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Vicious walkers and directed polymer networks in general dimensions
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A number, p, of vicious random walkers on a D-dimensional lattice is considered. "Vicious walkers"
describes the situation when two or more walkers arrive at the same lattice site and annihilate one anoth-
er, and consequently their walks terminate. In certain cases the generating function R (u) [S(u) ] for the
number of configurations R, [S,] of walkers which reunite [survive] after s steps is expressed in terms of
generalized hypergeometric functions. The critical exponents associated with these functions are in
agreement with known results for Brownian paths. The critical dimension D =2 also agrees with that
found for the continuum limit, and logarithmic corrections are discussed. Vicious walker configurations
correspond to directed polymer networks in d =D + 1 dimensions, and in the case D = 1 they also corre-
spond to directed integer Bows in which the fiow in any bond is in the range 0 to p.

PACS number{s): 05.50.+q, 05.70.Fh, 05.40.+j

I. INTRODUCTION

The problem of vicious walkers, together with many
physical applications, is described by Fisher [1] in a paper
where a number of fundamental results are derived and
useful techniques are discussed. The general model is one
of p random walkers on a D-dimensional lattice who at
regular time intervals simultaneously take one step with
equal probability in the direction of one of the k lattice
vectors. The walkers are described as vicious since if two
or more of them arrive at the same site they annihilate
one another. Questions which may be posed concern the
probability Ps(s) that they all survive for at least s steps,
and the probability P~(s) that they all survive for s —1

steps and all make a reunion on the next step.
Fisher was mainly interested in the asymptotics for

s ~~, and replaced the walkers by particles undergoing
Brownian motion which is the continuum limit of the
problem. He found that for D = 1

Ps(s) -s ' and P~ (s) -s

where

(p' —1)
and

2

These continuum results have very recently been extend-
ed to higher dimensions by Mukherji and Bhattacharjee
[2,3]. They find that above the critical dimension D, =2
the losses due to vicious encounters have no effect on the
exponents, which are

W, (p, G) —k'~s (4)

with logarithmic corrections for d =3. This implies that
the corresponding generating function

steps. This paper will be concerned with exact combina-
torial formulas for walks on a lattice, which we find to
have the same asymptotic form as the above continuum
results.

A related problem is one of enumerating the
configurations of a polymer network on a d-dimensional
directed lattice. The bonds of the lattice are directed so
as to have a positive component relative to some pre-
ferred direction, and the number of bonds directed away
from each site will be denoted by k. The polymer net-
works considered are constructed from chains of equal
length s (having s + 1 monomers), and we denote the to-
pology of the network by G. The simplest topology is
just a single chain; a number of chains connected at a sin-
gle point is known as a star [see Fig. 1(a)], and a network
of chains connected in parallel between two points is
known as a ivatermelon [see Fig. 1(b)]. A directed poly-
mer network is one which is embedded on the lattice, so
that its chains form directed walks on the lattice and no
site is occupied by more than one monomer. We consider
the chains to be distinguishable to avoid trivial symmetry
factors. The number of embeddings of a single chain
with one end fixed is just k', but for other networks the
topological constraint and self-avoidance condition make
the problem more difticult. The number of configurations
of a network of p chains will be denoted by W, (p, G), and
for all cases considered it turns out that

/=0 and (p —1)D
for D)2,

2
(3) WG(p, u)—= g W, (p, G)u'

S=0
with logarithmic corrections at D =D, . The decay in the
case of the reunion probability is due solely to the con-
straint that the walkers must meet up somewhere after s

has a singular part with asymptotic form

WG(p, u)-(1 —k u)
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FIG. 2. (a) A polymer brush with five branches embedded on
the directed square lattice or the space-time trajectories of five

one-dimensional vicious walkers. (b) The noncrossing embed-
ding of a star with five branches, which corresponds to the
brush in (a). The number on each bond is the number of
branches which pass through that bond.

FICx. 1. (a) A polymer with star topology. (b) A polymer
with watermelon topology.

as u ~u, =k ~, where the critical exponent

y(G)=i —P(G) .

The vicious walker problem is equivalent to a directed
polymer network on a lattice of dimension d =D+1.
For example, consider walkers which start from adjacent
points on the even sublattice of a linear chain and survive
for s steps. If the trajectories are plotted in space-time,
the points visited will be on a directed square lattice, and
in polymer terminology the corresponding network is
known as a brush [see Fig. 2(a)]. The self-avoidance con-
dition of the network is equivalent to the vicious nature
of the walkers. The survival probability is given by

Pz(s) = W, (p, brush)/k'~,

and comparing with (1) shows that g(brush)=1(t. If the
walkers all start from the same point a star network is
formed which is expected to have the same critical ex-

ponent as the brush, except that there can be no more
than k chains. Similarly, vicious walkers which start at
adjacent points and reunite at adjacent points after s steps
give rise to a pair of brushes which have had their hairs
joined in pairs (see Fig. 3). The critical exponent for this
network will be the same as for a watermelon and hence
1((watermelon) =%. If the vicious walkers start from the
same sublat tice of a D-dimensional body-centered-
hypercubic (bchc) lattice, the corresponding polymer net-
work is on a similar lattice of one higher dimension.

Recently Guttmann and Prellberg [4] gave some exact
combinatorial results for staircase polygons on the hyper-
cubic lattice. These polygons are a subset of the self-
avoiding polygons, and their enumeration is equivalent
(apart from a symmetry factor of 2) to counting directed
watermelons with two chains. This polymer problem
corresponds to the reunion of vicious walkers on a cycli-
cally directed D-dimensional hypertriangular lattice. For
D =2 this lattice has been considered by Blease [5] in the
context of directed percolation.

The number of watermelons with two chains, 8', (2,
watermelon), will be denoted by R, . The generating
function R (u) for R, on a general directed lattice may be
written [6] in the form

R (u) =1—ku —Z(u)

where Z(u) is the generating function for two-chain
watermelons when the avoidance condition is relaxed.
By convention we take Z(0)=1 and R (0)=0. This for-
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FIG. 3. A noncrossing embedding of a watermelon with four
chains, and the corresponding joined pair of brushes. The num-
ber on each bond is the number of branches which pass through
that bond.

mula was given by Guttmann and Prellberg [4] for the
hypercubic lattice, and they also showed that, for d =3
and 4, Z(u) is expressible in terms of Heun functions
which satisfy a second order differential equation. For
d =2, Z(u) is algebraic, and for d ~5 it satisfies a
differential equation the order of which increases with di-
mension.

