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Compound-Poisson-process method for the multiple scattering of charged particles
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The theory of multiple scattering for electrons and other changed particles is presented here within a
mathematically unifying compound-Poisson-process framework. The compound Poisson model of
scattering phenomena allows an arbitrary di6erential cross section for single scattering, is not restricted
to any particular range for the number of collisions experienced by the particle, and is applicable to both
the planar coordinate description of scattering (small angle approximation) as well as the spherical coor-
dinate description (exact angle description). An efticient method for computing the angular probability
density function after a large number of collisions is derived and then applied in a few example computa-
tions. This method is based on the decomposition of the compound Poisson process into hard and soft
scattering.

PACS number(s): 02.70.Lq, 11.80.La, 05.40.+j, 05.60.+w

I. INTRODUCTION

Multiple scattering of charged particles in dense media
has received the attention of physicists for almost a cen-
tury. Classical analysis of the multiple scattering prob-
lem by Goudsmit and Saunderson [1,2] and Moliere [3,4]
resulted in a solution to the governing Boltzmann trans-
port equation for the angular distribution function when
scattering is described on the surface of a unit sphere or
on a plane when small angle scattering is assumed, re-
spectively. These classical solutions have found
widespread use and, in particular, are incorporated into
condensed history Monte Carlo simulation codes [5—11].

Ubiquitous use of the Goudsmit-Saunderson and
Moliere theories indicates that the results they provide
are often sufficiently accurate. However, this is not uni-
formly so. The small angle scattering approximation in-
voked by Moliere [3] underestimates the magnitude of
large angle scattering, thus presenting significant errors
for low-energy electrons undergoing backscattering. In
addition, Moliere's solution for the angular distribution
function [3] is specific to the use of the screened Ruther-
ford cross section and is therefore not applicable for oth-
er single scattering cross sections such as those derived
from partial wave analysis [12,13], which are generally
considered to be more accurate. This limitation of
Moliere's solution can lead to significant underestimation
of small angle scattering for charged particles, especially
at low energies. The Goudsmit-Saunderson [1,2] ap-
proach does not suffer any of the above limitations of
Moliere's theory [10],since their expression for the angu-
lar distribution function is exact and any reasonable sin-
gle scattering cross section may be invoked. However,
Goudsmit and Saunderson [1,2] express the angular dis-
tribution function as an infinite series of Legendre poly-
nomials and thus there is no effective means of computing
the series except by direct summation. Strictly speaking,
this sum diverges, and even if it is renormalized it still re-
quires the evaluation of many hundreds or even

thousands of terms and hence is computationally
ineKcient [10].

This paper shows that the mechanism underlying both
the Goudsmit-Saunderson and Moliere theories of multi-
ple scattering is that of a compound Poisson process. A
method is presented that allows the direct calculation of
the angular scattering distribution that is practical up to
a few hundred collisions. For a greater number of col-
lisions an indirect method is presented that decomposes
the compound Poisson process into soft and hard col-
lisions. This indirect method is both accurate and com-
putationally efficient. It is also independent of the single
scattering cross section employed; Thus all the limita-
tions of the Goudsmit-Saunderson and Moliere ap-
proaches to multiple scattering noted above are avoided.

In Sec. II of this paper we introduce our notation, dis-
cuss the parametrization and the geometry for particle
scattering, and recall the classical solutions of the prob-
lem. We analyze the theories of Moliere and Goudsmit-
Saunderson from a different perspective so that in a later
part of this article they may be viewed as different mani-
festations of one unified model of multiple scattering
theory. In Sec. III we introduce the compound Poisson
process formulation and in Sec. IV show how the classi-
cal theories are related to this model. Section V is devot-
ed to the description of methods and ideas that allow us
to effectively calculate the multiple scattering cross sec-
tions. Finally, in Sec. VI we present a few examples of
our calculations and compare them to previously known
results.

