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It is shown that Page's formula for the average entropy S, of a subsystem of dimension m ( n
of a quantum system of Hilbert space dimension mn in a pure state [Phys. Rev. Lett. 71, 1291
(1993)] can be written in terms of the one-point correlation function of a Laguerre ensemble of
random matrices. This leads to a proof of Page's conjecture, S, = g„z—,which is
simpler than that given by Foong and Kanno [Phys. Rev. Lett. 72, 1148 (1994)].

PACS number(s): 05.30.—d, 02.90.+p, 03.65.—w, 05.90.+m

A quantum system AB with Hilbert space dimension
mn in a pure state (p~~ = lg)(@l) has entropy S~~ =
0. However, if AB is divided into two subsystems A
and. B, of dimension m and n, respectively (without loss
of generality, we can take m ( n), the entropy of the
subsystems, S~ ——S~, is greater than zero unless A and
B are uncorrelated in the quantum sense (p~~ = p~p~)
[1,2]. A convenient measure of the amount of entropy

I

that arises from this coarse graining is the average (S~)—:
S of the entropy S~ over all pure states of the total
system AB, the average being defined with respect to
the unitarily invariant Haar measure on the space of unit
vectors I@) in the mn-dimensional Hilbert space of the
total system [1,2]. In a recent work, Page [2] obtained
for S „the formula

S „=g mn+1 f (P,. , x;lnx;) IA (x)I2Q™,(e *x," ) dxi . dx

mn f I&-(z) I' Il;= (e * z," ) «i "dx

where z, ) 0, 4 (z) is the Vandermonde determinant of m variables,

1&i&j&m,
Xg XQ )

and, for positive integer z,

where p is Euler's constant. As conjectured by Page [2], Eq. (1) is equivalent to

m —1
(4)

The first proof of this conjecture was given by Foong and Kanno [3]. Here we show that a simpler proof can be
achieved by noting that the second term in the right-hand side of (1) can be written as a one-dimensional integral in
terms of the one-point correlation function of a Laguerre ensemble of complex Hermitian random matrices (see, e.g. ,
Ref. [4]), whose explicit expression readily follows from a well-known result of random matrix theory [5,6].

Taking into account the symmetry between the m variables z, , Eq. (1) can be written as

f dz»i»(») f I&-(x)I'H™ (e *'*"; ) «
f I&-(*)l'rl,= ( **"; ) d* ".d*- (5)
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On the other hand, the n-point correlation function
for the eigenvalues of an ensemble of complex Hermitian
random matrices is defined as [4—6]

X„(xi,. . . , x„) —= Z I&-(x) I'
~L(n m)

( )L(n m)
(

d+n+1 dÃm (6)
J J

k=1

where p, (x) is a positive weight function with all its mo-
ments finite, and the normalization constant Z is the
partition function,

(x) ~' p(x„) dx, " dx
J J J J

k=1

Using this notation, Eq. (5) reads

(n —m+ k)!
~kl )

we see that Xi(x) in (8) is given by (ll), with

p(x) = x" e

Cg (x) = (—1)"k!L~(" ) (x),
hi, = k!(n —m+ k)! .

Using the functional relations [7]

(12)

S „=g(mn+ 1)— Xi(x)xlnxdx, (8)

where Xi(x) is the one-point correlation function cor-
responding to the so-called Laguerre ensemble of (com-
plex Hermitian) random matrices, with weight function
p, (x) = x" e [4].

Let (Ci, (x)) denote a sequence of monic polynomials
of degree k, CA, (x) = x"+O(x" ), satisfying the orthog-
onality relations

L(~) I( )
L(m+1)

( )
L( —i)( ) L()() L() ( ) (14)

mt

the ChristofFel-Darboux expression for Xi(x) in (11) can
be cast into the more convenient form

Cg(x)Ct(x) p(x) dx = bkihj, .

Then it can be shown [5,6] that the correlation functions
(6) are given by

so that Eq. (8) then reads

(15)

X„(x„.. . , x„) = det [f(x, , x, )]

f(* y) = v'~( )~(y) ).
k

g ( (
C--i(x)C-(y) —C--i(y) C-(*)

(y —x)h
(10)

1{ex)
T)S x e lii(x)L„(x)L( (x) dx . (16)

(m —1)! ( +i) ( — +i)S „=Q(mn+ 1) — I, i —I

where the last equality follows from the ChristoKel-
Darboux formula for orthogonal polynomials. In the par-
ticular case n = 1, Eq. (10) simplifies to

The integrals I„, can be evaluated by taking advan-
tage of the following result, which appears in the study
of quantum-mechanical systems such as N-dimensional
hydrogen atom and Morse oscillator [8—10],

Xi(x) = f(x, x)

(
)™):[C~(x)]'

h, kk=oC, (x)C' (x) —C', (x)C (x)
p x

hm —1

*"*L.' '(*)L."'( ) d

.+. t'q —n l ( q —P ) &(q+ k+1)

The orthogonal polynomials corresponding to the
weight function p, (x) = x e are the associated La-
guerre polynomials L& (x). From the explicit formula
and the orthogonality relation for these polynomials [7],

(17)

where q ) —1, n, and P are real parameters. On difFer-
entiating both sides of this equation with respect to q,
we get [10]
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x e *1„(x)L, (x)lnxdx = ) (—1)"+'
i

0 k=0

x g(q —n + 1) + vp(q —p + 1) + g(q + k + 1)
—g (q —o. —r + k + 1) —Q(q —P —s + k + 1) (18)

Both I'(z) and g(z) have simple poles for z = n, —
n = 0, 1, 2, . . ., with residues (—1) /n! and —1, respec-
tively [7]. Therefore, in the case when q = n = P, the
only nonvanishing term in the summation is that corre-
sponding to k = min(r, s), and a simple calculation yields

(„+g) (n —1)!
2(m —2)! '

(2o)

I „+, = —
,

t ) 0(~) 1(n+r+ 1)

I( ) ( + + )g( 1)r!
so that we have

Substituting these results in (16) and using (3), we com-
plete our proof of Page's conjecture, Eq. (4).

The author thanks R. 3. Yanez for suggesting the
above calculation of the integrals I„, . This work was
supported by a grant from the Fundacio Aula (Barcelona,
Spain) .
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