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Dynamic scaling behavior of an interacting monomer-dimer model
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We study the dynamic scaling behavior of a monomer-dimer model with repulsive interactions
between the same species in one dimension. With infinitely strong interactions the model exhibits
a continuous transition from a reactive phase to an inactive phase with two equivalent absorbing
states. This transition does not belong to the conventional directed percolation universality class.
The values of dynamic scaling exponents are estimated by Monte Carlo simulations for two distinct
initial configurations, one near an absorbing state and the other with an interface between two
difFerent absorbing states. We confirm that the critical behavior is consistent with that of the
models with the mass conservation of modulo 2.

PACS number(s): 64.60.Ht, 02.50.—r, 05.70.Ln, 82.65.Jv

In recent years, nonequilibrium phase transitions oc-
curring in surface reaction models [1—22] have attracted
great interest, since they exhibit continuous transitions
&om a reactive phase into an absorbing phase. Many
investigations of models for absorbing phase transitions
have established a generally accepted belief that contin-
uous transitions into a single absorbing state generically
belong to one universality class, the directed percolation
(DP) class [23—25]. This conjecture becomes extended
to the multiple component models by the argument of
Grinstein et aL [26].

Recently, a few models have appeared in the litera-
ture that are known to be in a different universality class
&om DP. Those are the models A and B of probabilis-
tic cellular automa (PCA) introduced by Grassberger
and co-workers [27,28], branching annihilating random
walks with an even number of offspring (BAW) [29—32],
nonequilibrium kinetic Ising (NKI) models with two dif-
ferent dynamics [33,34], and an interacting monomer-
dimer (IMD) model [35]. Critical behaviors of these mod-
els are different from DP but seem to belong to the same
universality class. The PCA, BAW, and NKI models are
basically single component models (there are only two
choices at a given site: vacant-occupied or spin-up —spin-
down), while the IMD model is a multicomponent model
(three choices: vacant-monomer-dimer). The common
feature of these models is that the total number of par-
ticles (walkers in BAW, domain walls or kinks in PCA,
NKI, IMD) is conserved of modulo 2. But there exist
many types of kinks in the IMD model due to the multi-
component nature and each type of kink has no conser-
vation law. So one needs to investigate the IMD model
in more detail.

In our previous study of the IMD model [35], the
steady-state exponents were numerically determined to
be P = 0.88(3), v~ = 1.83(3), and v~~

= 3.17(5), which
agree well with the values of those exponents for the sin-
gle component models [28,32,33]. In this study, we report
the values of the dynamic exponents for the IMD model
and show that these values are in excellent agreement
with those of the BAW model with four ofFsprings re-
cently studied in detail by Jensen [32].

The interacting monomer-dimer model is a generaliza-

tion of the simple monomer-dimer model [5] on a cat-
alytic surface, in which particles of the same species
have nearest-neighbor repulsive interactions. This is
parametrized by specifying that a monomer (A) can ad-
sorb at a nearest-neighbor site of an already adsorbed
monomer (restricted vacancy) at a rate r~k~ with 0 (
r~ & 1, where k~ is an adsorption rate of a monomer
at a free vacant site with no adjacent monomer-occupied
sites. Similarly, a dimer (B2) can adsorb at a pair of re-
stricted vacancies (B in nearest-neighbor sites) at a rate
r~kI3 with 0 ( r~ & 1, where k~ is an adsorption rate of
a dimer at a pair of &ee vacancies. There are no nearest-
neighbor restrictions in adsorbing particles of different
species. Here we will consider only the adsorption-limited
reactions. A nearest neighbor of the adsorbed A and B
particles reacts immediately, forms the AB product, and
desorbs the catalytic surface. Whenever there is an A
adsorption attempt at a vacant site between an adsorbed
A and an adsorbed B, we allow the A to adsorb and re-
act immediately with the neighboring B, thus forming
an AB product and desorbing the surface [36]. The case
r~ ——r~ ——1 corresponds to the ordinary noninteracting
monomer-dimer model which exhibits a erst-order phase
transition between two saturated phases in one dimen-
sion. In the other limiting case r~ ——r~ ——0, the system
has no fully saturated phases of monomers or dimers, but
instead two equivalent half-ulled absorbing states. These
states are comprised of only the monomers at the odd-
or even-numbered lattice sites. A dimer needs a pair of
adjacent vacancies to adsorb, so a state with alternat-
ing sites occupied by monomers can be identified with
an absorbing state.