II. GEOMETRY FOR ANGULAR SCA'j. I'KRING
AND CLASSICAL FORMULATIONS

OF THE MULTIPLE SCA'I I'ERING PROBLEM

Throughout the paper the instantaneous direction of
particle motion, as well as the angular change in direc-
tion after single or multiple angular scattering, are
represented by points on the surface of a unit sphere S.
These directions can also be conveniently interpreted as
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arcs on the surface of the unit sphere related to one fixed
system of Cartesian coordinates (tangent to the sphere S),
especially in the context of the definition of the addition
of directions during the multiple scattering of charged
particles.

To discuss in more detail how the addition of direc-
tions is described in this work we first introduce the fol-
lowing notation (Fig. 1). Throughout the paper we shall
customarily denote by Q the final direction, by Q' the ini-
tial direction, and by Q" the change of direction for the
scattering particle. Points Q, Q', and Q" are also desig-
nated by their standard angular coordinates for the
spherical coordinate system, i.e., we denote Q=(O, y),
Q'=(8', y'), and Q"=(8",y") (Fig. 1). Let Qo denote a
"south pole" on the unit sphere, i.e., a point that can be
identified with the direction of a particle's motion along
the z axis. Let us also denote arcs on the surface of the
unit sphere connecting the south pole Qo with points Q,
Q and Q by QoQ QoQ and QoQ ', respectively. The
summation of the initial direction of the particle's motion
with the change of direction during the particle s scatter-
ing, resulting in the final direction of the particle's
motion after collision(s), is defined as follows. The arc
QoQ", which expresses the change of the particle's direc-
tion with respect to the local system of Cartesian coordi-
nates tangent to the sphere at Qo, is transported along the
arc QoQ' together with the local system of coordinates so
that the origin Qo coincides with the initial direction of
the particle Q' (Fig. 2). The angles between arc QOQ' and
the axes of the local Cartesian system of coordinates
remain invariant during their motion along the great cir-
cle defined by the arc QoQ'. This means, in particular,
that the angle between the arc QoQ' and the arc QoQ"
also remains invariant during this transport. This trans-
port along the arc QoQ' is therefore equivalent to keeping
the reference for the change of direction in the coordinate
system related to the scattering particle. Physical inter-
pretation of this transport requires that the end of the arc
QoQ", after the transport is performed according to the
above description, indicates the final direction Q of
motion for the particle. In other words, the triangle
QOQ'Q on the sphere (Fig. 3) completely describes the

FIG. 2. Addition of the directions for the scattered particle
on the sphere S and the plane P.

scattering event, with the point Q' indicating the original
and the point Q indicating the final direction of the
particle's motion.

Using formulas of spherical trigonometry [14], the an-
gular parameters (8",y") for the change of direction Q"
may be written in terms of the angular parameters (8', y')
for the original direction Q' and the angular parameters
(8,p) for the final direction Q. In particular, the parame-
ter 0", the only active parameter for computations in-
volving rotationally invariant scattering, is related to y,
y', 0, and 0'by

cosO" = cosO cosO'+ sinO sinO' cos(y —y') .

In the small angle approximation the directions for
scattering particles are represented by vectors 0 on the
plane P tangent to sphere S at Qo. The polar coordinates
of the vector 0, which is equivalent to a direction
specified by point Q=(O, y) on the sphere S, are denoted
by (O, y), i.e., 8=(O, y). The vector 8 can also be de-
scribed by its Cartesian coordinates 0& and 0y i.e.,
8=(8,8 ). Thus the coordinates (O, qr) and (8„,8 ) of
the vector 0 on the plane P are related as

0 =0cosy, 0 =0siny, (2)

e ~e'

FICr. 1. Directions of motion for the scattered particle
represented as (i) points on the surface of the unit sphere 5 and
(ii) vectors on the plane P (in the small angle approximation).

