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Method for solving the gyrokinetic Poisson equation in general geometry
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A generalized gyrokinetic Poisson solver has been developed and implemented in gyrokinetic particle
simulation of low frequency microinstabilities in magnetic fusion plasmas. This technique employs local
operations in the configuration space to compute the polarization density response and automatically
takes into account the background profile effects contained in the gyrokinetic Poisson equation. It is
useful for the global gyrokinetic simulation of magnetized plasmas in general equilibria, where the tradi-
tional spectral method is not applicable. The numerical scheme is also most amenable to massively
parallel algorithms.

PACS number(s): 02.70.—c, 52.65.Tt

I. INTRODUCTION

The gyrokinetic particle simulation technique [1—3]
has been developed and extensively applied to study low-
frequency microinstabilities driven by pressure gradient
in magnetic fusion plasmas. The governing gyrokinetic
Vlasov-Poisson system is derived by employing a two-
spatial-scale expansion where the background equilibri-
um is assumed to be spatially uniform with respect to the
Quctuation. Thus the spectral method can be utilized and
the gyrokinetic Poisson equation can be solved in Fourier
space. However, since the original equation is an integral
equation in configuration space, the spectral results,
strictly speaking, are valid only as local solutions. There-
fore, the traditional spectral approach neglects the back-
ground profile effects (e.g., temperature and magnetic
field) contained in the gyrokinetic Poisson equation and
can treat problems only in simple geometry. In this pa-
per, a generalized gyrokinetic Poisson solver suitable for
arbitrary geometry is presented. The technique is based
on the physical process of gyrophase averaging and em-
ploys local operations in configuration space to compute
the polarization density response in the gyrokinetic Pois-
son equation. The present approach can take into ac-
count the spatial dependence of the gyrokinetic Poisson
equation and is useful for nonlocal simulations as well as
those associated with general geometry. This numerical
scheme is also most suitable for massively parallel com-
puting because it utilizes local operations that minimize
global communications.

For simplicity, let us study the gyrokinetic Vlasov-
Poisson system for simple (ion-electron) plasmas in slab
geometry, which [by neglecting the nonlinear polariza-
tion effect and terms of order 8(k~p) ] takes the form
[1,2]

aF - aF q ac - aF q ae - aF
at aR mQ aR aR m aR aU~~

and

X5(R—x+p)dR dp duiida, (4)

with x now held fixed in the integration. In Eq. (4), F~,
is assumed to be Maxwellian in U~ and spatially slowly
varying, i.e., e « 1. The gyrophase-averaged ion number
density is defined as

n;(x) = JF,(R)5(R—x+p)dRd p, du llda
1

and likewise n, is the electron number density from F, in
the limit of p —+0. The background number density no
comes from F, assuming ex=eR.

In this system, the gyrophase-averaged distribution
function is a function of gyrocenter variables, i.e.,
F=F(R,p, u~~, t), while the electrostatic potential is
defined in the particle or laboratory coordinates
@= 0&( x, t ). Thus, to solve the gyrokinetic Vlasov-
Poisson system, one has to develop a numerical algorithm
to expedite the transformation. In the Fourier space, the
coordinate transformation can simply be carried out by
using

(I& 4)—=4me(n; . n, ) —.
D

Here F(R,p, u~~, t) is the gyrocenter distribution function,
which is independent of the gyrophase, R =x —p,
p—= v~Xb/Q—, Q= qB/mc, —b=B/B, 8 is the external
magnetic field, p = u j /2, v~~

=
u~~b, q is the signed charge,

AD
=QT, /4m—noe is. the Debye length, r —=T, /T;, sub-

scripts e and i denote species, 4 (x, t ) is the electrostatic
potential, @ represents the gyrophase averaged potential,
and 4 is defined as the second gyrophase-averaged poten-
tial. Specifically,

4&(R)= J@(x)5(x—R—p)dxda,1

2&

where 0; is the gyrophase angle and R is held fixed in the
integration, and

4(x)= f C&(R)FM, (eR,p, u~~)
1
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4(x)=g@qe' '"

k

and applying it to Eq. (3) to obtain

4(R) =+@i,Jo
k

kj vg

Q
ik R

where Jo is the ordinary Bessel function, and

J exp(+ik p)da/2m=Jo(kiui/0)
0

is utilized in this transformation. Likewise, 4& in Eq. (4)
can be calculated in the Fourier space by assuming a spa-
tially independent Maxwellian distribution function for
the ion species and it becomes

4(x)=+@&Io(b)e'" ",
k

(6)

where I o(b) =Io(b)e, b =(kip; ),p; =QT;/m; /0.;,
and Io is the modified Bessel function. The term I 0

comes from

kgUg
~o(b)= JJo & +M (p)dp (7)

which is the result of two gyrophase-averaging processes
with respect to a Maxwellian background. Since the De-
bye shielding term in the gyrokinetic Poisson equation is
usually neglected for the gyrokinetic particle simulations
of low-frequency physics, the resulting equation is an in-

tegral equation. In simple geometry, this equation can be
transformed to Fourier k space and solved by the fast
Fourier transform (FFT) method.

