2ao (x)]—1n[1+4P (x)e ' ]

I
cokx

"=—ln
4

1 —(1—4po)x -+O(x 1+'),
1 x

when the solutions (12) and (13) are used. On the other
hand, from Eq. (10),pJ(x) =O(xj+') and the previous re-
lation reads

0, r(j
2p(l' J,z)p( J~z) i r &J

which implies that

1 —(1—4po)"
, k~i. (14)

Thus

The dynamics of the SSA model, i.e., its behavior as j
increases, is thus exactly solved. For the density, it is
convenient to write
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e-&" ao
PJ j

' 1/2

(15)

where y=0. 577215. . . is the Euler constant. It is in
agreement with (3), according to our identification

p(t)=pj, j =g(t)=ro ln(1+coot) . (16)

In order to check the validity of the mapping (16) be-
tween the SSA and the SA model, we have performed
MC simulations of the SA process. These are done on
100000 site lattices, filled with different densities, and
statistical averages involve 100 histories, in order to
reach large time (up to /=300) with good precision, the
relative errors being 0.001 and 0.01 for the density and
the correlations, respectively. In Fig. 1 we give a set of
three typical examples. Two cases correspond to the
same initial density p(0) =0.25 in order to illustrate the
role of ro, which changes from ro = 1 to ro = 10, the
remaining case corresponding to r0=1 with a different
initial density p(0)=0. 10. One can estimate on this
figure the range of validity of the mapping (16): it gives
the correct asymptotic behavior in all cases, and a good
fit of the data at any time when ro is not too high.

On can also check the agreement between the pair
correlations X(r, t) and Y(r, t) as defined in (1), and the
corresponding quantities in the SSA model. One finds

X(r, t) =( 3„++3„)/2p
Y(r, t) =(2„—2„)/2p

(17)

2X (1)=J du
4~o 1 —u

1'~ dU jln[1 —(v/j)1~
0 U

which gives its continuation to any real positive j and its
j behavior as j~ao,

where the A,* coefficients are given by the expansion
a (x)=g„&OH„x and where j and p are given by (16).
One checks in particular that A,+ = A, if 0~ r &j,
which implements Y(r, t)=0 if 0&r &g(t) as given by (4).
It is also possible to consider the asymptotic regime
where j and r go to infinity with R fixed, r=Rj, and to
demonstrate that the correlations have in this limit non-
trivial limiting functions X (R) and Y (R). We just
quote our simplest result, corresponding to the initial
value po= —', where 2a (x)=exp[ —,'gt, =r(x "/k)]. Then
3„+=A„=I(r+ ,')/2Vm—l(r+1.) for 0 r &j and thus
X (R)=lim(2A„+IPj)=2er IV n.R for 0&R &1. The
functions X (R) and Y„(R) are more generally defined
piecewise on intervals AR = 1, and it appears that their R
infinite limit 1 is practically reached at R =2. For R ~ 2
one finds

X (R)=2er~ /v'mR, 0&R 2,
0, 0&R &1

Y (R)= '
X (R) ln(VR +VR —1), 1&R &2 .

In Fig. 2 we show the MC measured correlations X(r, t)
and Y(r, t) of the SA process with p(0)=0.25, rz= 1.
They are displayed in the scaled variable R =r/g(t) for
various values of the reaction radius g'(t) The a. symptot-
ic regime, practically reached for g(t)=50, is in perfect
agreement with the prediction (18). In this example,
where r0=1, the correlations are in fact described at any
time in terms of the SSA model [expression (17)].

In this work we have considered a static staggered an-
nihilation model which can be solved in one dimension
due to its screening property. The exact summation of
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FIG. 1. The density for the static annihilation model given as
a function of the reaction radius for various initial conditions.
Dots represent MC data with errors smaller than the symbols.
The curves are the SSA model predictions made using the map-
ping (16).

FIG. 2. The pair correlation functions X(r, t) and Y(r, t)
given as functions of the scaled variable R =r/g(t) for various
values of the reaction radius g(t). Dots are MC simulations of
the static annihilation process with p(0) = 4, ro = 1. Errors are
smaller than the symbols. The curves are the asymptotic values
(18) predicted by the SSA model.
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the fluctuations at any scale implies a nontrivial behavior
for the density and the correlations. Heuristic arguments
on the reaction radius and MC experiments indicate that
the static annihilation process, where the pair interaction
is due to tunneling, behaves like the SSA model in the
large-time regime. This clarifies the segregation mecha-
nism and the role of the Kirkwood superposition law,
which appears as a consequence of the screening property
of the underlying SSA model. The solvability of the SSA
model at any stage can be compared to other processes
where the infinite hierarchy of equations coupling corre-

lations is compatible with their factorization into prod-
ucts of basic distributions. This is the case for the trap-
ping reaction A+T~T with immobile reactants and
traps [12], and for ballistic annihilation in a one-
dimensional fiuid [13]. As a final remark, we want to
stress that the "universality class" of the SSA model,
from the asymptotic properties point of view, is probably
not restricted to exponential tunneling laws.

We would like to thank Dr. R. Brown for suggesting
this investigation to us.
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