For both the hypercubic (hc) and body-centered-
hypercubic (bchc) lattice Z(u) is expressible [6] in terms
of the standard Green's function G (D, u ) which
enumerates random walks which return to the origin on
an undirected D-dimensional lattice. For the body-
centered case the result is simply Z&,h, (d, u)
=G&,h, (D, u), but it is not so obvious that
Zh, (d, u)=Gh~(D, u), where Gh~(D, u) is the generating
function for returns to the origin on the D-dimensional
hyperdiamond lattice (honeycomb for D =2).

In Sec. II we see that Z&,h, (d, u) is a generalized hyper-
geometric function. It is also shown that the generating
function S ( u ) = W„„(2, u ) for the number of directed
stars with two chains on a general directed lattice is ex-
pressible in terms of Z(u). We note that d =3 (D =2) is
the critical dimension for both watermelons and stars, in
agreement with the continuum result of Mukherji and
Bhattacharjee [2,3]. However, we differ on the exponent
of the logarithmic factors which occur at the critical di-
mension [7].

In Sec. III, we consider the problem of the number of
directed watermelons, Z, (p, d), with p ~2 chains of
length s on a d-dimensional body-centered-cubic lattice,

ignoring the avoidance condition. For d =2, the square
lattice, this number is expressible as the sum of the pth
powers of the binomial coefficients of order s. As a func-
tion of s these sums are known [8] to satisfy linear re-
currence relations with polynomial coefficients. The rela-
tions for p =2, 3, and 4 were found by Franel [9,10] on
the basis of which he conjectured that the order n of the
relation is p/2 for even p and (p +1)/2 for odd p, and
that the coefficients are of degree p —1. Perlstadt [11]
verified the first part of the conjecture for p = 5 and 6, but
found that the coefficients had degrees 6 and 9 respective-
ly. Cusick [12] established Franel's conjecture for the or-
der of the recurrence in general, and gave a computation-
al scheme for the coefficients involving the solution of
n (n —1) simultaneous linear equations.

The fact that Z, (p, d ) satisfies a linear recurrence rela-
tion with polynomial coefficients implies that its generat-
ing function satisfies a differential equation of order equal
to the degree of the coefficients in the recurrence relation.
By examination of the differential equations for three and
four chains the generating functions are identified as
Heun functions. For any value of p the generating func-
tion is expressed in terms of the standard Green's func-
tion, G (u ), for the undirected p-dimensional body-
centered-hypercubic lattice projected along its
(1,1,1, . . . ) direction. For p =3 the projected lattice is
the triangular lattice, whereas for p =4 it is the body-
centered-cubic lattice with first and second neighbor
bonds. For general dimension Z, (p, d) =Z, (p, 2)'" "and
according to the theory of Zeilberger [13],the number of
watermelons will still satisfy a linear recurrence relation
with polynomial coefficients. We find such relations for
d =3 and p =3 and 4. The relation for p =3 has the
same order and degree as that for d =2 and p =5.

In Sec. IV, the avoidance condition is imposed, and
only the directed square lattice is considered. An exact
expression is derived for the number of brushes in which
the hairs have fixed ends. This is used to express the
number of noncrossing watermelons with p branches as a
finite sum having a hypergeometric summand. The
theory [13] which we quoted for sums of powers of bino-
mial coefficients includes these more general sums, and
we use the algorithm of Zeilberger [7] to derive the re-
currence relations for noncrossing watermelon s with
p +6. It is found that the order of these relations is the
same as when the chains are allowed to cross, but the de-
grees of the coefficients for p =2, . . . , 6 are 1, 2, 4, 8, and
11. The exact expression for brushes with fixed ends is
used to generate the number of noncrossing stars with
s ~ n, where n is sufficiently large to enable the recurrence
relations, which exist by Zeilberger's theory, to be found
by computer search. On the basis of the relations for
p ~ 7 a simple formula is conjectured for the number of
such stars, for any value of p, and the corresponding gen-
erating functions are related to generalized hyper-
geometric functions.

Finally in Sec. V we consider the extension of the pre-
vious results to general polymer networks and obtain re-
sults similar to those of Duplantier and Saleur (see Ref.
[14] and references therein) for undirected networks. For
d =2 their decomposition of critical exponents into ver-
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tex contributions has been extended to directed networks
[15] using the vicious walker results of Fisher [1]. At the
critical dimension d =3, there is a logarithmic factor
whose exponent is a sum of vertex parts.

which, using Eqs. (11) and (9), leads to the results

S, (u)=(l —4u)

and

R, (u)=l —2u —(1—4u)'i

(14)

(15)
II. DIRECTED WATKRMKLONS AND STARS

WITH TWO CHAINS IN 1DIMENSIONS

In Sec. I we recalled the known relation (9) between the
number of watermelons having two chains, with and
without the avoidance condition. We now show that in
the case p =2 the number of stars S, whose chains are
nonintersecting may also be expressed in terms of the
number of watermelons with no exclusion. The number
of configurations of two chains, each of length s, which
start at the same lattice point is k ', since each bond may
be in one of k directions. Hence the generating function
for these configurations is (1—k u) ', where we have in-
cluded the term s =0. The configurations counted by
this formula will include both nonintersecting and inter-
secting stars. Each intersecting star may be uniquely
decomposed into a watermelon each chain of which has t
bonds, for some t in the range 1 to s, followed by a nonin-
tersecting star of length s —t. Thus, with So =Zo = 1,

Comparison with (6) shows that the y exponents of these
functions are —,

' and —
—,', respectively, and using (7) gives

P= —,
' and O'= —,'. The asymptotic form of the coeKcients

S, and R, is therefore in agreement with the case p =2 of
Eq. (1).

In higher dimension the watermelon configurations on
a d-dimensional body-centered-cubic lattice project onto
random walks which return to the origin on a (d —1)-
dimensional body-centered-cubic lattice (see [6] for de-
tails). A given step vector of such a walk has a positive
or negative component in each of (d —1) dimensions.
Since these components may be chosen independently
with the only constraint being that the walk must return
to the origin in every dimension, we find

Z, (bchc, d) =G, (bchc, d —1)
cj —1

2s
(16)

k '=S, + QZ, S, , = Q Z,S. (10) -(m. '16's ')'" "" for s (17)

or, in terms of generating functions,

S(u)=(l —k u) 'Z(u)

The generating function Z(u) for the body-centered-
hypercubic lattice is easily seen to be a generalized hyper-
geometric function. Thus, for d =2 the square lattice

T

2s

Clearly, Z, (bchc, d) is generated by a generalized hyper-
geometric function, since it may be written

( —,),
d —1

Z, (bchc, d) =4'" (18)
(1),

where (a), is Pochhammer's symbol (see Appendix A)
and, comparing with Eq. (A3) Appendix A,

Z, (square) = (12) Zb b, (du)=d iFd ~( —,', —,') —,', . . . , l, l, . . . ;4 'u) .