The use of Fourier transform is not always practical
because it involves the convolution between configuration
space and velocity space through the Jo term. For exam-

ple, a better and more practical way to carry out the
transformation of Eq. (3) is an averaging process of @(x)
in configuration space assuming that each particle is
represented by a uniformly charged ring with a radius of
p=ui/Q. Thus, integrating along the ring with sufficient

accuracy, one recovers C&(R) in Eq. (3). As shown in Ref.
[3], it is usually sufficient to use four points along the ring
to achieve the desired accuracy for kip~ 2 (the four-
point method). As for the transformation for 4(x) of Eq.
(4) in solving Eq. (2), the spectral approach of Eq. (6) is

more practical. This is because the term involving I o in

Eq. (7) can be expressed as analytic functions in the k
space. However, this approach is not applicable in gen-
eral geometry, i.e., realistic tokamak equilibrium. Even
in the simple case of circular cross-section toroidal
geometry, the FFT approach has difficulties in imple-
menting appropriate boundary conditions and in evaluat-
ing mode spectra. Furthermore, the gyrokinetic Poisson
equation in k space is derived based on the two-spatial-
scale assumption and one neglects the spatial dependence
of the equilibrium quantities. In reality, I o should be a
function of spatial coordinates when a perpendicular tem-
perature or magnetic field gradient exists. Therefore, it is
important in a realistic simulation to include the varia-
tion of temperature or magnetic field across the global

simulation box. Various schemes have thus been
developed to address these two problems. LeBrun and
Tajima [4] employed a Pade approximation for the I o in

Eq. (7) and solve the resulting gyrokinetic Poisson equa-
tion as a second-order differential equation. Li, Lee, and
Parker [5] used the spectral approach in two directions,
i.e., poloidal and toroidal (8,$), and utilized the Bessel
function expansion in the minor radius direction for plas-
mas with a circular cross section. However, these ap-
proaches are not satisfactory with respect to the proper
treatment of nonlocal effects and the extension to general
equilibrium. Moreover, they are not applicable to a low-
aspect-ratio tokamak where the poloidal magnetic field

has to be included in the gyrokinetic Poisson equation.
In this paper, we present a method that enables us to

carry out the transformation of 4? in configuration space
in the same spirit as the calculation of @ presented in
Ref. [3]. Good agreement with the FFT method is ob-
tained in a simple test case of nonlinear simulation of g;
instability using this technique in shearless slab geometry
where the FFT method is valid. In toroidal geometry,
the electrostatic potential resulting from a given charge
density is calculated from Eq. (2) both analytically and
numerically. The results using the solver are much closer
to the exact analytic solution than that of the FFT
method when the same number of grid points is used.
The importance of profile variation is also demonstrated
in this calculation. The computational cost of the solver
depends on the complexity of the geometry and
represents only a few percent of the total computing time
in a general toroidal equilibrium where gyrokinetic ions
and adiabatic electrons are used.

The remainder of this paper is organized as follows.
Section II describes the nonspectral approach for solving
the gyrokinetic Poisson equation. Numerical algorithm
and benchmark results for both slab and toroidal
geometries are presented in Sec. III. Section IV summa-
rizes the main findings of the present work.

II. GENERALIZED GYROKINETIC POISSON SOLVER

The key idea of the present approach is to directly cal-
culate 4(x) from a given N(x) in configuration space
through Eqs. (3) and (4). In the particle simulation, the
electrostatic potential is discretized on a grid. Therefore,
P(x) can be expressed as a linear combination of @(x)'s
on the grid and Eq. (2) can then be cast in a matrix form
and solved by either an iteration scheme or a direct ma-
trix inversion method. In this way, the gyrokinetic Pois-
son equation is solved in configuration space without
transforming to k space.