FIG. 3. Spherical triangle QOQ Q describing the addition of
the directions of the scattered particle on sphere S.
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i.e.,
00=+0~+8, (P=arctan (3)

The addition of directions in the small angle approxima-
tion is defined simply as an addition of vectors on the
plane P, i.e., if 0'=8 —8"= (8„',8' ) is the initial direction
and 8=(8„,8~ ) is the final direction of the moving parti-
cle, then Cartesian coordinates (0",0") of the vector 8"
describing the change of directions are given by

0"=0 —0', 0"=0 —0'
v

arid

f g(8)d8= f f g(8, (p)8dOdy

=2m. f g(8)8d8= 1 .
0

Describing this addition of directions in polar coordi-
nates leads to the planar version of formula (1)

0"=+8 +0' —08'cos(q& —(p') .

The comparison of formulas (5) and (1) shows that the ad-
dition of directions under the small angle approximation
inherently introduces a distortion in the final direction.
In other words, vectorial sum of directions on the plane
P, which is equivalent to the exact directions on the unit
sphere S, gives a direction on P that is not equivalent to
the direction found by addition of exact directions on the
sphere S.

In this paper we deal only with rotationally invariant
scattering of particles. Therefore many distributions
defined over the set of directions Q (or 8), which we con-
sider in this work, exhibit rotational symmetry invari-
ance. This means that functions defined on the unit
sphere S, or on the plane P, and expressed in spherical or
planar coordinates, respectively, are dependent only on
the parameter 8. The notation g(Q) or g(8) is used when
the function g is a function of the point 0ES or vector
0EP. The notation g (0) is used when functions g(Q) or
g(8) are seen as dependent only on one argument 8
(OE [O, m ) or OE [0, oo ) ). Thus we identify the quantities

g(Q) =g(8, (p) =g(8), QHS, 8& [0,~)

g(0)=g(0, y)=g(8), OCP, OE[0, ~) .

If the function g is interpreted as the probability density
distribution over the sphere S or the plane P, then the fol-
lowing normalization is used:

f g(Q)dQ= f f g(8, (p)sinOdOdy
S 0 0

=2m f g(8)sinOd0=1 (8)
0

A. Moliere's theory

Moliere's theory [3] assumes that the evolution of the
angular probability density distribution f(8, t) on the
plane P with path length t satisfies the Boltzrnann
integro-differential equation given by

=n. f [f(8 8",t—) f(0—, t)] d8", (10)

y(u ) =y(u) = f Jo(8u)8d8,
2m. do (8)
o. 0 dA

(14)

where J0 denotes the Bessel function of order zero. Sub-
stituting Eq. (14) for y(u ) in (11) shows that f (O, t) is also
a rotationally invariant function (i.e., a function of the ra-
dial length 0 only}, which can be written as

where der(8")/dQ and n, denote the single scattering
cross section of a charged particle and the number of
scattering centers per unit volume, respectively. Equa-
tion (10), with a Dirac 5-function initial condition
f(8,0)=5(8), can be formally solved [3] by the Fourier
transform method. Applying a two-dimensional Fourier
transform (with respect to variables 8 and 0 ) to Eq.
(10), solving the transformed equation in the variable t,
and then performing the inverse Fourier transform lead
to

—n, ta(1 —y(u)]; e „
(2~)
n to'[1 @(u )] &. ( gwhere Jz e ' e' '" 'du denotes the integration

tt

over plane P- and o. is the total angular scattering cross
section for single scattering given by

do(0) d-
p dn

In (11), qr(u ) is a Fourier transform of the normalized
single scattering cross section and is given by

( )
1 der(0} —((e,u)d0 (13)

a o. dQ

At this point we note that the single scattering cross sec-
tions, which are used in any theory of multiple scattering
of charged particles, are assumed to be rotationally in-
variant. This means that der(8)/dQ is only a function of
the radial length 0 of the vector 0 and, further, it also
leads (p(u ) to exhibit the property of rotational symme-
try. Thus p(u ) is only a function of radial length u of the
vector u (u = ~u

~
=Qu„+u ) on the plane P-.