Z,q(u) =G,b„.„(u)=(1—4u) (13)

since in this case the watermelon configurations corre-
spond to random walks in one dimension which return to
the origin in 2s steps. The generating function is there-
fore

(19)

This is a generalization of the formula given by Joyce [16]
for the standard body-centered-cubic lattice Green's
function G(bcc, u). For d ~3,Zb, b, (d, u) has a singulari-
ty at u =u, =4 '" "with the asymptotic form

Z, (d) —A (d)(1 —4" 'u)' '~ for d even

bchc & Z (d) g (d)(1 4d —lu)id —3)/21n(1 4d —lu )
(2o)

and

4(d —i)s
S,(bchc, d)-

Zc d
(21)

Z, (bchc, d) 4~d —i~~

R, (bchc, d)-
Z (d)~ (ns)'" " Z (d). (22)

Notice that except for the amplitude factors, Z, (d) ' and

For d )3, expanding Zb,„,(d, u) ' about u, and substi-
tuting in Eqs. (11) and (9) gives

I

Z, (d), these forms are the same as when there is no
mutual exclusion; that is, 4'" "and Z„respectively. In
particular the critical exponents g and iII are given by Eq.
(3). We therefore say that the directed polymer problem
has a critical dimension d, =3, as found for the continu-
um model [2,3].

As usual the critical dimension is marked by the oc-
currence of logarithmic factors in the asymptotic forms.
Thus for d =3 the second term in (20) diverges at u, and
dominates the constant Z, (3). Also, in this case, Z(u)
may be expressed as
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2s
Zb„(u)= g u'=(2/n)K(16u), (23)

the enumeration may be carried out independently in
each dimension,

s=0
Z, (p, d) =Z, (p, 2)'" (28)

Zb„(u) ——( I/m)ln(1 —16u) for u ~u, , (24)

and using the asymptotic form of the elliptic integral
X(m) for m~1 gives and for d =2 the undirected one-dimensional problem

may be solved by partitioning according to the distance r
of the endpoint of each walk from the origin, yielding

which may also be deduced from (17) with d =3. Substi-
tuting in (11) and (9) we find that the asymptotic forms of
the numbers of stars and watermelons are given by

S g
Z, (p, 2)= gS &

q
(29)

and

S,(bcc) —m 16'/ln(s) (25)

R, (bcc)-+16'/(2s ln (s)) . (26)

As expected, apart from amplitude factors, the water-
melon results above have the same asymptotic form as
the staircase polygon results [4] for the hypercubic lat-
tice.

The results of Mukherji and Bhattacharjee [2,3] for the
continuum model at the critical dimension differ from
ours by a factor of 2 in the exponent of the logarithm.
We have therefore examined their calculation and find
that solving their renormalization-group (RG) differential
equation gives results which are in agreement with ours
[8]. The details are given in Sec. V where we generalize
the formula to an arbitrary network.

III. WATERMELONS WITH MORE THAN TWO
CHAINS BUT NO MUTUAL AVOIDANCE

This problem is equivalent to the reunions of more
than two friendly walkers. The number of star
configurations with no mutual avoidance is trivially given
by W, (p, star) =k~', but the watermelon constraint leads
to results which are not so simple.

As in Sec. II only the body-centered-hypercubic lattice
will be considered. There it was found that in the case of
two chains the generating function was hypergeometric
and the coefficients therefore satisfy a first order re-
currence relation. We denote the number of watermelon
configurations W, (p,watermelon) by Z, (p, d), and the re-
currence relation for p =2 is

For two walkers this reduces to Eq. (16). Using (29) it
may be verified directly that, asymptotically, for s~ao,
Z, (p, d) -2'" "~'s, where 4 is given by (3).

In Sec. I we discussed previous work on sums of the
type appearing in Eq. (29). Zeilberger [13,7] considered a
more general type of summation, which will include the
formulas for nonintersecting watermelons in Sec. IIIB.
He showed that, if F, (q) is such that both F,(q)/F, i(q)
and F,(q)/F, (q —1) are rational functions of the integers
s and q, then

(30)

satisfies a linear recurrence relation with polynomial
coefficients. He also gave an algorithm which determines
the relation together with the MAPLE code. In Sec. III B
we use an extended MATHEMATICA version of this code
written by Paule and Schorn [17].

The code rapidly enables the recurrence relations of
Perlstadt [11],for Z, (p, 2) with p ~ 6, to be rederived. It
also provides a certificate which allows a simple
verification of the results. An excellent discussion of
verification and certificates is given in the lecture notes of
Wilf [18], and is summarized in Appendix B. The rela-
tions for p =3 and 4, which were also given by Franel
[9,10] some 90 years before Perlstadt, are

s Z, (3,2) —(7s —7s+2)Z, i(3,2)

—8(s —1) Z, 2(3,2)=0,
(31)

s Z, (4, 2) —2(2s —1)(3s —3s+1)Z, , (4,2)
—4(s —1)(4s —5)(4s —3)Z, 2(4, 2) =0 .

s" 'Z, (2, d) —2" '(2s —1)" 'Z, ,(2,1)=0 . (27)

For three or more chains we shall find that higher or-
der recurrence relations are satisfied and that the polyno-
mial coefficients have higher degrees. A similar result is
found on introducing mutual exclusion in Sec. III A.

For d =2 and p ~ 3 it turns out that it is still possible
to relate the generating function to that for returns to the
origin of a single random walker, but for p & 3 the lattice
has second and higher neighbor bonds.

