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Self-organized criticality in coevolving interacting systems
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A simple physical model of biological evolution of an ecology of interacting species is introduced.
The model self-organizes into a critical steady state with intermittent coevolutionary explosions and
exhibits the "punctuated equilibrium" phenomenon. The dynamics of the model markedly di8'ers
from that of an earlier (and simpler) one of Bak and Sneppen [Phys. Rev. Lett. 'Tl, 4083 (1993)],
but allows for similar conclusions, which allows one to speculate about their universality.

PACS nuxnber(s): 87.10.+e, 05.40.+j

Gould [1] has conjectured that biological evolution
takes place in terms of intermittent bursts of activity sep-
arating relatively long periods of quiescence rather than
in a gradual fashion. Such an intermittent pattern has
been observed by Raup, Sepkosky, and Bayonian [2—5] by
studying fossil records. When referring to this intermit-
tent behavior of the evolution of single species, Gould
speaks of "punctuated equilibrium. " It has been sug-
gested that extinction events (at least the larger ones)
are caused by external forces [6—8].

Plausible as this sounds, punctuated equilibrium may
well be the natural consequence of the intrinsic biologi-
cal dynamics, with no need for external triggering mech-
anisms. The ecology of interacting species may have
evolved to a self-organized critical state [9,10]. Self-
organized criticality (SOC), a concept introduced by Bak,
Tang, and Wiesenfeld and best illustrated by the cele-
brated Bak sandpiles [11,12,14—16], refers to the tendency
of some dynamical systems to organize themselves into a
"poised, " far off equilibrium state.

However, theoretical investigations have been thwarted
by the difBculty of constructing realistic yet tractable
mathematical models. First, punctuated equilibria were
observed by Bak, Chen, and Creutz [9] in the "Game
of Life, " a simple computer model of a society of living
and dying individuals living on a two-dimensional lat-
tice, that, however, is not robust against small changes
in the rules, as it should be in order to represent "real"
evolution. Later, Kauffman and Johnsen [10] studied
elaborate "NKC models" of species coevolving at the
edge of criticality, with periods of stasis interrupted by
avalanches. However, these models do not self-organize:
some external tuning of the system is needed to obtain
critical behavior [13,14]. Bak et al. [15,16] have investi-
gated an evolving biological model that self-organizes to
a critical steady state, although it is too simple to allow
for reasonable conjectures concerning terrestrial biology.
This model does exhibit punctuated equilibrium and is
to be regarded as a major advance in our understanding
of evolutionary phenomena.

We see that, on the one hand, "realistic" models re-
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quire external tuning in order to exhibit SOC, while, on
the other, one reaches it in a robust fashion only in rather
simple models. Such a state of affairs should motivate
the search for somewhat more realistic biological models
that self-organize without external intervention. We can
regard the well-known Lotka-Volterra equations for the
oscillations of a predator-prey pair of biospecies [17] as
the archetype of a biologically inspired dynamical system
[18] and it is our intention to look to it for guidance in
such a search.

We thus introduce in the present effort a model that
deals with several interacting species. The dynamics of
the model, inspired in [17], will be seen to evolve nat-
urally towards a critical state that clearly exhibits the
punctuated equilibrium phenomenon without external
tuning. Of course, this is also a simple model, but it
does contain features associated with actual biological
evolution. Moreover, it is of a rather general character,
as it can be easily modified in order to introduce more
realistic ingredients. Finally, the level of description is
conceptually different from that of the above cited pio-
neering efForts.

We deal with M distinct, interacting biological species,
each of which is represented by a vector in R . The com-

~Z
ponents V' of V represent different phenotypic features
(n, P, . . .) that are to be affected and modified by the evo-
lutionary process. The degree to which the ith species is
"adapted" to the environment is represented by a quan-
tity F, , to be called its "fitness":

M N N

F;=) ) g'pV'Vp+ ) V*A', i=1, . . . , M,

where the hypermatrix g' provides the details of the
interspecies interaction ance the second summand on the
right-haiid side is an "environmental" one (see below).
We assume g'& ———g&' . This is a reasonable assump-
tion, because if the o. feature of the species i gives it a
competitive edge against the P feature of the j species,
the latter gives it, of course, a competitive disadvantage
against the former (symbiosis is excluded). The A' ma-
trix mimics the environmental influence (such as climate
and geography) over the p feature of the ith species. No-
tice the strong similarity of the right-hand side of (1) to
that of Volterra's dynamics for the populations N; of M
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interacting species [17]

dN,' = ) A' N;+g'~N;N~, (2)
j=l

where, of course, the symbols have different meanings,
which we do not need to explicate here.

