
PHYSICAL REVIEW E VOLUME 52, NUMBER 5

COMMENTS

NOVEMBER 1995

Comments are short Papers which criticize or correct papers of other authors previously published in the pgysica~ Review. Each

regular articles is folio~ed, and page proofs are sent to authors.

Coherent stochastic resonance in the presence of a field

Moshe Gitterman' and George H. Weiss
'Department ofPhysics, Bar I/an U-niversity, Ramat Gan, -Israel 52100

Division of Computer Research and Technology, National Institutes ofHealth, Bethesda, Maryland 20892
(Received 10 February 1995)

A recent paper by Bulsara, Lowen, and Rees [Phys. Rev. E 49, 4989 (1994)] presents a perturbation
analysis of coherent stochastic resonance in a half-space in the presence of a field. We believe that the
analysis there was Aawed due to an improper use of the method of images and that a correct version of a
perturbation analysis can be given by using a transformation of the underlying equations. The result still
exhibits stochastic resonance.

PACS number(s): 05.40.+j

I. INTRODUCTION

The theory and applications of the set of phenomena
classified under the rubric of stochastic resonance (SR)
has recently been reviewed by Moss [1] and Jung [2]. To
date there have been a number of physical systems in
which some form of SR can be demonstrated [3—5) as
well as neurological processes, which are conjectured to
make use of SR [6—8]. There are many theoretical for-
mulations of SR, the simplest of which is the one-
dimensional overdamped dynamical system defined by
the equation

y = F(y)+b cos—(vt)+f (t)

in which F (y ) is a deterministic force, b is a constant am-
plitude, v is the frequency of the periodic forcing term,
and f(t) is some form of noise. Stochastic resonance
arises as a type of interaction between the periodic forc-
ing term and the noise. The characteristic of SR is that
the sinusoidal driving force is able to significantly
enhance or in some way qualitatively change effects on
the dynamics that are due to noise alone.

In addition to the periodic and random forces, one also
needs a nonlinear mechanism to produce SR since in a
linear system there is essentially no interaction between
random and deterministic signals. In the absence of
noise, a weak (in comparison to a potential barrier as-
sumed as part of the definition of the dynamic system)
periodic force is unable to induce transitions between
different potential minima. When all three elements are
present in the system the periodic forcing term can pro-
duce SR when the frequency resonates with the Kramers
jump rate. An earlier attempt to show that SR can occur
without a periodic signal [9] was found to be in error
[101.

There are, however, linear systems that exhibit SR due
to the presence of traps [11]. Although the system
remains linear, the trapping boundaries produce addi-
tional stable or metastable states. The possibility of SR

in terms of the mean first-passage time (MFPT) to trap-
ping is due to this factor. This was shown to be true for a
one-dimensional lattice random walk and a pure diffusion
process on a line terminated by two traps [11]. The
MFPT to trapping in such a system was shown to have a
minimum when considered as a function of either the fre-
quency or the amplitude of the periodic field [12]. The
motivation for studying the behavior of such systems is as
a model for systems in which elements of a system subject
to periodic fields can change behavior when a threshold is
reached. These are exemplified by excitable cells in which
the amplitude of nerve signals that reach a threshold are
returned to their resting state [13] and in the study of in-
duced transitions between the two states of a Schmitt
trigger [14].

In the present paper we consider the resonance
phenomenon in a one-dimensional diffusion process on a
semi-infinite line driven by a periodic forcing term and a
constant bias. The bias term is necessitated by the fact
that the MFPT of a diffusion process on a semi-infinite
line terminated by a trapping point is infinite. A pertur-
bation analysis of such a a system was given in [15], but
we believe that analysis was Aawed because of an inap-
propriate use of the method of images to derive a solution
to a diffusion equation in which the position of the trap-
ping point is time dependent. It is known that the ex-
istence of moving boundaries greatly increases the com-
plexity of finding a solution [16,17] and, in particular,
that such a solution cannot be found using the method of
images.

II. ANALYSIS

When the noise term in Eq. (1) is such that (f(t) ) =0
and (f(t)f(t')) =2D5(t t'), D having the—dimensions
of a diffusion constant, then the properties of the random
variable y (t) may be summarized in terms of a probabili-
ty density at time t, which we write as p(y, t). The
Fokker-Planck equation satisfied by this function can be
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written

Bp Bp Bp=D —[p+b cos(vt)]
By

2 By
(2)

Bp Bp Bp+ [v +E cos(c01 ) ]
Bx Bx

(3)

Our perturbation theory is based on the assumptions that
v =0 (1) and E « 1.

It will prove convenient to eliminate the term in v by
defining a dependent variable I (x, r) by

VX V 7
p(x, r) =I (x, r)exp

2 4

where, in the case to be considered here, p is taken to be
a positive constant and the trap is located at y =a. Equa-
tion (2) can be written in terms of dimensionless parame-
ters by changing the spatial variable to x =1—y/a, the
time variable to r=Dt/a, the amplitude of the constant
force to v =)Ma /D, the amplitude of the periodic force to
c=ba/D, and the frequency to co=va /D. In this set of
coordinates the trap is located at x =0 and the initial po-
sition is located at x =1, which means that x can take on
all positive values. This set of transformations converts
Eq. (2) to

Since e is assumed to be a small parameter we will ex-
pand the function I in a perturbation series as

r(x, r)= y r„(x,r)E",
n=0

BI )

a7.

a'r,
Bx

BI o ——I 0 cos(cor)
Bx 2

(7)

—:F(x,r )cos( cur ) .