A. Recurrence relations and difFerential equations

Just as for p =2 an explicit formula for the number of
directed watermelons with no mutual exclusion may be
obtained by considering the projection onto an undirect-
ed (d —1)-dimensional body-centered-cubic lattice. Since

The corresponding generating functions Z (p, d; u )
= W „„,i,„(p,u) consequently satisfy linear differential
equations with polynomial coefficients. For p =3, with

y =Z(3, 2;u), the equation is

u (1—7u —8u )y"+(1—14u —24u )y' —2(1+4u)y =0,
(32)

which has singular points at u =
—,
' and —1, with y ex-

ponent 0 at both points corresponding to logarithmic
singularities in the generating function. For p =4, where
now y =Z (4, 2; u ), we find

u (1—12u —64u )y"'+u (3—54u —384u )y"

+(1—40u —444u )y' —2(1+30u)y =0, (33)
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which has singular points at. u =
—,', and u = —

4, with exponents ——' at both points. For p =5 we give only the
differential equation which is, where now y =Z (5, 2; u),

55u (1—32u)(1+llu —u )y' '+22u (29—819u —17297u +1888u )y' '

+u (1865—81273u —2317 838u +318048u )y~ ~+u (1235—116 168u —5 106304u +943 520u )y~ ~

+4u(5 —9744u —900682u +254200u )y"+4(7—164u —128052u +74464u )y' —8(7+230u —1168u )y =0

(34)

having singular points at u =
—,', and u =11+5, with

exponents —1 at all three points. The exponents agree
with Eq. (3) in all cases.

We note that for p =3 the differential equation is of
second order with four regular singular points and the
generating function is therefore a Heun function. In the
notation of Snow [19],

and so Y(u) satisfies the differential equation

u (1+4u)(1—16u) Y"+(1—18u —128u ) Y'

—(1+15u}Y=O, (39)

and hence Y(u) is a Heun function. In this case the
Heun function is

Z(3, 2;u)=F( —
—,', —

—,';1,1, 1, 1; —u) . (35) Y ( u ) =F ( —4, —,'; —'„—',, 1,—,'; 16u ), (40)

XF [—,, —4;1,1, 1, 1;—9u /(1 —8u)], (36)

and hence, following the same procedure as Guttmann
and Prellberg [4], we find

Applying transformations (VII.15) and (VII.13) from
Snow to the above Heun function gives

Z(3, 2;u) =(1—8u)

which appears to afford no obvious simplification by the
various transformations given in Snow [19].

Functions which satisfy linear difference or differential
equations with polynomial coefBcients are said to be holo-
nomic. Zeilberger [13] shows that the product of two
holonomic functions is holonomic. It follows from (28)
that Z, (p, d) is holonomic. For example, Eqs. (31) are of
the form

Z(3, 2;u) =(1—8u) '(2/m) E(k+ )X(k ), (37) U(s)a, + V(s)a, i+ W(s)a, z=O, (41)

where k+ and k are given by Eq. (26) of Guttrnann and
Prellberg.

For p =4 the differential equation is third order but of
a special type which may be reduced to a second order
equation for Y(u)=[Z(4, 2;u)]' . A similar reduction
was found by Guttmann and Prellberg for staircase po-
lygons on the hypercubic lattice with d =4. We find that
the coefficients in the expansion of Y(u) satisfy the re-
currence relation

s Y, —(7—18s+12s )Y,

—(143—192s+64s ) Y, ~=0,

uvu b, +uv(uw vv)b, —

+Uw (vU —uw)b, ~
—w vwb, 3=0,

where

u = U(s), v = V(s), w = W(s},

u=U(s —1), U=V(s —1), w=W(s —1) .

Using (28) and (42), we find that for d =3, and p = 3

(42)

(43)

and if b, =a, a straightforward but lengthy calculation
shows that

s (16—21s+7s )Z, (3,3)+(2—7s+7s )f (s)Z, i(3, 3)

+8(16—21s+7s )f (s)Z, 2(3, 3)+512(s —2) (2—7s+7s )Z, 3(3,3)=0,
where

f (s) = —40+ 186s —321s +228s —57s

(44)

(45)

We notice that the relation is of the same order and the coefticients are of the same degree as for five chains in dimen-
sion d =2. The corresponding differential equation for y =Z, (3,3) is

7u (1—64u)(1 —u)(1+8u)y~ ~+84u (1—76u —760u +1024u )y' ~+3u (87—9964u —132912u +223 744u )y' '

+3u (67—15180u —302752u +678400u )y~ '+2u(7 —8834u —336928u +1125632u )y"

+2(1—316u —52928u +340992u )y' —8(1+80u —2816u )y =0 (46)
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which has an exponent —1 at all of the singular points u =
—,', 1, and —

—,
' which is consistent with (1).

Again, using (42), the recurrence relation for p =4 and d =3 is

2s (1—s) (3—2s)(7 —9s+3s )Z, (4, 3)+8(1—s) (1—2s)(1 —3s+3s )g(s)Z, )(4,3)

+32(3—4s)(3 —2s)(5 —4s)(7 —9s+3s )g(s)Z, ~(4, 3)

—128(3—4s)(2 —s) (1—2s)(9 —4s) (7—4s) (5 —4s)(1 —3s+3s )Z, 3(4, 3)=0, (47)

where

g (s) =36—238s +655s —952s

+758s —312s +52s (48)

The singular points of the corresponding di6'erential
equation, in addition to 0 and ~, are at —,'„256, and:, 4',

all with exponent —2 in agreement with (1).
The relations which are known to exist for higher

values of p and d are expected to become progressively
more complicated.

B. Exact result for the directed square lattice

The problem of enumerating directed watermelons
with p chains on the square lattice is the same as that ofp
random walkers in D =1 dimension which must all end
at the same point after s steps. Suppose that the coordi-
nates of the walkers are x „xz, . . . , x, then an
equivalent problem [1] is to consider a single walker on a
p-dimensional body-centered-cubic lattice whose position
vector has the ith component x, The condition that the
walkers make a reunion after s steps is that the equivalent
single walker is positioned on the line L:x,=x2=
=x . For p =2 this gives yet another way of finding the
generating function for D = 1 (d =2).

In this case the step vectors for the single walker are
b, =(l, l), b2=( —1, 1), b3=(l, —1), and b4=( —1, —1).
Now steps in the directions b& and b4 are parallel to L
and are therefore irrelevant in determining the distance
from L. The distance from L is nz —n3, where n; is the
number of steps in direction i. The number of walks
which end on L may therefore be obtained by considering
walks perpendicular to L which return to the origin, and
inserting at each point of the walk any number of steps
parallel to L. Now G,z„„(u ) =(1—4u ) '~, which
counts the walks perpendicular to L which return to the
origin, giving weight u to a walk of s edges. Insertion of
a walk of arbitrary length at each vertex of the walk is
achieved by giving a further weight factor 1/(1 —2u)'+'
to each perpendicular walk. This is done by replacing u
by u /( 1 —2u ) in G,z„.„(u ) and then multiplying by
1/(1 —u). We find in this way that

ZRQ (p =2, LE ) =G,h;„(0 /( 1 —2EE ) ) /( 1 21l)—
(49)

in agreement with Eq. (13).
The argument extends immediately to p walkers, where

again just two of the step vectors for the single equivalent

walker are parallel to L. It is therefore sufticient to ob-
tain the generating function for configurations of a single
walker which return to the origin on a p —1 dimensional
lattice with the k —2 step vectors (k =2~) which are the
components of b2, b3, . . . , bk i perpendicular to L. This
must then be renormalized by the factors 1/(1 —2u) as
for p —2.

