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Band structure of the Hamiltonian matrix of a real "chaotic" system: The Ce atom

A. A. Gribakina, V. V. Flambaum, and G. F. Gribakin
School of Physics, Unirrersity of Neur South Wales, Sydney 2052, Australia

(Received 26 June 1995)
The properties and structure of the Hamiltonian matrix of a realistic many-body quantum chaotic

system (the rare-earth atom of Ce) are analyzed and compared with those assumed in band randoin
matrix theories. The sparsity of the matrix and the behavior of the mean squared matrix elements
(H,~)~; ~~ ~ as function of the distance ~i

—j~ from the diagonal are studied. Fitting (H,~)~,
with the exponent Ho exp( —A/b) yields the bandwidths of b =54 and 79 for the matrices of J = 4+,
and 4 states, respectively.

PACS number(s): 05.45.+b, 32.30.—r, 24.60.Lz

It was shown in our previous work [1] that the rare-
earth atom of Ce is an interesting example of a real
quantum chaotic system. The aim of the present work is
to study the structure and properties of the underlying
Hamiltonian matrix of this problem. It is very instructive
to compare them with those hypothetically stipulated in
various random matrix models. This may also give some
"experimental" foundations for such models.

After the pioneering works by Wigner [2] the ran-
dom matrix theory (RMT) developed into a powerful
instrument for studying statistical properties of spectra
of complex quantum systems. Most progress in RMT
was achieved for full random matrices, e.g. , those of the
Gaussian orthogonal ensemble, because of their invari-
ance properties and relative mathematical simplicity of
the problem (see review [3]). However, full random ma-
trices account only for the local fluctuations and correla-
tions in the spectrum and produce an unphysical semi-
circle spectral density of eigenvalues. The corresponding
eigenstates are delocalized. It was probably this under-
standing that prompted Wigner [2] to suggest originally
a band random matrix (BRM) xnodel for describing com-
plex atomic nuclei: H;~ = 0 if ~i

—j~ & b, where b is the
bandwidth.

Another essential feature of Wigner's model is the pres-
ence of a leading diagonal in the Hamiltonian matrix.
It describes the increase of the basis state energies that
takes place in any finite quantum system. The role of
the diagonal is paramount, since the ratio of the typical
off-diagonal matrix element to the average level spacing
V/D determines the perturbative (V/D ( 1), or nonper-
turbative (V/D & 1) and, possibly, chaotic character of
the mixing of states. Recently BRM with a diffuse band
have been considered with H2. rapidly decreasing as a
function of ~i

—j~ at ~i
—j~ & b. Localization properties

of BRM were analyzed in [5] (see also [6], and references
therein) and some analytical results for BRM without
leading diagonal were obtained in [7,8].

It was shown in [4] that the banded structure of
the Hamiltonian matrices emerges in the semiclassical
regime. However, in many real systems such as the com-
pound nuclei or rare-earth atoms the excitation energies
are relatively low and the behavior of these systems is
strictly quantum. Nevertheless, there are physical ar-
guments that suggest bandedness of the corresponding
Hamiltonian matrices. Indeed, consider the Hamiltonian

matrix of a many-body system with a two-body inter-
action in the natural basis of many-particle states con-
structed &om single-particle orbitals. In this basis only
the matrix elements between states with no more than
two different single-particle orbitals are nonzero. If two
of the basis states are far apart on the energy scale the
Hamiltonian matrix element coupling them involves dis-
tant single-particle states and is thus suppressed.

Although a lot of effort has been put into studying
RM models, little is known about the structure of the
Hamiltonian matrices of real systems that display quan-
tum chaotic behavior. We believe that the present work
contains the information one needs to construct a realis-
tic BRM, and thus narrows the gap between RMT and
real systems.

The electronic structure of the Ce atom is Xe-
like, 18 - - sp core with four valence electrons
above it. The calculations are performed using
the Hartree-Fock-Dirac (HFD) and configuration in-
teraction (CI) methods [9]. The configurations of
the valence electrons relativistic orbitals are built of
fsi2, fvy2 siy2 sy2 si2, 6piy2, an ps)2. &-

ing the input list of the con6gurations of given parity,
a basis containing all possible single-determinant states
4; is constructed and the Hamiltonian matrix HiI,
(4;~II~@q) in the single-determinant basis is evaluated.
Since the eigenstates of the system are also eigenstates of
the J2 operator, a new basis has been constructed (see
[1] for details):

