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High-resolution numerical experiments, described in this work, show that velocity fluctuations
governed by the one-dimensional Burgers equation driven by a white-in-time random noise with the
spectrum

~f(k)
~

~ k ' exhibit a biscaling behavior: All moments of velocity differences

S„~3(r)=~u(x+r) —u(x)~"= ~Au ~" ~ r"~, while S„&3(r)~ r " with g„= 1 for real n )0 [Chekhlov and
Yakhot, Phys. Rev. E 51, R2739 (1995)]. The probability density function, which is dominated by
coherent shocks in the interval hu (0, is P(hu, r) ~(hu) ~ with q =4. A phenomenological theory
describing the experimental findings is presented.

driven by a white-in-time random force defined by the
correlation function

f (k, t)f (k', t') ~D(k)5(k+k')5(t t'), — (2)

with D( k)=e kII' and co=0(1), was motivated by an
interest in dynamical processes which involve an inter-
play between chaotic and coherent phenomena. It has
been shown that the velocity field u(x, t) consists of
random-in-time and random-in-space fluctuations super-
imposed on the relatively strong and long-living shocks.
Numerical simulations yielded the energy spectrum
E(k} ~ax(k)~ ~k " and x =3+0.02, characteristic of
Kolmogorov turbulence [2] and the Eulerian correlation
function C(k, co)= ~u (k, co)~ ~ k ~ 4(co/k') with the
dynamic exponent z =—', . This result shows that in this
system the kinematic transport of the small-scale velocity
fluctuations by the large-scale structures is very weak.
Investigation of the velocity structure functions
S„(r)=[u(x+r) u(x)]":—(hu)" wit—h integer n revealed
strong deviations from the Kolmogorov picture of tur-
bulence: all moments S„&3(r)IX: r " with $„=1,charac-
teristic of strong shocks. Thus the system governed by
(1) and (2} shows both "normal" (Kolmogorov) and
anomalous scalings with the latter dominated by the
coherent structures (shocks). In this work we are in-
terested in the details of the probability density functions
(PDF's) characterizing the fiuctuations generated by (1)
and (2) and in the role the structures play in the deter-
mination of the PDF's shape. The PDF P(bu, r) is
defined such that P(X,r)dX is the probability of finding a
velocity difference hu =u (x +r) u(x) within the i—nter-
val (X,X+dX) for infinitesimally small dX. A spectral
code with 12 288 Fourier modes was used in the numeri-
cal experiment. Equation (1) with a hyperviscous (instead
of viscous) dissipation term was solved. The details of the
numerical procedure are reported in [1].

PACS number(s): 47.27.Gs

Our recent study [1] of the one-dimensional Burgers
equation
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FIG. 1. Normalized two-point PDF F( b u /R '
)

=R ' 'P(b u, r) for separations r/dx =200,250, 300, 350,400
within the universal range. The collapse of various curves sup-
ports the choice of the scaling variable P=(b,u)/R '~3, where
function R (r) is defined in the text.

The most prominent feature of the Burgers equation is
a tendency to create shocks and, consequently, to in-
crease the negative velocity differences hu (0 and to de-
crease the positive ones b, u )0 [3]. Thus strong asym-
metry of the curve P(b, u, r) is expected. The two-point
PDF P(b, u, r) was measured for a set of separations r
covering a variety of scales in the system in the following
way. The range of variation of the velocity difference,—5 & hu /u, , & 5, was divided into 10 bins. The data
were collected during a time longer than the ten largest
eddy turnover times [corresponding to O(10 ) time steps]
and were distributed among the appropriate bins to gen-
erate a histogram. Figure 1 presents IF'(hu, r) for the
inertial range separations r/dx =200, 250, 300,350,400,
where dx =L/12288 is the mesh size and L =2m is the
system size. If follows from (1) and (2) that
(b.u) ~ @or ln(rkd ) and that is why this PDF has
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shifted maximum, approximately at P = ( b, u ) /R '

=0.5. Here the function R ( r ) defined as
R ( r )—:f [f (x + r) f (—x ) ] dx was also directly mea-

sured. It is fully force dependent and in a system with
viscosity it may be analytically calculated for the
inertial-range values of separation r, giving

R (r) o- (b,u) ~ ear ln(rkd ), where kd ~+ ~ is a dissipa-
tive cutoff wave number. Technically speaking, the sys-
tern considered in this work does not have a real
"inertial range" since the mean dissipation rate
e=O(eoln(Lkd)} depends on the ultraviolet cutofF kd.
This dependence, however, is weak and in what follows
we take kd=0((eo/v )' )

The tail of the PDF P(b, u, r) for hu (0 is shown in
Fig. 2 for various magnitudes of the displacement r in the
universal range. One may observe from this figure that
the PDF for hu &0 may be well approximated as