For p =3 the six step vectors define a triangular lattice
and hence, using the result of Horiguchi [20], for
O~u (—,',

Z, (p =3,u) =G„;(u/(1 —2u))/(1 —2u)

=g (u)h (u)(2/n. )K(m (u) ),
where

g (u) = [(1+u)' —u '
]

h (u) = [(1+/)~~2+3/ ~~~]

and

m(u)=16u ~ (1+u)' g(u) h(u)

(50)

(51)

(52)

IV. STAR AND WATERMELON NETWORKS
WITH NONCROSSING CHAINS ON THE

DIRECTED SQUARE LATTICE

In this section we suppose that the p chains of a star or
watermelon network are embedded on the directed

The solution found in Sec. III A had singular points at
u =

—,
' and u = —1 with exponents corresponding to a log-

arithmic singularity. It is of interest to see how these
singularities arise in Eq. (50). The point u =

—, corre-
sponds to m = 1, which is where X (m ) has a logarithmic
divergence. However, u = —1 corresponds to m =0,
where K(m) is nonsingular. The second singularity may
be found by considering m to be complex and making an
analytic continuation of X onto the second Riemann
sheet (see [20]).

Note that we define G„;(x) as the generating function
for random walks on the triangular lattice giving weight
x' to a walk of s steps, rather than 2s steps as in the case
of a bipartite lattice.

This solution shows that the Heun function found for
the same problem, in Sec. IIIA, must be expressible in
terms of an elliptic integral. This is a further occurrence
of a similar relation which was first observed for staircase
polygons on the simple cubic lattice [4,6]. For p =4 the
walks perpendicular to L are on a body-centered cubic
with first and second neighbor bonds.
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square lattice in such a way that no two chains cross one
another. It is, however, allowed that the chains have one
or more lattice points in common. Suppose now that all
chains except the first are translated such that the jth
chain is moved through a distance (j —1)a&'2 in the
direction ( —1, 1), where a is the lattice parameter. The
chains then become mutually avoiding and a star
configuration [Fig. 2(b)] becomes a brush with the points
of attachment of the hairs of the brush equally spaced
[Fig. 2(a)]. A watermelon becomes a pair of brushes with
corresponding hairs joined (Fig. 3).

A. Exact formulas for networks of chains
with fixed endpoints

An explicit formula may be obtained for the case
where the polymer chains have fixed endpoints. Brush
embedding s with fixed endpoints correspond to one-
dimensional vicious walker configurations in which the
ith walker starts at x;0=2(i —1) and arrives at x; after s
steps, where x; & x. when i &j. Let W, (xo, x) be the num-
ber of configurations of such walkers, where
x= Ix, ,x2, . . . , x ], then [1,21]

W, (xo x) =

W (x]0 x] ) Ws(x]Q x2)
W (x2Q, X] ) W (x2o, x2)

W (x&o, x~ ) W (x&p x2)

W (x)o xq)

W, (x~o, x~ )

W, (xylo, x~ )

(53)

where W, (x, ,x ) is the number of configurations of a single walker starting at x;o and ending at xJ, i.e,

W. (xo» )= j (54)

where q =
—,'(s+xJ —xJO), the number of positive steps made by the jth walker, which ranges from 0 to s. Also q; & q

when i &j. It is shown in Appendix C that (53) can be reduced to a single product, thus

W, (xo, x) —=w, (q„qz, . . . , q )= Q (q —
q, +j i)g- (s +p —j)!

q. +j —1!s —
q +p —j)! (55)

Suppose now that s=2n+m and q, =n+m, , so that
for fixed m and m; the numbers of positive and negative
steps are both of order n. The number of configurations
can then be written in the form

w, (q„q2, . . . , q )

B. Recurrence relation and differential equations
for the number of noncrossing watermelons configurations

The number of noncrossing watermelon configurations
R, (p) with p chains which join at any lattice point which
is s steps from the origin may be written as

=w (m„m~, . . . , m )4"~ S

R, (p) = g w, (q),
q=0

(5g)

j+m+1
2

j+m
2

, (mJ+j)„(m —m +p —j+1)„ (56)

,„(n,n, . . . , n)=4"~Q
j=I

j+m+1
2

n

j+m
2

(j)„(j+m)„
(57)

and if m i =0 the n-dependent factor, as a function of n, is
a hyper geometric coefticient with asymptotic form—( 1/2)n " ' . Notice that the exponent is independent of m
and m;.

We note that if m,. =0 for i =1—p then the above for-
mula counts the number of noncrossing watermelon
configurations, the chains of which join the origin to the
point with coordinates (n+m, n). The formula then
reduces to

where w, (q)=w, (q, q, .. . , q), and we have partitioned the
number of configurations according to the vertical dis-
tance q of the endpoint from the origin.

With qJ =q in (55), we obtain w, (s —q)=w, (q), w, (0)= 1, and, after some manipulation for
1&q & —'s

(59)

which is the polynomial form in p given by Arrowsmith,
Mason, and Essam [22]. Hence R, (p) is a polynomial
in p.

Inspection of (55) shows that the summand in (58) is of
the form required for the application of Zeilberger's algo-
rithm. We have used Paule and Schorn's code to prove
that for p =2, 3, 4, and 5, R, (p) satisfies the following re-
currence relations:
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(2+ s)R, (2)—(2+4s)R, ,(2)=0,
(3+s)(4+s)R, (3)—(12+21s +7s )R, ,(3)+8s (1 s—)R, ~(3)=0,
(3+s)(4+s)(5+s)(6+s)R, (4)—6(1+s)(3+s)(4+s)(5+2s)R, ,(4)+4s (1—s)(7+4s)(9+4s)R, z(4) =0
(4+s)(5+s) (6+s)(7+s)(8+s)(252+253s +55s )R, (5)—3(4+s)(5+s)(141 120+362 152s +373 054s + 192 647s

+52441s +7161s +385s )R, i(5)+s(1—s)(5738880+14311976s+14466242s +7579175s

+2170343s +322289s +19415s )R, i(5) —32(2—s)(1—s) s (1+s)(560+363s+55s )R, 3(5)=0 .