The initial conditions for these equations are

r,(x, O) =n(x —1), r, (x, O) =O .

An elementary calculation serves to show that I 0(x, r) is

r,(x, r) = 1
e

—(» —i) /4~ e
—(»+ i) /47'] U/2

&4~r
with the result that the function F(x,r) that appears in
Eq. (7) is

concentrating only on the two lowest-order terms in the
expansion. These are readily seen to satisfy

Bro B'ro

Bx

This way of eliminating the constant forcing term has the
advantage of keeping the trap at the fixed point x =0
rather than having a moving trap as in [15]. The func-
tion I (x, r) introduced in Eq. (4) satisfies

F(x,r)= t(x+1+vv)e1

4&~~'
—(x —1+vr)e '" " }e' (10)

B I BI v+ c, ——I cos(d'or ),

as can be verified by substitution into Eq. (3) for p (x, r).

A formal solution to the equation for l, (x, r) can be writ-
ten in terms of the Green's function for the diffusion
equation, which incorporates the trap at x =0. This is
found to be

r (x r)= f cos(~r 'dr f "F(u r )[e
—(» —~)'/4( —~') e

—(»+~)'/4( ')]d„—
4)7 0 7 —7.' 0

The integral with respect to u can be evaluated explicitly. If we denote the integrand by J(x, u, r ), then it is found that

J(x,u, r') = (u +vr')e'/ 1
exp — (x +1)—

2+m.(r')' 4~
7 1-'

u —1+(x +1)—
4r'(r r')—

2
I—exp — (x —1) —, , u —1+(x —1)—

4r 4r'( r r')— (12)

Since this has a relatively simple dependence on u the integral can be evaluated in closed form, the results being expres-
sible in terms of the functions

f(b, A, )=
. &/2

erf( bv k), —g(b, A ) =bf (b, A. )+ exp( —Ab ),1 1h(r, x ) =exp — (1+x )
4w

(13)

Let I(,r', x ) = f 0 J(x, u, r')du. This function is found to be

I(~,r', x )= vr' h(r, x )f 1 —(x+1)——h(r, —x )f 1+(x —1)—1

&4~(r )' T

+ h(r, x)g 1 —(x+1)——h(r, —x)g 1+(x —1)—1

T
(14)
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which then leaves only the integral with respect to ~ to be
evaluated in the expression for I )(x, t). In the following
discussion we show that it is possible to find an explicit
formula for the MFPT.

The simplest parameter that exhibits SR is the MFPT
corresponding to the time to reach the trap. We sketch a
derivation of the expression for this parameter. A repre-
sentation of this function can be obtained by making use
of Eq. (4) as
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in which f'(s, s') is the two-dimensional Laplace trans-
form of I (x, r ) with respect to its two arguments. Let us
decompose (t(co)) into a sum of two terms, the first be-
ing the contribution from I 0(x, r), which, of course, can-
not give rise to resonant behavior, and the second contri-
bution coming from I,(x, r), which is proportional to E.
We omit this factor in calculating the Laplace transform
to concentrate on the contribution from I",(x, r) only.

For this purpose we begin by defining the function

FICr. l. Curves of (t(co)), plotted as a function of co for
U = 1, 3, and 5. The resonant behavior increases with increasing
U.

Here again the integrals are sufticiently simple so that
they can be evaluated explicitly. If we write

v/2

G( )
—

t
—(x —il) /4T —(x+u) /'41-I

&4~r
(16)

2

+lCO (20)
and seeing, from Eq. (11), that I,(x, r) can be expressed
in the form

I,(x, r) = f du f F(u, r')cos( n'))rG(x, u, r r')dr' . —
0 0

(17)

then

eV e VS

(t(co)),= Re
U LCO

(21)

The transform of this function with respect to ~ is
simplified by noting that the w' integral is in convolution
form. This implies that

This can be further reduced to

e" 'sinb(t(n))))=—

in which the parameters a and b are

2 2

X,II ((x,~)I=2 f F u, +ice +F u, icg—
0

(22)

2

XG xu, du,
t

) [U2+(U4+ 16 2)1/2]
I

)/2
8 2Q

(23)

2 2

(t(co)))=—,
' f F u, +in) +F u, iro—

0

2

XG —,u, du . (19)

in which, according to Eq. (15), the transform parameter
is set equal U /4 and the overbar indicates a transform
with respect to ~. The final step is to take the transform
with respect to x. Define the notation
X„IG(x,u, s)J =G(s', u, s). Then our final result can be
written in terms of the two-dimensional Laplace trans-
form as

A plot of (, t(ro) ), as a function of n) is shown in Fig. 1

from which the resonant behavior is evident, although a
glance at the ordinate values shows that it is quite a weak
one for the values of v that have been chosen for the
graphs. The general mathematical techniques in the
present paper also allow a calculation of higher moments.
This has not been included here nor have we given the
probability density for the FPT because it is expressed in
terms of a somewhat complicated integral that can only
be evaluated numerically. It is not known at present
whether higher-order terms in the perturbation series
also exhibit resonant behavior as a function of co, al-
though we believe it to be true.
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