Of course, the components of must necessarily ex-
hibit some degree of correlation, as genes are simultane-
ously involved in several phenotypic features. We shall
represent this correlation by recourse to mappings be-
tween a set of k + 1 real parameters and each of these
components, i.e.,

fp: ao (3): Vp,

where

=) 0,
whose value is to be ascertained at a series of regularly
spaced times. A species becomes extinct when it accu-
mulates a succession of changes of a certain magnitude,

~Z
more specifically, whenever the vector V traverses in
R a distance larger than (a threshold) Dt.

&j = k(ao " a'i. ) (4)
with fp an arbitrary function. The set ao, . . . , a& defines
in fact the i species. As a result of biological mutations,
these parameters are allowed to vary with time. The
family of all these (M) sets can be called the configuration
of the system.

The conceptual difFerence between the a's and the V's
should be emphasized here. The components of V de-
note different phenotypic features of the species that this
vector represents. These features are correlated, via the
a' s, in the manner just described. Genetic changes, here
mimicked by modifications in the a values, drive the evo-
lutionary process. The correlations just mentioned con-
stitute an essential aspect of our model.

Our system evolves as follows. We start with an ar-
bitrary initial configuration (the a; are randomly chosen
within [

—1, 1]) and, in each of a series of time steps, mu-

tation effects are mimicked by slightly modifying the a;
for the lth species. Both the selection of L and the nature

of the changes are random. The condition
l l= 1 is

enforced so as to avoid unrestricted growth (with time)

ofl 4
A particular mutation (change in a given a) is "ac-

cepted" if it increases the corresponding fitness (as a con-
sequence of such a mutation E; grows). The a change in
this case is retained. Otherwise it is discarded and the
a, end up with their previous values.

Extensive numerical studies suggest that such a system
never reaches an equilibrium situation, a fact that could
be guessed from the skewed symmetry of g'~ [19]. The
number of species M is kept constant for the sake of
simplicity. However, as the features of each species are
in a state of continuous change, there is a considerable
amount of "evolutive activity, " which we shall quantify
with reference to the motion of a "center of mass"

For the sake of simplicity we choose (i) our hypermatrix
in the form

g.'2p = A:;j b.p (6)

and (ii) A* = 0. Thus (1) reduces itself to

1) ~ ~ ~ j M) (7)

where A:;j ———kj, The k;j are randomly chosen within

[
—1, 1] (for i ( j) and are kept constant throughout.

These simplifications notwithstanding, a complex enough
dynamics ensues that can account for important details
of fossil records.

As polynomials are the basis in any reasonable function
space, the "correlation functions" discussed above can be
chosen in a simple, and at the same time general, fashion
as k-degree polynomials [cf. (4)]

so that

k

= ) a„x",
n=O

x =P/N,

Vp ——) a'„(P/N) ".

Figure 1 displays "activity" as represented by the dis-
tance traversed by X, in regular time intervals. Here
we take M = 17 and N = 7 and f (x) is a polynoinial of
second degree. We considered 1000 time steps (arbitrary
size). Figure 1 strikingly resembles Sepkoski's extinction
curve [5], obtained by recourse to a careful study of fossil
records.

A suggestive, more quantitative result is obtained by
constructing a histogram with the data of Fig. 1 (Fig.
2). By studying extinction patterns in 106 intervals of
about 5 x 10 yr each, Raup has concluded that the cor-
responding distribution follows a power law [3]. We see
in Fig. 2 that the data of our model are well fitted by a
power law. The concomitant slope P cannot be directly
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FIG. 1. Global evolution rate (arbitrary units) for M = 17
and N = 7. Each point represents the distance traversed by
the center of mass of the system in 1000 time intervals of
arbitrary size.
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FIG. 2. Histogram constructed with the data depicted in
Fig. 1 (lower curve). The log-log graph clearly shows that a
power law is obeyed. The corresponding curve obtained with
M = 50 and 1V = 10 is also exhibited (upper region).

FIG. 4. Lifetime distribution (arbitrary temporal units) for
M=25 and %=7. The log-log graph allows one to easily ap-
preciate that a power law is fairly well adjusted.

compared to the one of Raup because ours is a continu-
ous distribution [of the form P(D)dD oc D ] and not a
discrete one (number of extinguished species). Our P is a
function of both o. and n, the number of intervals in the
bar chart. This interrelation of n, P, azid n is the cause
of large errors in the estimation of o.. In the case of Fig.
2 we have a 0.6.