(60)

The corresponding "certificates" (see Appendix B), which serve as proof of these relations, are given by

(s —q)C(P)(q)—
L &(p

—1) J
(s +t)

t=o

C,' '(q)=2q —3s,

C(P)( ) (61)

C, (q) =2q —6q'+4q'+( —6+21q —18q')s+( —20+27q)s' —14s',

C, (q)=60q —198q +264q —162q +36q +( —240+852q —1386q +1040q —306q +16q )s

+ ( —1050+2570q —2594q + 1032q —104q )s + ( —1755+3004q —1740q +276q )s

+ ( —1395+1486q —374q )s + ( —525+ 260q)s —75s

C,' '=5 080 320q —18 157440q +29 680000q —28 291 200q

+15908480q —4654720q +224000q +291 200q —89 600q +8960q

+(—25 401 600+98 123 424q —198 902 592q +235 063 000q —166 796 160q

+66893496q —10829256q —1971600q +1 163 160q —170080q +5808q' )s

+ ( —165 758 880+494 395 800q —774091 640q +709 462 270q —377 009 090q

+100370030q —2242210q —5723740q +1276220q —81400q +880q' )s

+( —482408 536+ 1 226 863 484q —1 557 504990q + 1 112218 015q —426 667 365q

+61 044 471q + 11404 5 15q —4 974 930q +495 000q —11000q )s

+( —824989 364+1 806775 622q —1 858 197 805q +1 008 793 955q —256644 820q

+5 314 163q + 10 572 245q —1 681 900q +60 500q }s

+ (
—919066 922+ 1 708 993 427q —1 392 526 560q +546 582 990q

—76 178 835q —9 847 557q + 3 409 725q —189 750q )s

+ (
—698 466 721+ 1 073 483 343q —666 154 305q + 173 224 365q —6 358 185q —3 923 073q +367 125q )s

+(—368411226+450221 100q —200 113500q +29 238 000q + 1610400q —435 930q }s

+( —134440101+123674640q —35 686765q +1946450q +276375q )s

+ (
—33 150638+21 139615q —3 318 150q —15 125q )s

+( —5241 379+2011075q —114 125q )s' +( —476278+79 750q)s" —18755s' (62)

A similar recurrence relation exists for any value of p. For p =6 the relation is of order 3 with coeKcients of degree
11, so that the order of the relation appears to be L —,'(p+1) J, where Lx 3 is the greatest integer less than or equal to
X.

For p =2, 3, and 4 the differential equations satisfied by the generating function R (p, u), which follow from the above
relations, are, where y =R (2, u), R (3,u), and R (4, u), respectively,
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u (1—4u)y'+(2 —6u)y =2,
u (1+u)(1—8u)y" +u(8 —42u —32u )y'+(12 —40u —16u )y =12,
u "(1+4u)(1—16u)y""+u (24—246u —1088u )y"'+u (180—1524Q —5244u )y"

+u (480—3180u —7536u )y'+(360 —1680u —2040u )y =360 . (63)

The solution for p =2 which satisfies the initial condition
R (2,0)=1 is

R (2, u) = [1—2u —(1—4u)' ]/(2u ) . (64)

For p =4, removal of the inhomogeneous part gives

R (4, u)=[ —2+u —2u +z(u)]/(2u )

where z ( u ) is a solution of the homogeneous equation

u (1+4u)(1 —16u)z'""+u (12—102u +320u )z"'

+u (36+174u —60u )z"+(24—12u +120u )z'

+ ( 12—120u )z =0 .

(67)

(68)

The indices for p =2, 3, and 4 corresponding to the
singular points u =—,', —,', and —,', yield 4= —,', 4, and —", , re-
spectively, in agreement with (2).

However, for p ~3 the equations become increasingly
complex. For p =3, a suitable substitution to remove the
inhomogeneous part leads to

R (3,u) = [ —1+u —3u

+F( —
—,', —,'; —1, —2, 2, —2; —u)]/(Su ), (65)

where F is a Heun function satisfying the equation

u (1+u)(1—Su)F"+2(1+Su )F'+2(1 —8u)F =0 . (66)

A clear pattern emerges, and we conjecture the following
formula:

S,(p) =2~'g

j+1
2

$
(71)

g= g(a, b, ) . — (72)

This implies that for the noncrossing stars,
g= —g =

—,'p (p —1), in agreement with (2). The
differential equation satisfied by the generating function
is also modified. The leading D in (A3) is replaced by
D +b„+&

—1, which makes the differential equation inho-
mogeneous with the constant ii,"=+&'(b; —1) on the right-
hand side. This is consistent with the differential equa-
tions for the generating function S(p, u) with p =2, 3, 4,
and 5 obtained from (70), i.e.,

At first sight it appears from the formula that the polyno-
mial coefficients have degree p, and that the sequence is
of generalized hypergeometric type. However, cancella-
tion of factors takes place giving rise to the quoted re-
sults, which generally only become hypergeometric by
redefining the origin of s. Alternatively, the theory of
Appendix A may be extended by replacing k! in (Al) by
(b„+,)k which modifies the value of g in (A6) to

n+1

C. Conjectured exact expression for the number
of noncrossing stars

The number of noncrossing stars S, (p) with p chains
(or brushes with p mutually avoiding hairs) may be ob-
tained by summing (55) over q;:

u (1—4u)y'+(1 —6u)y =1,
u (1—Su)y'+2(1 —6u)y =2,
u (1—16u)y" +u (6—80u)y'+6(1 —10Q)y =6,
u (1—32u )y"+ u (8—160u)y'+ 12(1—10u) = 12 .

(73)

S,(p) =
0 qi qp. . . g s0( ( ( ( (69)

The generating functions may be expressed in terms of
generalized hypergeometric functions; thus

( —'+2)
S,(2)=4 S, i(2),1+s

( —,'+s)
S,(3)=8 S, i(3),2+s

( —,'+s)( —', +s)
S,(4)= 16 —S, ,(4),

( —,'+s)( —,'+s)
S,(5)=32 S, i(5) .