In this paper, we consider the one-dimensional IMD
with r~ ——r~ ——0 for simplicity. Then the system can
be characterized by one parameter p = k~ j(k~ + k~) of
the monomer adsorption-attempt probability. The dimer
adsorption-attempt probability is given by q = 1—p. The
order parameter of the system is the concentration of
dimers in the steady state, which vanishes algebraically
as p approaches the critical probability p, &om below.
Finite-size-scaling analysis of the static Monte Carlo data
reveals that this model behaves differently from the DP,
but belongs to the same universality class as the models
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in which the number of particles (or kinks) are conserved

We perform dynamic Monte Carlo simulations for the
IMD model. We start with two distinct initia con-
figurations, one near an absorbingb state and the other
with an interface between two diff'erent absorbing states.

t'
( nventional one) describe the evolution of a de-

We call thisfeet spreading on a nearly absorbing space. We ca is
"defect dynamics. " The other dynamics with the latter
initial con gura ions el fi t' describe the evolution of interface
spreading e ween wd b t t o di8'erent absorbing states. In con-
trast to the defect dynamics, the system can never enter
an absorbing state. We call this "interface dynamics. "

In simulations for the defect dynamics, we start with a
lattice occupied by monomers at alternating sites except
at the central vacant site. Then the system evolves a ong
the dynamic ru es od

'
l f the model. After one adsorption

attempt on the average per lattice site (one Monte Carlo
t

&
~the time is incremented by one unit. A number of

time steps for various values of p near the critical pro-
abllllty p . Os. M t runs however stop earlier because t e
system gets into an absorbing state. We measure the sur-
vival probability P(t) (the probability that the system is
still active at time t), the number of dimers N(t) averaged
over all runs, and the mean-square distance of spreading
B (t) averaged over the surviving runs. At criticality, t e
values of these quantities scale algebraically in the ong
time limit [4],
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FIG. 1. Plots of the e8'ective exponents againsta ainst 1 t for the
defect dynamics. Five curves rom pto to bottom in each

d t = 0.5305 0.5315, 0.5325, 0.5335, andpanel correspond to p =
0.5345. Thick lines are critical lines p == 0.5325 .

and double-logarithmic plots of these values against time
show straight lines. OK criticality, these plots show some
curvature. More precise estimates for the scaung expo-
nents can be obtained by examining the local slopes of
the curves. The effective exponent b(t) is defined as

ln [P(t)/P(t/6)]—b(t) =

0.40

0.35-

0.30 —9
and similarly for g(t) and z(t). In Fig. 1, we plot the ef-
fective exponents agamst 1/t with
these plots show upward or downward curvatures. From

sistent with the result of static Monte Carlo simulations
[37]. The scaling exponent is given by the intercept o
the critical curve with the vertical axis. Our estimates
for the dynamic scaling exponents are

b = 0.29(2), g = 0.00(2), z = 1.34(20).
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These values agree well with those of the BAW with four
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In fact, the value of z can be deduced from e v
ues of the steady-state exponents by the scaling re ation
z = 2V&/ v((. sing e pr. U

' th revious steady-state resu ts, we
find z 1.15, which is consistent with the above resu t
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FIG. 2. Plots of the eAective exponents againstinst 1 t for the
interface dynamics. Five curves from top

~ ~ to bottom in each
d = 0.5285 0.5305, 0.5325, 0.5345, andpanel correspond to p =

= 0.5325 .0.5365. Thick lines are critical lines p = 0.532



BRIEF REPORTS 52

rl = 0.285(20), z = 1.14(2).

These values also agree well with those of the BAW with
four off'spring [b = 0.282{4),z = 1.141{2)][32] and satisfy
the generalized hyperscaling relation 2k+ 2p/v~~ +2rl = dz
recently proposed by Mendes et al. [38]. Even though the
defect dynamics and the interface dynamics yield difFer-
ent values of dynamic exponents b and q, their sum b+ q
which is responsible for the growth of the number of kinks
only in surviving samples seems to be the same. This
property has been also observed in the models with in-

within errors. These values also satisfy the conventional
hyperscaling relation 4b+ 2q = dz, where d is the spatial
dimension [4].

For the interface dynamics, we start with a pair of va-
cancies placed at the central sites of a lattice and with
monomers occupied at alternating sites. In this case,
the system never enters an absorbing state, so that the
survival probability exponent b must be zero. 5000 in-
dependent runs are made during 8000 time steps and we
measure K(t) and R (t). In Fig. 2, we plot the effective
exponents rl(t) and z(t} against 1/t with 6 = 10. The
value of p obtained from these plots is consistent with
the result from the defect dynamics. Our estimates for
the dynamic scaling exponents are

finitely many absorbing states [38]. In the IMD model,
the boundaries of the active region contact one absorb-
ing state {defect dynamics} or two diff'erent absorbing
states (interface dynamics). But in the long time limit
the active region becomes much bigger in the surviving
samples and local dynamics near boundaries cannot dis-
tinguish which absorbing state is nearby. Therefore the
defect dynamics and the interface dynamics should give
the same result if only surviving samples are considered.

In summary, we have measured dynamic scaling expo-
nents of the interacting monomer-dimer model with in-
finitely strong interactions by Monte Carlo simulations.
This model exhibits a continuous transition &om a re-
active phase to an inactive phase with two equivalent
absorbing states. Our results for the dynamic exponents
are fully consistent with those of the branching annihilat-
ing walks with four offspring which conserve the number
of particles of modulo 2. Thus now we firmly believe that
these models belong to the same universality class [39].
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