Specifically, after the change from Cartesian coordinates
(8„,8~) to polar coordinates (O, y) is done and integra-
tion over variable y is performed, formula (13) can be ex-
pressed as the one-dimensional integral

&(0 t}=, f Jo(0u}exp n to 1 — f Jo(0'u)8'd8' u du .
2n ~ do. (8')

2& 0 C7 0
(15)
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Moliere's theory of multiple scattering evaluates f (8, t)
from the expression (15) by assuming the screened Ruth-
erford cross section for the single scattering cross section
[3]. For this particular cross section, and under some ad-
ditional assumptions about the parameters that charac-
terize the scattering process [3], the angular probability
density f(8, t) is expressed approximately as

f (8, t)= fo(8)+ f,—(8)+ f2(6')+1 1 1 1

2~ y'B B

where 8=8/g, &B and

f„(8)= f Jo(6)e " )~ [—,'y ln( —,'y )]"y dy .

(16)

(17)

In particular,

fo(8}=2e

The parameter B is defined through the relation
B —lnB =b (B ~ 1) [3],where

y2 =~kt,
P Z1/3

( 1.13+3.76a ),0.885ao

(20)

(21)

with k =n, [ 2&Z( Z+I)e /PU] and a=Za/p. In the
formulas above, Z is the atomic number for the scattering
medium, K is the de Broglie wavelength of incident elec-
tron, ao is the Bohr radius, n, is the number of scattering
atoms per unit volume, e is the electronic charge, p and U

are the momentum and velocity of the electron, o. is the
fine-structure constant, and P is the ratio of the speed of
the electron to the speed of light.

Formulas (16) and (17) provide an efficient, and in the
region of their applicability [8,15], an accurate method
for the calculation off (8, t), the angular probability den-
sity distribution for multiple scattering. However,
several shortcomings of Moliere's theory may be
identified.

(i) For any reasonable angular scattering cross section
which has an integrable derivative, the expression which
defines Eq. (15) is divergent. The divergent character of
the expression is obvious if we recaH that the asymptotic
dependence of Jo(x) for large x is I/&x. The reason this
divergence appears is that, in order to properly accom-
modate the Dirac 5-function initial conditions, the
mathematical model of multiple scattering phenomena
should have been investigated in the space of generalized
functions whereas it was investigated in the set of stan-
dard, pointwise functions.

(ii) The ad hoc methods used to deal with this diver-
gence distort the multiple scattering distributions near
their initial (Dirac 5-function-like) conditions, i.e., they
disturb the expressions that are valid for "no-scattering"
or few scatt-ring cases. Thus Moliere's theory is applica-

ble only if the average number of collisions is larger than
about 20 [3,8].

(iii) Due to its reliance on the small angle scattering ap-
proximation, the results, provided by formulas (16) and
(17), are not accurate for large angles.

(iv) The theory is limited to the screened Rutherford
single scattering cross section since the derivation of the
specific form of the final expressions (16) and (17) is based
on this cross section.

(v) The terms f„given by Eq. (17), for all n except
n =0, do not have a probabilistic interpretation as they
are not positively defined functions.

B. Goudsmit-Saunderson theory

l =0, 1,2, . . . . (23)

The coefficients cI(t) can be calculated by the substitu-
tion of the form (22) of f(Q, t) into the Boltzmann equa-
tion, which describes the angular scattering on the sphere
S without the small angle approximation. This equation
is, in analogy to Eq. (10), given by

(24)

where 0—0" is a symbolic notation for initial direction
Q' and Q" is the change for the particle's direction from
Q' to Q. do. (Q")/dQ is the single angular scattering
cross section of the particle expressed as a function of
direction Q"CS. Substituting Eq. (22) into Eq. (24) and
applying the addition theorem [14]

PI( cos8) =Pi( cos8, )P&( cos82)