@z, = ) Az, „'~; (1)
il

J'4'~; = J(J+1)4'&, ,

(e„~II~e») ) A, II;, A,„„.= II.„b„.,(J)

i', k'

where each CJi is a linear combination of the single-
determinant states belonging to one relativistic configu-
ration, which possesses definite J. The Hamiltonian ma-
trix constructed in this way has a block-diagonal struc-
ture and each block H,.& is diagonalized separately. The
new basis states O' Ji are enumerated such that the diago-
nal matrix elements H;, increase with i. B. elow, as in [1],
we consider J = 4+, 4 states of the atom. For J = 4+
the block contains N = 276 states and for J = 4 it
has N = 260. In both cases the average spacing between

Hi,- was D 0.03 eV.(J)
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In [1] we studied the probability densities of the off-

diagonal matrix elements H;~ =.H, (hereafter we drop(J)

the J index for convenience). The distributions for the
even and odd matrices turned out to be very similar
([1], Fig. 10). We noticed that there is a large num-
ber of small matrix elements accumulated in the central
bin and about 40% of thein are zeros. This is explained
by the fact that the matrix element between two config-
urations vanishes if they contain more than two different
orbitals. There are also some approximate "nonrelativis-
tic" selection rules due to conservation of the total orbital
angular momentum L and the total spin S. These rules
are violated by the spin-orbit interaction and they are
"hidden" in the case when relativistic (nlj) orbitals are
used. Nevertheless some basis states can have almost
definite L and S values and give small matrix elements
when L or S change. We showed that for larger H;~ the
distribution is described well by a simple exponential fit

P(H'. ) ~ IH" I
'"xp I—H;, l

l
with V = 0.12 eV as the characteristic value of the off-
diagonal matrix element. Using the distribution (3) one

obtains the root-mean-square of H, =
2 V 0.104

eV. This number is close to the root-mean-squared values
of the nonzero off-diagonal matrix elements calculated
directly for the even and odd matrices 0.114 and 0.113
eV, respectively.

The main feature of the off-diagonal matrix elements
H;~ is that their dependence upon i and. j is almost
random. It occurs because the basis states belonging
to different configurations are strongly interspersed on
the energy scale, and the basis states @J; themselves
are rather complex linear combinations of simpler single-
determinant states. In order to check whether there is
any regular dependence of H;~ on i and j the locally av-
eraged (H2);~ were calculated in [1]:

)2R'+ 1 2
Iil —iI&w

I
jl —jI&w

(4)

where we used W = 9. A clear feature of (H );~ as a func-.
tion of i and. j is the existence of a "craggy ridge" along
the main diagonal ([1],Fig. 9), more pronounced for the
even states matrix. This is an indication of a bandlike
structure of the matrices. However, there are two effects
that may contribute to such behavior of (H ),~. Firstly,
the inatrix elements may indeed get smaller as Ii —jI in-
creases. Secondly, the number of zero matrix elements
may increase as we depart &om the matrix diagonal. In
other words, the matrix may be getting sparser.

In order to probe the bandlike structure of the Hamil-
tonian matrix we show in Fig. 1 the dependence of H,~
on their distance &om the diagonal A = Ii —jI. One can
see that the matrix elements H;~ indeed decrease as Ii —jI
increases. Figure 2 presents the sparsity of the matrices
for the even and odd states. The sparsity is defined for
Ii —jI = 4 as the ratio of the number of nonzero matrix
elements (more precisely, IH;zI ) 10 a.u. 3 x 10
eV) to the total number of matrix elements (according to
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FIG. 2. Sparsity of the Hamiltonian matrix S = (number
of IH, ~I g 0)/(number of all H,~), ~i

—jI fixed. Dashed line
shows a linear approximation for S.

FIG. &. Matrix eleinents H,i (eV) presented as a function
of the distance to the main diagonal Ii —jI for the even and
odd states.
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TABLE I. Quantitative characteristics of the sparsity
and bandlike structure of the Hamiltonian matrices. The
third column lists the mean-squared value of the nonzero
off-diagonal matrix element. The fourth and fifth columns
list the parameter for the fit of the matrix sparsity,
S(& —j) = So —kIi —jI. The sixth and seventh columns list
the parameter of the fit (H, ) ~, ~~ ~ = Hp exp( —Ii —y I/b).

Levels
Even
Odd

N
276
260

H2, (eV )
0.0130
0.0128

Sp k

0.6 0
0.72 0.0018

Hp (eV)
0.204
0.163

b

53.5
79.3

this definition the sparsity is I for full random matrices).
~ ~The duzerence between the matrices is quite noticeable.

In the case of even states the Hamiltonian matrix demon-
strates almost constant sparsity, whereas in the case of
odd states there is a clear linear decrease. Dashed lines
show a linear approxiination S(b,) = Sp —kE for the
sparsity in both cases. Parameters of the Gt are given in
Table I. The observed sparsities agree with an estimate
made in [I] that nonzero matrix elements comprise about
60%%uo of the matrices.