(70)

We have computed sequences of values of S,(p) for
each p from 0 to 7, and find that they satisfy simple first
order recurrence relations. The first four such relations
are

S(2,u)=[(1—4u) ' —1]/(2u),

S(3,u)=[1—4u —(1—8u)' ]/(8u ),
S (4, u ) = [ 1 —Zu —zF, ( ——,', —,'; 2; 16u ) ]/(4u ),
S(5,Q)

= [1+12u —16u —zF, ( ——,', —
—,';2;32u)]/(32u ),

S(6,Q)

=[1+4u —4u —3Fz( ——' ——' —' 2, 3 64u)]/(Su ) .

(74)

In general a number of leading terms must be dropped
from „+&F„,where n = Lp/2 J —1, and a normalizing
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factor must be included to make the first term equal to
unity. The number of terms to be dropped depends on
the required shift in the origin of s referred to above.

An equation which is equivalent to (71) is

s, (p) =
L —( +1)J

(p +2j —1)2, ~ +
(2j —1)

(75)

This formula was given without proof by Arrowsmith,
Mason, and Essam [22]. Notice the polynomial depen-
dence on p which is a general property of networks which
can be mapped onto integer fiows (see Ref. 22). The for-
rnula was obtained by observing the form of the polyno-
mials for increasing values of s.

V. CRITICAL EXPONENTS FOR DIRECTED
POLYMER NETWORKS IN THE CONTINUUM LIMIT

Our results so far have shown that at least for stars and
watermelons the critical exponents for networks on a lat-
tice are the same as for the continuum. It has been
shown by Duplantier [14] that for undirected networks
the critical exponent g(G) may be decomposed into a glo-
bal part, depending on the number of independent cycles
c(G) in the network and the correlation exponent v, and
a contribution from each vertex. The result may be writ-
ten

L — —2yG&(u) ZG~~„(L, u, s)=0 .(} u (}

BL 2m Bu
(79)

Solution by the method of characteristics shows that the
trajectory through L =La and u =uo has parametric
form

the critical dimension). This was to be expected since, ig-
noring the avoidance condition, the directed network
problem is isomorphic to the undirected problem on the
D-dimensional lattice obtained by projecting onto a plane
perpendicular to the special direction.

Finally, at the critical dimension, we summarize the
calculation of Mukherji and Bhattacharjee [2,3] and ex-
tend it to a general directed network. In their continuum
model our combinatorial function W, (p, G) is replaced by
a partition function ZG&(s) which is a multiple integral
over the p paths of length s defining the polymer
configuration subject to the topological constraints of the
network G. The integrand is a Boltzmann factor with
Edward's Hamiltonian [23] having a repulsive 5 function
interaction of strength Uo whenever two chains cross one
another. The model is renormalized to an arbitrary
length scale L at which the renormalized interaction and
partition function are denoted by u (L) and ZG &~„(L,u, s),
respectively. Mukherji and Bhattacharjee [3] show that
this partition function satisfies a partial differential equa-
tion which on setting d =3 becomes

f(G) 1 —y(G) =—dc (6)v —g nt (G)crt
L+1

(76) L (t) =Lac', u (t) = +1

uo 2' (80)

Here nt(6} is the number of L leg vertices -in G. The
vertex factor crt depends only on L and d and arises from
the interaction between the chains incident at the vertex;
it vanishes for d ~d, =4. At d =d„a power of ln(s)
must be included as a factor in the formula for W', (G,p).
The exponent of the logarithm may be broken down in
the same way as P(G).

For directed networks a formula similar to (76) has
been derived for d =2 by Zhao, Lookman, and Essam
[15]. In this case each vertex contributes two terms to
the sum, one depending on the number of chains directed
into the vertex and one depending on the number direct-
ed outwards. Thus nt(6) is the number of inward or
outward fans having L legs, and the formula becomes

g(G) = 1 —y(G) =Dc (6)l2, (78)

which generalizes (3). This is the same as Duplantier's
result for undirected networks, except that d is replaced
by the number of transverse dimensions D (v= —,

' above

g(6) =1—y(G) =c (6)/2+ —,
' g nt (G)L (L —1), (77)
L&1

which agrees with (2) in the case of the star and water-
melon with c(star}=0,n (star)=l, c(watermelon)=p —1,
and n~ (watermelon) =2, other values of nt ( 6) being zero.
Generalizing the work of Zhao, Lookrnan, and Essam
[15], it is easily shown that for d d„ ignoring the mutu-
al avoidance condition,

and, along this trajectory,

ZG &i„(L(t), u (t), s )
t
2yG (u (~))«

=ZG~~„(Lo, uo, s)e 0 (81)

2yG (u)= k(G)+O(u ), (83)

where

L
A(G)=gnt (6)

L
(84)

As above, nt (6) counts inward and outward fans sepa-
rately.

Carrying out the integration in (81) yields

From (80), as L ~ &n and u ~0, in this limit
ZG~~„(L, u, s) may be replaced by the Gaussian approxi-
mation ZG ~ (s) in which the interactions are ignored.

Also the correct asymptotic form may be obtained by
approximating y G z ( u ) to first order in u, and from Eq.
(3.12}of [3], for the watermelon with p chains, we obtain

7T

In Appendix D this formula is generalized to an arbitrary
network, with the result
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Zg ~p(Lpqupqs)

—Z6 (s) 1+ ln
"p L(t)

G,p 2m L o

—A,( G)

(85) f -ks (A5)

In the case m =n +1, which arises in this paper, the
coefficients have the asymptotic form

and taking up=up and L(t)=s'~ gives the asymptotic
form for s —+ ao ..

—A, (G)

where

g=a +a +. +a b —b —— . b ——1 (A6)1 2 n+1 1 2 n

S

L
(86) and the differential equation is of the form

z "(1—z)y "+"+z" '(c„—d„z)y'"'

Zo (s) -Za &
(s) ln

(A7)

+z" '(c„,—d„,z)y'"

+ +(c,—d, z)y'+cpy =0 .