+2 Q Pt ( cos8, )Pt ( cos82) cosm (y2 —
gr, ),

m=1

we obtain a series expansion on both sides of the equa-
tion. Grouping terms with the same order of Legendre
polynomial, we find that

n trr[1 —(pI—( cose&)) )
c& t =c&0e (25}

The main feature of Goudsmit and Saunderson's
theory [1,2] is the derivation of a formula equivalent to
Eq. (14) without ihe small angle scattering restriction.
The angular distribution of multiple scattering
f(Q, t) =f (8, t) is again a rotationally invariant function,
but in this case it is defined on the surface of the unit
sphere S (Fig. 1). As such it can be expressed in the form
of a series of Legendre polynomials P&(cos8) as

f(Q, t) =f (8, t) = g c,(t)P, ( cos8), (22)
I=O

where the coefficients c&(t) are related to the statistical
averages EIPI(cos8) I of the polynomials PI(cos8) with
respect to the probability density distribution f (8, t) as

E [P, ( cos8) I =2~f P, ( cos8)f (8, t)sin8d 8

4m

2l+1
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where (Pi(cosei)) denotes the statistical average of the
Legendre polynomial of order i with respect to the nor-
malized angular probability density distribution
(1/cr )do (Q)/d Q. Explicitly, (P((cose&) ) is given by

(,P, ( cose, )) =2m — P, ( cose)sinede .~ 1 dcr(e)
0 CT

Finally, substituting Eq. (25) into Eq. (22) and setting
ci(0)=21 +1/4~ leads to the expression for f (e, t)

f (e, t)= g(2l+1)P(( cose)e4-,=.
'

(27)

[Note that setting ci (0)=21 + 1/4m is equivalent to
choosing the two-dimensional Dirac 5-function initial
condition f(Q, O) =5(n —Qo) for the density distribution
f(n, t)=f(e, t) ]In .the limit of small angle scattering
the exact spherical formula (27) may be approximated by
formula (15).

The main weakness of the Goudsmit-Saunderson
theory is the fact that it does not provide any effective
means of evaluating formula (27) short of a direct sum-
mation of the series. This procedure is computationally
inefficient especially when these series are applied to a
small number of scatterings [9,10].

ProbIN(t)=nj=e "', n =0, 1,2, .. . ,
„,(A, t)"

n. (30)

(31)

The process In(t), t )0] defined above is a two-
dimensional compound Poisson process [17] and its tran-
sition probability density distribution from the direction
Q=no (at t =0) to an arbitrary direction Q at path
length t is given by

where A=, n, o (n, is the number of scattering atoms per
unit volume and o. the total angular scattering cross sec-
tion for the particle per atom). A, is a parameter that is
interpreted as the average number of collisions per unit
path length. The probability distribution (30) is called a
Poisson distribution and IN(t), t )OI is called a Poisson
process [16]. The random variables Q;, i =1,2, . . . , are
assumed to be independent and identically distributed.
We denote the probability density distribution of Q,. by
p(n), i =1,2, . . . , and notice that this quantity is
synonymous with the normalized angular scattering cross
section for single interaction (I/cr)dcr(n)/dn. Since
p(n) is always assumed to be a rotationally invariant
function, then in agreement with our previous notation
we can write

1 dv(n) 1 dv(e, q) 1 d~(e)

III. COMPOUND POISSON PROCESS
FORMULATION FOR ANGULAR

SCA'l I'ERING OF CHARGED PARTICLES f(n, t)=e ' g, P'"'(Q),( A,t)" („)
n=o n

(32)

The cumulative angle for the charged particle that has
experienced multiple scattering over the path length t is a
random variable Q(t), which can be represented by a sum
of random angular steps Q, on the sphere S

N(t)
Q(t)= g Q, .

i=0
(28)

The random variable Q(t) for the case of N(t)=0 de-
scribes the no-scattering change of direction and its prob-
ability density distribution p' '(Q) is given by a Dirac 5
function

p"'(n) =5(n —n, ) . (29)