P(b, u, r) ~ (hu) (3)

with q =4. We have also found that P(b u, r) for b, u )0
is well fitted by the exponential

P(hu, r) e (4)

with the constant cz to be determined from the theory.
The dynamic argument leading to (3) will be presented
below. The results in Figs. 1 and 2 are highly nontrivial
because the observed algebraic decay of the PDF P(hu, r)
as b, u /(b, u)„,~—~ leads to the divergence of the mo-
ments S„(r) for n ) 3 for the inviscid case. However, as
we also observed, the single-point PDF P(u) is a very
rapidly decreasing function which is close to the Gauss-
ian and that is why the occurrence of shocks with an am-

u(x, t)= —g U;tanh
i=0

(x —a, )U,
+P(x, t) .

The first contribution to the right side of (5) describes the
slowly varying coherent "gas of shocks, " whereas the
second represents the effects unaccounted for by the first
term. Here a; and U; denote the coordinates of the
centers of the shocks and the shock amplitudes, respec-
tively. The physical picture behind this representation is
the following: the forcing produces the low energy exci-
tations which coagulate into ever stronger we11-separated
shocks due to the nonlinear interactions. It will be clear
below that the detailed shape of the shock assumed in (5)
is unimportant. The most essential feature of the tanh
solution (5) is that the shock width 1; =v/U;, which
means that the stronger the shock, the more narrow it is.

Statistics of the dissipation rate Auctuations were in-
vestigated in detail in Ref. [1]. It has been shown that the
energy dissipation takes place mainly ( =99%) inside the
well-separated strong shocks. Thus it follows from (5)
that the dissipation rate in interval of length r is

plitude hu ) Uo= [eL In(Lkd )]'~ is highly improbable
and one can expect the PDF P(b, u, r) to decrease sharply
for Au & —Uo. This is sufBcient for the existence of all
moments S„(r). A full analytical theory leading to an ex-
pression for P(hu, r), which unifies both asymptotics (3)
and (4), is planned to be published elsewhere [4].

To develop a phenomenological theory we assume that
the Aow can be represented as a superposition of coherent
and random components. The coherent contribution is
visualized as a "gas of shocks" and a single structure
(shock) can be approximated by the exact tanh solution of
the unforced problem [3]. In particular, let us assume
that the solution for the normal (not the hyper) viscosity
case has the form

e„= dx
4r& =o; o cosh Y;cosh 1'.

(j
CL

CO

QQ0

where we denote Y; =(x —a, ) U;/(2v). The principal
contribution to the sum comes from the strong and nar-
row shocks, and therefore we can neglect the nondiagonal
terms with i' Assumi. ng the density of the shocks to
be r independent we have

U

i=0

On the other hand, it can be directly shown from (1) and
(2) that

e =so
I.Uo

0.6 0.8
log io[AL1/R'/']

FICz. 2. The tail of the two-point PDF P(hu, r) (points) for
separations r /dx = 150,200, 250, 300, 350,400, 450 within the
universal range, plotted on a logarithmic-logarithmic scale. The
slope of the solid lines is equal to —4. The graphs for different
values of r are arbitrarily shifted along the vertical axis for clari-
ty.

(9)

from which we readily establish the form of P( U, r),

Introducing the PDF P( U, r) to find a shock with ampli-
tude U in the interval of the length r we obtain from the
last two relations

Uo I.Uoj U P( U, r)d U ~ ear ln
v/L V
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P(U, r) ~
U4

(10)

Since P(U, r)=P(U)r/L, the relation (10) establishes the
shape of PDF P( U) ~ U to find a shock of the ampli-
tude U. Note that r/L is the probability to find a shock
center within the interval of the length r which is in turn
placed in the larger interval of the length I.. The low in-
tegration limit v/L corresponds to the amplitude of the
"weakest structure, " contributing to e„. Formula (10) is
a consequence of relations (7) and (8), and is valid in the
logarithmic case when the forcing function is defined by
(2). It is only in this case that we can establish the form
of the PDF.

Thus, according to the data presented in Fig. 1 and the
theoretical considerations developed above, the PDF of
velocity differences can be represented as

S„(r)=f (hu)"P(hu, r)dbu

Un —3
( ~ )nil —i

=brac +B„(eDR)"~, (13)

where the amplitudes B„depend on the shape of the scal-
ing function F(x). The constants B„~(—1)" for integer
n and for the noninteger values of n the structure func-
tions S„=~hu ~'"' so that relation (13) should include the
absolute value of the first term on the right side. It fol-
lows from (11)—(13) that all moments S„(r)with n ) 3 are
completely determined by the upper cutoff in (13),

Un —3
0S„(r)0- @or

71 3

which is in excellent quantitative agreement with [1],
whereas for 0&n ~3

P(hu, r) =aR ' F

P(hu, r)=b
(b,u )