Assuming that for long chains the discrete network
and the continuum have the same asymptotic behavior,
we find

W, (G,p)-k~'s ' '(lns) (87)
Near the singular point. g = 1, the asymptotic form is

where the factor s ' ' comes from Za (s).
For networks with only two chains, A,(G)=2 for the

watermelon, in agreement with (26); and A, (G) =1 for the
star configuration, in agreement with (25).
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APPENDIX A: GENERALIZED
HYPERGEOMETRIC FUNCTIONS

APPENDIX B: CERTIFICATES
AND VERIFICATION OF RECURRENCE RELATIONS

ap(s)f, +a&(s)f, , + . +a„(s)f, „=g, , (B1)

satisfied by the sum

In this appendix we summarize the method of proof
described fully in the lecture notes of Wilf [18]. Given a
recurrence relation

The hypergeometric function I'„ is defined by f, =QF, (q), (B2)

F„(a&,a2, . . . , a;b&, b2, . . . , b„;z)= g fkz",
k=0

where, in terms of Pochhammer's
(a)k =a (a + l)(a +2) (a +i —1),

(a, )„(a,)„.~ ~ (a ),
(bi)k(bz)k

(A 1)

symbol

(A2)

it is not a trivial matter to verify the relation by direct
substitution. However, if F, (q) is hypergeometric in both
variables s and q, then [13] the coefficients a;(s) are poly-
nomial in s. If, further, we are told that

ap(s)F, (q)+a, (s)F, ,(q)+ . +a„(s)F, „(q)

=G, (q) —G, (q —1), (B3)

The coefficients satisfy the first order recurrence rela-
tion

where

G, (q) =C, (q)F, (q), (B4)
(k+a, —1)(k +a& —1) (k+a —1)
(k+b, —1)(k+b~ —1) . (k+b„—l)k

(A3)

and the function F„satisfies the mth order linear
di6'erential equation

with C, (q) a rational function of s and q, then verification
becomes simple. Dividing (B3) through by F, (q), both
sides of the equation become rational functions of both
variables, the equality of which may be routinely checked
by a computer algebra program. Summing (B8) over q
from q;„ to q,„gives (Bl) with

D(D+b, —1)(D+b2 —1).. . (D+b„—1)y g, =G, (q,„)—G, (q;„—1) . (B5)
—z(D+a, )(D+a2) . (D+a )y =0,

(A4)

where D =z ( d /dz).

&f F, (q) has a natural range of q outside which it is zero,
then taking the sum in (B2) to be over this range and us-
ing (B4) and (B5) gives g, =0.

Giving the coefficients a,.(s) together with the



52 VICIOUS WALKERS AND DIRECTED POLYMER NETWORKS IN. . . 5861

certificate C, (q) may therefore be taken as a proof of
(Bl). The MATHEMATICA program of Paule and Schorn
[17] inputs F, (q) and outputs (Bl) with the variable s re-
placed by s +n. The certificate may be obtained from
their variable aosoL with the recurrence variable re-
placed by s —n and the range variable replaced by q + 1,
thus

C, (q) =gosol(s n—, q + 1)F, „(q + I )!F,(q) .

APPENDIX C: EVALUATION
OF THE NONCROSSING WALK DETERMINANT

Equation (53) may be written explicitly as

q& q2+1 qp+p —
&

W, (qI, qZ, . . . , q )=
q2 qp+p 2

(C 1)

p+1 2 p+2 q

Similar binomial determinants have been evaluated by Gessel and Viennot [24]. Carrying out a sequence of row opera-
tions, the determinant becomes

w, (qI q» .

q)

s+1

s+p —1

q2+1

s+1
q2+1

s+p —1

q2+1

q +p —1

s+1
q +p —1

s+p —1

q +p —1

(C2)

Removing common factors from both rows and columns gives

(s +p —j)!
w qI qg, . . . , qp =Dp + (C3)

where, writing q, =r, —i +1,

(s r&+1)z I (s r—&+1)z &

— (s rz+1)z-
(s »I +2)~ z (s— »2+ 2)~ 2

. —(s r~ +2)~—
D =

(s —r I +p —1) (s r2+p —1) — (s r+p —1)—
1 1 ~ ~ ~ 1

(C4)

Dp is polynomial, of degree p —1 in each of the r,. vari-
ables, and is zero if any two of these variables are equal.
It follows that

show that 8~=(p —I)!8~ „and hence f~(s)=1, from
which (55) follows.

APPENDIX D: EVALUATION OF yg p(u)
D =f (s) + (», —r ).

1~i (j~p
Setting r,. =i —1 gives

(C5)
From the work of Mukherji and Bhattacharjee [3], it

follows that

fp(s)= (C6)
2yG~(u)=

~ ~
glimeZ&'~(i, j)+O(u ),z' ', ,, -o (D 1)

1 =2

where 8& is the determinant with r, =i —1. It is easy to

where @=2—D and the sum is over all pairs of chains.
ZG ' is the partition function with the interactions set to
zero and ZG'~(i,j ) is the first order perturbation coming
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from the interaction of chains i and j. These may be ex-
pressed in terms of the Brownian motion propagator for a
single chain

(D2)

Using (D2) and carrying out the integral over r,

Y(r, , r,+,r, r+, s) =G (r,+ —r, ,s)G (r+ r—,s)I (s),
(D6)

where r is a D-dimensional vector giving the perpendicu-
lar displacement of a point distant z along the chain.
ZG ' is an integral over the nodes N(G) of the network
with an integrand which is a product of propagators over
all chains C(G):

ZGp = r G r r, s
n GN(G) cCC(G)

(D3)

where r, and r,+ are the positions of the beginning and
end of the chain c. ZG" (i,j) is defined by replacing the
propagators for the chains i and j by two propagators
into the interaction which takes place at (r,z) and two
outward propagators:

ZG()) (ij ) = f g dr„Y(r, , r,+,rj, rj+, s)
n EN(G)

where, defining a normalized integration variable y =z/s
and mean position vector r,.(y)=yr,++(1—y)r, ,

1 —(1/2)D

(I/2)D f y(4~)

exp
[r;(y) —r (y)]'

4sy (1—y

[y ( 1 y ) ]
1 —( ( /2 )E

(D7)

The integral is convergent provided that r, Wr and
r,+Ar+. If r, =r, then for e ~ 0 the integral diverges at
y =0, and if r,+ =r+ it diverges at y = 1. If either or both
of these conditions occurs, then carrying out the integral
for e(0, multiplying by e, and taking the limit e—+0
gives

x
c E C(G)~ I i,jI

G (r,+ —r, ,s), (D4) limeI(s)= [5(r, , r~. )+5(r,+,rj+)],= 1

g—+0 2&
(D8)

where where 5 is the Kronecker delta function. Combining
equations (Dl), (D3), (D4), (D6), and (D8),

= f dz fdr G(r —r, , z)G(r —r. ,z)
0

X G (r,+ —r, s —z) G (r+ —r, s —z) .

2yG (u) = g [5(r, , r )+5(r,+. ,r+)]+0 (u ), (D9)
[i,jj

(D5) and carrying out the sum gives (83).
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