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Crossover integral-equation theory for the structure of simple liquid metals
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The main purpose of this work is to report on a calculation that describes the role of a long-range
bridge function as applied to the study of the structure of simple liquid metals. We have drawn attention
to the crossover integral equation method, which, in essence, amounts to adding to the long-range bridge
function a short-range correction of bridge diagrams. The suggested crossover scheme has been tested
for the case of liquid metal Cs at both the elevated and the supercooled liquid temperatures. Remark-
ably good results for the calculated liquid structures were obtained.

PACS number(s): 61.25.Mv, 05.20.—y, 61.20.Lc

The study of the structure of liquids has become the
core of integral-equation theories. Among the variants of
these theories the hypernetted-chain (HNC) theory has
received considerable attention due, on the one hand, to
its feasibility to model a realistic system such as the
Coulomb liquid and, on the other hand, to its possibility
to combine with another integral-equation approximation
yielding a more accurate and refined theory of Quids.
The HNC approximation corresponds to solving itera-
tively the following set of coupled equations:

h(r)=c(r)+p f h(~r —r'~)c(r')dr, (1)

g (r) =exp[h (r) —c (r) —PP(r) ] (2)

for a pair correlation function g (r). Here h (r) =g(r) 1—
and c (r) are the total and direct correlation functions, re-
spectively, p is the number density, P= I/kz T is the in-
verse temperature, and P(r) is the pair potential. In ear-
lier applications, the HNC integral equation was first ap-
plied to study the liquid structure for the classical one-
component plasma. In reference to the computer-
simulated g (r), it was realized that the HNC approxima-
tion generally underestimates the magnitudes of oscilla-
tions in the latter g(r) and is inadequate for small and
moderate distances especially near the first peak of g (r)
[1]. In the statistical mechanical theories of liquids the
HNC approximation has been widely compared also with
other approximate integral equations such as the Percus-
Yevick, Born-Green-Yvon, mean spherical approxima-
tion, etc. , to further assess its potentiality as a theoretical
tool for the liquid structure study. From these compara-
tive studies it is quite evident that the HNC scheme is
generally applicable to the system with a long-range po-
tential, but is only valid at a low density; the HNC ap-
proximation deteriorates, however, at moderate to high
density states.

Various attempts have been devoted to finding a better
substitution for the HNC scheme. Both the density func-
tional formalism [2] and the diagrammatic expansion
theory [3] have been advanced. It can be shown that the
modified HNC approximation, which explicitly incorpo-
rates a bridge function 8 (r) in (2), viz. ,

g (r) =exp[h(r) —c (r) —PP(r) —B(r)], (3)

provides better closure than the HNC theory. As it
stands, this modified HNC equation is mathematically
rigorous if 8 (r) can be obtained exactly by some means.
There are two avenues to obtain 8 (r). The first avenue
resorts to some known models such as a fluid of hard
spheres and derives an analytic or numerically tractable
expression for B(r). That this avenue is justifiabl is
based on the short-range universality ansatz for 8 (r) [1].
However, to execute this method efficiently one requires
the determination of the "bridge" parameters that
characterize the model system. Both the thermodynamic
self-consistency [4—6] and the Lado [7—9] minimized free
energy criterion have been proposed and achieved vary-
ing degrees of success. The second avenue chooses to cal-
culate the B(r) directly. This has been followed by Iye-
tomi and Ichimaru (IS) [2] using the density functional
formalism. According to IS the 8 (r) can be written

X Qh(r, ), (4)

where K' ' is a j-particle correlation potential. DifFering
from the first approach, 8(r) given by (4) does not in-
volve any adjustable parameter.

Both these methods have been applied proliferately in
the literature to a variety of liquid systems. A general
conclusion is that the thermodynamic self-consistency
and the Lado criterion can equally produce structure
data with desirable accuracy if the way to determine the
bridge parameters is appropriately carried out. However,
there still remains basic ambiguity in applying these ap-
proaches such as the use of Lado's criterion as pointed
out recently by us [9]. In contrast, the 8 (r) proposed by
IS is theoretically founded on better physical grounds
since it does not involve any fitting parameter. The only
disadvantage is that the numerical evaluation of the mul-
tiparticle correlation potentials of 8(r) is a formidable
task. In this Brief Report we devote further analysis to
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FICz. 1. (a) Pair correlation function g(r) (top) for the liquid

metal Cs near freezing calculated using the modified HNC with
Bls{r) (full curve) and the HNC g{r) (dashed curve) compared

'
h h MD (r) (solid circles) from [9]. The curves oscillating

about the zero axis are the bridge functions B&s(r) (fu curve
and HNC B(r)=0 (dashed curve). The inset amplifies the g {r)
and Bjs(r) in the region near the second minimum and max-
imum. (b) Static liquid structure factor S(q) for the liquid met-
al Cs near freezing calculated using the modified HNC with
B&s(r) (full curve) and the HNC (dashed curve) compared with
the experimental data (solid circles) from Huijbin and van der
Lugt [17].

IS's approac anh and see if the higher-order correlation po-
tentials can be accounted for via other means.

To begin with we note that in their study of the
higher-order correlation potentials on the convolution
approximation IS express the ternary correlation poten-
tial as PK' '(r„r2, r3)= —h(r i2)h(rz 3)h(r3i), where

This IC' ' can be substituted into (4) to
yield the simplest bridge diagram B,s(r). The calculation
of the static liquid structure factor S(q) can now be per-
formed if an interatomic potential P(r) is given. For the
latter we employ

Z eff 2 co + Sin/ 7y(r)= 1 ——J deGEc(&)r 7T 0 q
(5)

which is constructed from the generalized nonlocal mode 1

10 . Wepseudopotential theory of Li, Li, and Wang . e
refer the interested readers to Ref. [11]for the definition
of various physical quantities and Ref. [12] for a P(r) of
liquid metal Cs.