Our starting point of analysis is Eq. (4), which relates
4&(x) on any point in configuration space to the guiding
center potential @(R) through a uniformly distributed
background FM, . To calculate 4(x) at a point x in
configuration space, we interpret each 5 function inside
the integration of Eq. (4) as a uniform ring with a radius
of p and centered at x (solid circle in Fig. I). The contri-
bution of each perpendicular velocity ui to 4(x) is simply
the average of the gyrophase-averaged guiding center po-
tential 4(R=x—p) on this ring. On the other hand,
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FICx. 1. Schematic procedure for the calculation of P using
one 5 function. The length unit is p;.

the preceding paragraph.
To facilitate the computation, we utilize three discreti-

zation procedures. First, the averaging processes in-
volved in the calculations of @ and 4 can be made by the
average of appropriate number of equally spaced points,
for example, the four-point averaging procedure, which is
exact for all kip ~ 2 modes [3]. Second, note that we only
need to calculate N at each grid point x instead of every
point in configuration space, the resulting gyrokinetic
Poisson equation is in a form of matrix equation. Finally,
we can replace the Maxwellian distribution function by a
sum of 6 functions that are equally spaced in the perpen-
dicular velocity space and weighted by an envelope of the
normalized Maxwellian function. The exact Maxwellian
distribution function is recovered in the limit of an
infinite number of 5 functions.

The remaining question is how many 5 functions (or
rings) are enough to represent the Maxwellian distribu-
tion function. We expect that only a few 6 functions are
needed because the Maxwellian distribution function de-
cays exponentially for higher velocities. To verify this
claim, we replace the Maxwellian by a sum of a finite
number of 5 functions in Eq. (4). Because the Fourier
transform outlined in Sec. I is valid locally, from Eq. (6),
one can see that this is equivalent to approximating Eq.
(7) by

from Eq. (3), we known that N(x —p) of each point on
this ring is evaluated by averaging the potential @(x)
over another uniform ring centered at that point with the
same radius (dashed circle in Fig. 1). Summing over all
possible perpendicular velocities that make up the
Maxwellian distribution, we thus obtain C&(x) in terms of
@(x).

With regard to the physical interpretation of this ap-
proach, let us examine how we arrive at Eq. (4). Original-
ly, @(x)—C&(x) was defined as the difference between the
potentials "perceived" by the particle and the guiding
center [1,2). For a known C&(x), we can calculate C&(R)
for each guiding center by averaging the @(x)on its uni-
formly charged ring. This averaged potential is then de-
posited back onto this ring and it represents this
particle's contribution to 4(x) on every point of this ring.
Summing up the contribution from all particles, we ob-
tained 4(x). Alternatively, we can rewrite the original
gyrokinetic Poisson equation to the form in Eq. (4) with a
simplification in which the background distribution func-
tion is replaced by a spatially uniform Maxwellian in U~.

The summation process now involves an infinite number
of particles with the Maxwellian distribution at every
point in configuration space. However, not all particles
can contribute to 4(x). Those particles with a particular
gyroradius p that can contribute to 4(x) only come from
a uniform ring that centers at x with a radius p. As a re-
sult, we can change the sequence of the summation pro-
cess. Rather than summing over each particle contribu-
tion to C&(x) on its uniformly charged ring, we can focus
on 4(x) at one point, first sum over all particles with a
particular gyroradius that can make contribution to
4(x), and then add up the contribution from all possible
gyroradii. Thus, we recover the procedure outlined in

I o(kip, )=f Jo gcj5(p —p )dp0
V gJ.=pc Jo kip,

J Uthl
(8)

where c. represents the Maxwellian envelope, U&J is the
perpendicular velocity of the jth ring, and u, h; —=Q T; /m;
is the ion thermal velocity. This approximation becomes
exact when an infinite number of 6 functions is used.
Practically, Eq. (8) is realized by choosing a finite number
of c's and v~'s such that the function e is minimized,

e(c,ui)= I I o(x ) —gc Jo(xvi /u, h;) dx ,
0 J 0 J.J . (9)

where x =k~p; and x „is associated with the maximum
wave number of interest. In the gyrokinetic particle
simulation, k~ varies only in the range of
0& kip; (mp;/b, x, where Ax is the grid spacing, and the
mode amplitude is usually small for the k~p; &1 modes
for the low-frequency microinstabilities. The dominate
fIuctuations in this case are usually in the range
0. 1 (k~p; (0.5. Therefore, it is imperative that this
discretization is accurate in the long-wavelength limit.
For example, in Eq. (9), we match the first two terms of
the small parameter expansion for the Bessel function,
i.e., Jo(xvi. /u, h;)-1 —(xvi /u, h;) /4+ . and the
Pade approximation of I'o(x )-1/(1+x )-1—x
+ . , and arrive at the constraints

gc =1
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v J /U th
' +2 give reasonably good agreement for