We portray evolutive activity vs time, but for a sin-

gle species, in Fig. 3. Punctuated equilibrium is indeed
observed: long periods of "passivity" are interrupted by
sudden activity outbursts, which play here the role of
Bak's avalanches [15]. We find the same results indepen-
dently of the particular values chosen for M and N.

The species in our model eventually become extinct as
changes due to mutations accumulate. As stated above,
a species is to be regarded as extinct whenever the vector

traverses in R a distance larger than a threshold Dq.
This threshold can be, in principle, arbitrarily chosen. A
sensible choice, however, is to select it to be of the order
of the greatest length traversed by any of the vectors

in a single time step. Dt be neither very small (all
species become rapidly extinct) nor very large (too few
species will become extinct during the whole simulation
process). We have made sure that our results are robust
against changes in Dq around the chosen value. When a
species becomes extinct, the vector that represented it is
kept as the representative of a newborn species.

The concomitant distribution of lifetimes deserves then
to be studied (Fig. 4). We see that lifetime distributions
do adjust a power law, in agreement with the findings
(fossil records) of Raup et at. [2—5].

Suppose now that all "mutations" are retained,
whether or not they are "beneficial. " Darwinian compe-
tition is thus ignored. Figures 5—7 depict the associated
results. Punctuated equilibrium no longer obtains. No
power laws are obeyed. The associated dynamics can be
regarded as considerably "poorer. "

An extremely simple model of biological, competitive
coevolution has been presented that is able to exhibit
a rich, complicated dynamics, complex enough so as to
mimic (even if superficially) some facets of actual bio-
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FIG. 3. Single-species evolutive activity (arbitrary units).
The data are those of Fig. 1. Punctuated equilibrium is
clearly observed.

FIG. 5. Global evolution rate (arbitrary units) for random
motion without Darwinian competition (see the text) for the
case M = 17 and N = 7. Additional details are as in Fig. 1.
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FIG. 6. Histogram constructed with the data of Fig. 5.
Additional details are as in Fig. 2. No power law is seen to
be obeyed.

FIG. ?. Single-species evolutive activity (arbitrary units).
The data are those of Fig. 5. Punctuated equilibrium is no
longer observed.

logical evolution. On the basis of this model one can
conclude that these facets can be explained without re-
course to catastrophic events. It is shown in Fig. 1 that
evolution towards a critical state proceeds rather rapidly.

Our model can be regarded as more realistic than that
of [15]. Its main advantage vis-a-vis the model of Bak
and Sneppen [15] resides in the fact that the interaction
among species receives a much more detailed treatment:
species A is here able to respond gradually to changes
affecting species B and second-order effects arising out
of this interaction and affecting other species (C, D, . . .)
are also taken into account. A chain of changes thus en-
sue that takes place within the time scale in which B is
changing. In other words, in our model "actions" (mod-
ifications in the features of a given species due to biolog-
ical evoution) and "reactions" (concomitant changes in
the remaining species) take place almost simultaneously,
which is not the case in [15]. This difference between the
models is to be attributed to the diverse temporal scales
(TS's) they encompass. In [15] the TS's are those for
which a given species sufFers drastic modifIcations, while
ours allow for the description of very small ones.

Our model divers in a fundamental manner &om previ-
ous ones that predict extinction curves (ECs), e.g. , Game
of Life [9], NKC Kauffman-Johnsen models [10], asym-

metric spin glass models [13], or the Bak et al. model
[15,16]. The ECs in these models respond basically to
an identical procedure. (i) Let the system evolve until it
reaches a frozen state. (ii) After it comes to rest, perturb
it by a single random mutation that does not increase
the itness of the corresponding species. This induces a
coevolutionary avalanche, rather small in the beginning.
When the system comes again to a stop repeat (ii). Af-
ter a while, the system is pumped up to a "poised" state,
where yet another mutation may induce an avalanche of
any size.

In our case we cannot properly speak of avalanches but
rather of sudden activity explosions. But in this case,
however, these activity outbursts are not the product of
perturbations of an equilibrium state. Instead, they arise
out of the intrinsic dynamics of the system.

Summing up, our model markedly divers &om that of
Bak, Sneppen and Flyvbjerg [15,16] in its dynamic as-
pects. However, "evolution" proceeds in a rather similar
manner in both models, which tends to support the no-
table ideas put forth by those authors concerning the
possibility of understanding, on the basis of simple mod-
els, the phenomenon of self-organization into a critical
steady state.
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