Figure 1(a) displays the modified HNC and HNC g (r
for the liquid metal Cs near freezing calculated iteratively
using K' ', (1), and (3)—(5). Also included in the figure
are the g (r) obtained from the molecular-dynamics (MD)
simulation [9] and B,s(r) [the HNC corresponds to
B(r)=0]. We see from the figure that B,s(r) has a
short-range part ( ~ 5. 3 A) that is quite soft, shows a neg-
ative valley near the first peak of g (r), changes sign to a
positive peak (6.5 —8.3 A) near the principal minimum o

( ) d maintains a nonzero weakly damped oscillatory
behavior beyond. This distinct feature of Bis(r) has t e
consequence of enhancing the principal maximum and
lowering the first minimum of g(r) compared with the
HNC g(r), where B(r)=0. The fact that the second
maximum of the modified HNC g(r) shows a broader
dispersion arises mainly from the negative-positive values
of B,s(r) near the region 8.4—10.6 A. Nevertheless, our
calculated modified HNC S(q), depicted in Fig. 1(b), still
underestimates the measured S(q), although its agree-
ment with the latter is somewhat better compared with
th t f the HNC S(q). It thus appears that with K' '

.'
blealone it is unlikely to reproduce an accurate and re 1a e

S(q). Furthermore, from the basic feature of B,s(r), this
result implies that the short-range potential is inade-
quately taken care of with just the ternary correlation po-
tential E'' '. We therefore turn to consider higher-order
correlation potentials K'~- '. Instead of proceeding to
calculate the latter directly, which is numerically tedious
as noted above, we draw attention to two closely related
works by Foiles, Ashcroft, and Reatto [13] and Kam-
bayashi and Hiwatari [14].

The idea behind these calculations is the following.
Since B,s ( r ) describes the major part of long-range in-
teractions, one can supplement the B,s(r) with an addi-
tional bridge function correction that hopefully accounts
for the short-range potential. Surely the added correc-
tion should play the role of the omitted higher-order
correlation potentials E'~ — '. On the basis of this idea,
they suggested a crossover integral equation theory. The
procrocedure consists of modifying the j=3 term in (4 to
read

B (r) =f(r)B,s(r)+ [1—f(r) ]5BsR(r,a),
in which 5BsR(r, a), a being the bridge parameter [1,9],
is the short-range bridge function correction appropriate-
ly chosen to compensate for the part where B,s(r) is
inadequate. In (6) the continuous mixing function
0+f(r) & 1 has the form f (r)= [1+tanh[(r —R)/
W] ] /2, where R is the second position of g (r) = 1; W is a
parameter that restricts the r values to lie near the short-
range region and may be taken to be the width extending
from the position of principal peak to R. It should be
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(c) experimental S(q) [17]. We stress two main features.
First, relative to the MD g (r), the CRS pair correlation
function is found to be of equally high quality as that cal-
culated from the BMi (r, g) notably at the position of the
first minimum. Second, we notice in the region of the
second maximum that S(q) shows a clear double peak
structure whereas the measured S(q) and SMi (q;g) show
none at all. Both the first feature and the apparent spuri-
ous structure for the CRS S(q) can be explained by ex-
amining quantitatively the bridge functions BMi (r, g)
and CRS B (r), which are plotted in Fig. 2(a). In the first
place we observe that BMi (r, g) has a relatively weaker
positiue defi-nite oscillation compared with the CRS B (r),
which exhibits a stronger positive-negative oscillation. In
the region around the second minimum of g(r) both the
CRS B(r) and BMi (r, q) have the same positive peaks,
but the dispersion of the former is narrower, giving rise
to a slight improvement in the magnitude of the second
minimum of g(r). In contrast, in the vicinity of the
second peak of g(r), we observe a strong oscillatory
behavior for the CRS B (r) that varies from a negative
valley (-8.8 A) to a positive peak (-10A), whereas that
of BMi (r, g) begins with a zero valley, exhibits a broad
positive value, and damps off rapidly at large r. Conse-
quently, the structural change around the second max-
imum of the CRS g (r) is in opposition to ML's g (r) as
amplified in the inset of Fig. 2(a). It is worthwhile to em-
phasize that the negative-positive value of the CRS B (r)
is necessary for explaining the moderate- to long-range
part of the S(q) structure. This change in sign of the
B (r) reminds us of a successful extraction scheine of both
the long- and short-range bridge functions for studying
the liquid structures of classical one-component plasmas
[18,19]. It was found that the latter B(r)'s exhibit the

same change in sign and reproduce extremely well the
simulated g (r). Similar structural characteristics are ob-
served for the empirical B(r) extracted also from the
computer-simulated g (r) for the liquid metal [20]. The
relevance of these B (r)'s on g (r) [and hence on S(q)] can
be further deduced from several liquid structure calcula-
tions using the hard-sphere B (r) [9,13,16].

The above method of calculation has been extended
also to the study of liquid structure at elevated and super-
cooled liquid temperatures. For the liquid states at high
temperatures, which are given in Fig. 3(a), there is no
essential difference between the CRS B (r) and BML(r, g),
for the B,s(r) will physically become less important at
elevated temperatures. On the other hand, for the super-
cooled liquid phases, we see from Fig. 3(b) that the CRS
B(r) continues to delineate an equally accurate g(r), al-
though the oscillation of B,s(r) tends to be enhanced
somewhat particularly for moderate to larger r [see Fig.
2(a)]. These results suggest that the present crossover
integral-equation procedure would need further embell-
ishment for the supercooled liquid states, but the CRS
theory certainly is a promising alternative to the many
B (r) presently available in the literature.
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