k jp; ~ 0.5. Two rings with c = (0.7194,0.2806) and
vj /v, „,=(0.9130,2.2339) can fit Eq. (8) very well (less
than 1% error) up to k~p;=1. 5. Practically, we use
three rings with c=(0.3583,0.5004, 0. 1413) and
U~/U, h; =(0.5443, 1.4142, 2. 5138), which works very well
over the range 0 & k,p,. & 2. In Fig. 2 the approximate I 0
(dashed line) using these three 5 functions is compared
with the exact I o (solid line). It is obvious that this ap-
proximate solution is almost exact. By contrast, Fig. 3
shows a much larger error (9%) for the Pade approxima-
tion (dashed line), which is extensively used in both
analytical and numerical studies. The error in I 0 will
lead to incorrect linear growth rates and nonlinear satu-
ration amplitudes.

III. NUMERICAL IMPLEMENTATION
AND TEST CASE RESULTS

A. Slab geometry
FIG. 2. Approximate I 0, calculated using three 6 functions

(dotted line), compared with the exact I o (solid line).

g 2
CJ ( J.J /U th/ ) 1

J

These constraints reduce the number of free parameters
of c's and v~'s by 2.

To calculate the optimal c's and v~'s, a set of random
numbers is generated for these quantities and its corre-
sponding E given by Eq. (9) is calculated. Then, each set
of c's and v~'s with the minimum e is identified for any
chosen number of 5 functions. To reduce the computa-
tional cost, it is desirable to use as few 5 functions (rings)
as possible. It turns out that one ring with c=1 and

1.0

To illustrate the numerical procedure, let us use only
one ring (one 5 function) with c =1 and vj =v'2u, h, to
calculate 4(x) in slab geometry with uniform electron
temperature and ~= 1. Throughout this paper, gyro-
kinetic normalization is used, i.e., 80=m;=T, =e=1,
where Bo and T, are the quantities at a reference point.
Thus the length unit is p, =+rp;, the time is A,. ', and
the electrostatic potential is T, /e. The two four-point
averaging processes are shown in Fig. 1, where the grid
spacing is chosen to be equal to the ion thermal gyrora-
dius p;. Here p, at a grid point (i,j ) is the average of
@(R)on a ring (solid) that is centered at this point with a
radius of p = /2p;. Thus 4, ~

is simply the four-point
average of @(R)~;+, +, ~. The value of N(R) at each of
these points (i+1,j +1), in turn, is calculated by averag-
ing N on another ring (dashed) centered at that point
with the same radius. This second averaging process is
also carried out by the four-point averaging scheme. The
whole process gives

@;,, —
—,'. (4C'i, , +2~'(+2,)+2@;,,~a+~'i*2, ,*2»

0.8

0.6-

04

0.2
0.0 0.5 1.0 1.5 2.0

FIG. 3. Pade approximation of I o (dotted line) compared
with the exact I o (solid line).

where @,J is the potential at grid point (i,j ) This ex-.
pression of 4 is put back into Eq. (2) and the resulting
gyrokinetic Poisson equation is in a matrix form. It can
then be solved either by an interation scheme or by a
direct matrix inversion operation. Since I 0 is always
smaller than 1 and only varies in a limited range, the con-
vergence for the iteration scheme is guaranteed and is ac-
tually quite fast. When the electron is adiabatic and
~= 1, we have found that sufhcient accuracy can be
achieved by at most five iterations.

In more general cases where the ring does not pass
through the grid points, the potential on the ring can be
calculated by the linear interpolation of potential from
the nearby grid points. When a relatively large perpendic-
ular velocity is used, eight-point averaging instead of
four-point averaging may be used to achieve desired ac-
curacy. In the rest of this paper, as for the purpose of
gyrokinetic simulations of microinstabilities in magnet-
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where ( r 00, P ) is the guiding center coordinates in
toroidal geometry. Again assuming a Maxwellian equi-
librium, the second gyrophase-averaged potential 4 can
be expressed as

1.00

0.75

a rml i(m 0+ np)e
a

Utilizing this relation, the gyrokinetic Poisson equation
can be expressed in Bessel-Fourier space as a matrix
equation

0.50
(h

0.25

1 —Io
~D l, m, n

&ml" i mi8+nP) 4 i e (10)

0.00
0.00 0.25 0.50

kr &1

0.75 1.00

This equation is coupled in the 0 and r directions due to
the dependence of p,. on 0 and r.