Thus Eqs. (28) and (29) represent the direction Q(t) of
motion for the particle at path length t provided the ini-
tial direction of the particle (at t =0) coincides with the z
axis, i.e., Q(0) =Qo. The generalization to the case when
Q(0) is an arbitrary random variable is straightforward,
so we can continue our investigations assuming Q(0) =no
in order to be consistent with the initial conditions used
in the classical theories of Moliere and Goudsmit-
Saunderson. The symbol Q, is used in (28) to denote the
change of direction at the ith collision and N(t) is used to
denote the number of independent scatterings experi-
enced by the particle on the path length t. For a fixed t,
N(t) is a Poisson random variable that is characterized
by the probability distribution Prob IN(t) =n ] given by

where p'"'(Q) denotes the normalized angular distribu-
tion of the charged particle that has experienced exactly
n collisions [16,17]. Since the angular distribution p ( Q )

of the single scattering is rotationally symmetric, it can
be shown that the same property will be valid for the
multiple scattering distribution. Hence we can write

p'"'(Q)=p'"'(8), n =0, 1,2, . . . .

As a result, Eq. (32) can be rewritten as

f(n, t)=f (e, t)=e "' g p'"'(8) .( A,t)" („)
n!

(33)

(34)

p'"'(8)= f p'" "(8') (8,8')8'de'
0

(35)

for the planar coordinate system, where q ( 8,8') is calcu-
lated as q(e, e')= Jo p(e")d(p' and the angle 8" is given

by formula (5), or

p'"'(8) = f "p'"-"(e')q(e, 8')sine'd 8' (36)
0

The explicit recursive formulas for p'"'(8) in terms of sin-

gle scattering angular density distribution p (8) are found
as follows. (i) For n =0, p' '(8)=5(e). (ii) For n =1,
p"'(8) =p(e), i.e., p"'(8) is just the probability density
distribution (normalized cross section) for single angular
scattering. (iii) For n )2, p'"'(8) is given by the recursive
relation
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for the spherical coordinate system, where q (8,8') is cal-
culated as q(8, 8')= f p(8")dy' and the angle 8" is

given by formula (1). The explicit formulas for q (8, 8'} in
all cases considered in this work are provided in Appen-
dix B.

The direct calculation of the transition density distri-
bution f(Q, t) from Eq. (34) is possible if the average
number of collisions experienced by the particle is small.
%'hen the average number of collisions is large a special
method has to be developed for the calculation. The
description of this method will be presented in Sec. V.
First, however, let us demonstrate that the compound
Poisson process model for multiple angular scattering of
charged particles is in fact equivalent to the Goudsmit-
Saunderson model and that it also underlies Moliere's
calculations if the small angle scattering restriction is im-
posed.

IV. GOUDSMIT-SAUNDERSON
AND MOLIERE THEORIES AS SPECIAL CASES

OF THE COMPOUND POISSON PROCESS

The Poisson process {N(t), t &Oj that governs the dis-
tribution of scattering events along a charged particle's
path t is characterized by the following properties of its
probability distribution on an infinitesimal path length dt
[16]:

Prob {N(dt) =0] = 1 Adt +o—(dt),

Prob{N(dt) =1 ]
=Adt+o (dt),

Prob{N(dt} &2] =o(dt),

(37)

(3&)

(39)

where Prob{N(dt)=k}, k =0, 1,2, . . . , denotes the
probability that exactly k scattering events took place on
the interval dt; o (dt) denotes a function that decreases to
zero faster than dt and A, is the parameter interpreted as
the average number of collisions per unit path length.
Formulas (37)—(39) imply that for the compound Poisson
process (28) the transition probability density p«(Q ~

Q )

for the particle to change direction from 0' to Q on the
infinitesimal path length dt equals

pd, (Q iQ —Q")=5(Q")(1 Adt)+p(—Q")Adt+ o(dt), (40)

where 5(Q") is a Dirac delta function and p(Q") is the
probability density distribution for the change of direc-
tion in each collision from Q —Q" to Q. Thus the angu-
lar density distribution f(Q, t +dt) for a multiple scat-
tered particle at path length t +dt is related to the angu-
lar density distribution f(Q, t) at path length t by

f(Q, t+dt)
0—0",t

S

X [5(Q")(1—
A, dt)+p(Q")A, dt ]dQ"+o (dt) .