In order to estimate the bandwidth 6 we Gt the
mean squared matrix elements with a simple exponen-
tial ansatz (this analytic form was used in [8]):

2(H;;)i;,. i ~ ——IIp exp( —b, /b), (5)

e ~H; -~
~; ~~ ~ is the average of the squared nonzero

matrix elements at a given distance 6 &om the diagonal.
The dependence of (H2 ) ~; ~~ ~ on A for even and odd
state matrices is shown in Fig. 3. The values of Ho
are chosen to describe the data in the vicinity of the
main diagonal, i.e. , for small Ii —jI. If we express the
overall mean square value of the nonzero matrix element
in terms of the matrix sparsity and partial averages (5),
the following equation must be fulfilled:

Hp f (Sp —kA) (N —A) exp( —A/b) dE

fp (Sp —kA) (N —A) dE
= H,', , (6)

where ~2-r H;- - is the average over all nonzero matrix elements
in the Hamiltonian matrix. The values of 6 found from
(6) are presented in Table I together with other nuinerical
data involved in (6).

The values of b =53.5 and 79.3 have been obtained for
the even and odd matrices, respectively. Both of these
values are much smaller than N, which should clearly
indicate the band structure of the matrices. However,
one can see &om Fig. 3 that while the fit (5) looks
very reasonable for the even matrix, it is not quite rel-
evant for the odd matrix. We should note that in both
cases, especially for the odd matrix, there are distant ba-
sis states coupled by large matrix elements H;~ that do
not obey (5). It implies that the Hamiltonian eigenstates
must contain "small components": perturbation theory
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FIG. 3. Root-mean-squared matrix elements ~Hi2t Ii —j =A
as a function of the distance to the main diagonal. Solid:line
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the bandwidth.

FIG. 4. Energy bandwidths AE, for the even and odd
matrices. Dots connected with a thick line show local
root-mean-squared values g(A&2), o for is ——10, 20, . . . aver-
aged over Ii —ipI & 9. Dashed line is the overall root mean
squared energy bandwidth (1.67 and 2.15 eV for the even and
odd matrices, respectively).
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contributions of the distant states (which cannot be de-
scribed by BRM). Indeed, we observed those in [1] (Figs.
11, 12, and 20) as additional "bumps" in the strength
functions of the states. In agreement with the difference
between the even and odd matrices (Fig. 3) they mani-
fested stronger for the odd eigenstates. We can compare
the above bandwidths with a rough estimate made in [1].
If one assumes that all 60%%up of nonzero matrix elements
are located within the band li —jl ( 6, a value of b 80
is obtained.

In Fig. 4 we present the energy bandwidths calculated
according to [4]

(7)

In both cases there are large fluctuations in AE, , more
noticeable for the odd matrix. Apart &om them, the
locally averaged energy bandwidth displays a relatively
slow dependence on i, or, accordingly, on the excitation
energy, within the 10-eV range studied. The root-mean-
squared bandwidths of KE = 1.67 eV (even) and AE =
2.15 eV (odd) correspond to the number bandwidth b =
AE/D 56 and 72, respectively (D 0.03 eV). These
values are quite close to those determined &om Eqs. (5)
and (6).

We believe that the energy bandwidth is a better and
somewhat "more physical" characteristic of the Hamilto-
nian matrix, since it refers to the energy interval within
which the perturbation strongly mixes the basis states.

If, for instance, we defined b as AE/D using locally av-
eraged LE and D, the result would show dramatic vari-
ations with energy. The point is that the level density
p(E) = D in many-body systems strongly (exponen-
tially) depends on the excitation energy (see, e.g. , [10]
for the level density in atomic Tb), thus producing a
strong energy dependence of the number bandwidth b.
Therefore, one can expect the values of LE to be similar
for various systems of a particular class (say, for different
atoms), whereas the magnitude of b will be quite different
for them, depending on, e.g. , the number of interacting
particles (valence electrons).

Using the CI method we studied the Hamiltonian ma-
trices of J = 4+, 4 states of the rare-earth atom of Ce.
It has been shown that these matrices can be character-
ized as sparse band matrices with the leading diagonal.
Therefore, BRM models seem to be more relevant for
describing real physical systems. However, there always
exist some distant basis states strongly coupled by the
residual interaction (large H;~ for large li —jl) which
produce sizable contributions to the eigenstates ("small
components"). The account of those is, of course, beyond
the BRM approach and they should rather be treated
with the help of perturbation theory. These components
play an important role in the problem of parity noncon-
servation in compound nuclei. A statistical approach to
dealing with the small coinponents was developed in [11].

The authors are grateful to F. M. Izrailev for drawing
their attention to the problem and for useful discussions.
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