The relative accuracy of the Poisson solver with the
FFT method in toroidal geometry can now be assessed.
For this purpose we assume that the magnetic field and
the background temperature are uniform in space. Thus
p; is independent of r, 0, and P and the gyrokinetic Pois-
son equation is decoupled for difFerent I, m, and n modes.
Given charge density as the sum of a finite series of the
Bessel-Fourier trial functions, the potential can be ob-
tained analytically using Eq. (10). This result can then be
compared with those numerically calculated from the
same charge density by the present generalized Poisson
solver and the FFT method, respectively. Figure 6 de-
picts the potential as a function of r calculated by analyti-
cal solution (solid line), the generalized Poisson solver
(dotted line), and the FFT method (dashed line), respec-
tively. It is shown that the Poisson solver is more accu-
rate than the FFT method, although the same number of

0.4

FIG. 7. k„spectrum (in arbitrary units) of the potential in
Fig. 6.

grid points is used for both approaches. The di6'erence is
especially obvious near the edge (r =a ). In this compar-
ison, a single toroidal mode (uniform) is used and the per-
pendicular power spectra for the potential with
k&p; =0.4 are shown in Figs. 7 and 8. These spectra are
similar to those in the toroidal q; instability simulation
[7]. In the calculation using the Poisson solver, the r0-
plane is divided into equal area cells (uniform grid spac-
ing in r 0) with an -area element of b, r b, O=p;. The
number of grid points in the r and 0 directions is ar-
ranged in such a way that each direction has the same
resolution near the half minor radius where the most in-
teresting physics usually takes place. The FFT method
uses the usual x-y coordinate with the grids spacing of
hx =Ay =p;. When more grid points are used, the re-
sults for both methods approach the exact solution.

Next, we study the modification to the potential due to
the background temperature variation. Assuming a tem-
perature profile as shown in Fig. 9, the potential calculat-

0.3-
1.00

0.2—
0.75—

~ 050—
rA

0.0
16 24 32

0.25—

FIG. 6. Electrostatic potential (in arbitrary units) at 0=0 vs
minor radius (in unit of p;) calculated by the analytic method
(solid line), the FFT method (dashed line), and the generalized
Poisson solver (dotted line).

0.00
0.00

I

0.15
I

0.30

koP;

I

0.45 0.60

FIG. 8. kz spectrum (in arbitrary units) of the potential in
Fig. 6.



5652 Z. LIN AND W. W. LEE 52

0.4

0.3—

0.1—

0
0

I

16
r

I

24 32
0.0

24 32

pt

FIG. 9. Model for the temperature profile. The length unit is

r
FIG. 10. Electrostatic potential (in arbitrary units) at 0=0 vs

minor radius (in units of p;) with the temperature profile effect
retained (dotted line). The solid line represents the potential
calculated without taking into account profile effect.

ed by the generalized Poisson solver taking into account
the proNe effect is shown as a dotted line in Fig. 10. The
solid line in the same figure represents the analytical solu-
tion calculated from Eq. (10) without taking into account
the background profile effects. The same charge density
that produces the potential in Fig. 6 is used for this calcu-
lation. Although the modification is modest in this par-
ticular example, it can accumulate for each time step in
the simulation and may modify linear eigenmodes and
nonlinear steady-state results.

The computational cost of the Poisson solver depends
on the complexity of the geometry, but it can be made
quite eScient. In term of the Cray-C90 vector computer
single CPU time, this solver is faster than the FFT
method in a shearless slab with the adiabatic electrons
and a uniform background temperature. In toroidal
geometry with 10 grid points, the present solver takes
0.5 ps per grid point per iteration (4 )Lts per time step as-
suming four iterations in both predictor step and correc-
tor step) when the electrons are assumed to be adiabatic
and the background temperature and magnetic field are
nonuniform. Since it takes 8 ps per particle per time step
for the particle pusher and usually more than one particle
per grid point is used in the three-dimensional simula-
tions, the Poisson solver represents only a small portion
of the total computational cost of the simulation. Fur-

thermore, the present solver scales as the number of grid
points in terms of the CPU time, while the usual spectral
approach scales as X 1nÃ for X grid points. The actual
relative cost of the present Poisson solver decreases with
the increasing simulation system size because of the
better vectorization.

IV. CONCLUSION

A non-FFT gyrokinetic Poisson solver has been
developed and implemented in the gyrokinetic particle
simulation of low-frequency microinstabilities in magnet-
ized plasmas with general equilibrium. The technique
can also take into account the spatial dependence of the
equilibrium profile in the gyrokinetic Poisson equation
and is general enough to treat the non-Maxwellian back-
ground distribution. This approach employs local opera-
tions and therefore is useful for the global simulation in
general geometry on massively parallel computers.
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