(12)

where b is a numerical constant. When hu « —U theo&

PDF is a rapidly decreasing function of b,u/Uo. The
moments of velocity difference are evaluated readily with
the result

in the interval 0( —1) &x =b,u/R' & ao, where func-

~ ~

tion R (r) is defined above, a is a numerical constant dn, an
(x ) is a scaling function (see [5]) which is assumed to go

rapidly to zero when ~x
~

is large. In the interval
x « —1, and ~b.u~ &O(Uo), where the PDF is dominat-
ed by the well-separated shocks, we have

(15)

as in the Kolmogorov theory of turbulence [2]. Thus the
anomalous scaling of the velocity structure functions
S„(r) appears only for n )3. It should be stressed that,
in accord with (13), in the logarithmic case considered in
this work the contribution from the shocks to the mo-
ments S„&&

is smaller than the one from the scaling com-
ponent of the PDF only by a factor of I/1n(rkz), which
makes the experimental investigation of the details of the
crossover very dificult.

The prediction (13) has been tested in [1]. It has bee
shown that S2„(r)~ r '" with gz„=0.91 for n &2, indi-
cating that these correlation functions are dominated b
coherent shocks. The results of the measurements of the
structure functions S„(r) with n =

—,', —', , . . . , —', , presented
in Fig. 3, are in good agreement with the scaling law (15).
Thhe general structure of the moments of velocitci y

n= 1/3 I

1

n= 2/3

V
C3

bQ0

-1.5

log„[r]
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I
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FICx. 3. Velocity structure functions ~hn~" for noninteger
values n =—'

3 3 ~ ~ ~
3 (dotted curves) ~ Slopes of the linear

least-squares fits (solid lines) from top to bottom, respectively,
are 0.111,0.222, 0.330, 0.433, 0.531, and 0.620.

FIG. 4. PDF of shock amplitudes, P(U) on a logarithmic-
logarithmic scale (points). The slope of the solid line is equal to
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P(U) ~ U (16)

is observed for all
~
UlU, , ~

)0.5. The fact that
P(hu)=P(U) when Au &0 tells us that in this range
P(hu) is dominated by the well-separated shocks. This
confirms the main assumption of the phenomenological
theory presented above. It follows from Figs. 1 —4 and
relation (12) that the anomaly in the high-order moments

difFerences given by expressions (13)—(15) is similar to the
outcome of the recent theories of the random-force-
driven Burgers equation by Polyakov [4] ( 1d) and
Bouchaud, Mezard, and Parisi [5] (d —+ ao ). The
Polyakov theory confirmed our qualitative argument
leading to the algebraic decrease of the PDF in the inter-
val Au &0.

Figure 4 presents the PDF of the shock amplitudes.
The problem of the shock location was solved in the fol-
lowing simple but reliable way. At each spatial point x
the local gradient of the solution u(x) was measured.
Then, if u'(x) ~0, it was assumed that this point x is out-
side of a shock, otherwise x lies inside of a shock. Once
inside a shock, one can march in x until the gradient be-
comes zero, and thus the boundaries of the shock may be
located, and so forth. Note that the shock amplitude ob-
tained in this way has been corrected to exclude the
Gibbs phenomenon typical in spectral approximations of
discontinuous functions. To reduce the statistical noise
in P( U) in Fig. 4, a simple smoothing procedure was ap-
plied: P( U) was averaged over eight surrounding points.
The result presented in Fig. 4 demonstrates that

results only from the slow (algebraic) decrease of the
PDF in the interval hu & 0. As was pointed out above, in
this case one expects a cutoff at some hu = Uo.

We have also investigated the problem (1), (2) driven by
the white-in-time random forces with D(k)%0 only for
k & 5 and D(k) ~ k [6]. The outcome of the simula-
tions in both cases revealed the algebraically decreasing
P(hu, r) O-rl~b. u~e for b.ul(hu), && —1, with the ex-
ponent q, related to the functional form of D(k). The
former case of the large-scale driven Burgers equation
was investigated in a recent paper by Bouchaud, Mezard,
and Parisi [5] using a replica trick in the limit of the
space dimensionality d ~ ao. Although the scaling of the
moments of velocity diff'erences obtained in Ref. [5] is the
same as the one observed in our simulations, the shape of
the PDF in the 1d case, numerically found by us,
difFers dramatically from P(b u, r) =(1—r)5(b u r)—
+13rF(b,u lU&), derived in Ref. [5]. Here F(x) is a scal-
ing function and P is a number. This means that the
physical mechanisms responsible for the anomalous scal-
ing in the one- and multi-dimensional systems are
different and understanding of the transition between the
two behaviors is an extremely interesting challenge. We
plan to publish detailed theoretical and numerical investi-
gations of the different cases of forcing functions else-
where [6].
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