(41)

Equation (41) may be transformed into a Boltzmann
equation by integrating the Dirac 5-function term in (41),
then moving the term f(Q, t) to the left-hand side of (41),

dividing both sides by dt, followed by taking a limit
dt~0,

which is equivalent to Eq. (10) used in Moliere s theory.
The identity of Eqs. (42) and (24) and Eqs. (43) and (10)
means that the Goudsmit-Saunderson and Moliere
theories are based on the compound Poisson process
description of multiple angular scattering, which was de-
scribed in Sec. III.

V. CALCULATIONS BASED
ON THE DECOMPOSITION

OF COMPOUND POISSON PROCESS

The method of calculating transition density
f(Q, t)=f (8, t) directly from formulas (34)—(36) is prac-
tical when the average number of collisions is less than a
few hundred. For problems with a larger average num-
ber of collisions, the method of direct calculation from
the formulas breaks down since it requires computational
operations with extremely small and extremely large
numbers. Moreover, the time of calculations grows
prohibitively long when the average number of collisions
is large. Thus, in such cases, it is necessary to apply an
indirect method for evaluation of the transition density
f(8, t). A very efficient strategy for these computations
can be based on the theorem that states that any com-
pound Poisson process can be decomposed into the sum
of independent compound Poisson processes [17]. For
our purposes, the decomposition of Q(t) into just two in-
dependent processes is satisfactory. Let us formulate
therefore the special case of this theorem, pertinent to
our calculations (for a proof of the general case of this
theorem see [17)).

Theorem. Let S, S denote two sets that define a
sep sep

partition of the sphere S (or the plane P when the small
angle scattering approximation is used) by a circle 8=8„
such that

QGS0 if Q=(8, y), 8&8„p
sep

or

GEST
sep

if Q=(8, p), 8&8„p .

Let Iz (Q) denote the characteristic (indicator) function
of the set A. Then the processes Q"'(t) and Q"" (t)
defined by

N(t)
Q '(t)= g QkIs (Qk)

k=0 sep

and

=A, I [f ( Q Q"—, t ) f( Q—, t ) ]p ( Q" )d Q" . (42)
Bt s

Notice that Eq. (42) is identical to (24) because
P( Q)=(1/o )do(Q)/dQ and A, =n, o. In the small angle
approximation Eq. (42} is reduced to a Boltzmann equa-
tion on the plane P given by

f , [f(8 8",t) —f(8, t—)]p(8")d8", (43)
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N(t)
Q""(t)= yQ„I -(Q, )k

k =0 sew

(45)
f""(Q, t), f ' (Q, t), and f(Q, t), respectively. ] Analo-
gous to (34), the explicit formula for the density distribu-
tion f""

( 0, t) can be written as
are mutually independent compound Poisson processes
(CPPs) and their sum is equal to Q(t). This also means
that the probability density distribution f(Q, t) for vari-
able Q(t) can be written as

f(Q, t)= f f"'(Q —Q", t)f""d(Q",t)dQ", (46)
S

where f"'(Q, t) and f "
( Q, t) denote the probability

densities for the random variables Q"'(t) and Q"" (t),
respectively.

Notice that the process Q"'(t) consists of "small an-
gle" scattering only [i.e., that for which each individual
change of direction Qk = ( gk, tpk ) satisfies gk & g„p,
k =0, 1, . . . , N(t)] and the process Q"" (t) consists of
"large angle" scattering only [i.e., that for which each in-
dividual change of direction Q; = ( 0;,t(p; ) satisfies
0,. ~ 0„,i =1,2, . . . , N(t)]. Hence we may call the pro-
cess Q"'(t) the soft collision process and the process
Q"" (t) the hard collision process. If the overall average
number of collisions A, t is small (e.g. , & 500), then the dis-
tribution for both processes Q" '(t) and Q"" (t) can be
found directly. If, however, the overall average number
of collisions itis la, rge (from a few hundred to a few
thousand), such calculations are impractical or even im-
possible. In this case at least one group of collisions
(hard or soft) has to contain a large number of scattering
events. How many scattering events are classified as hard
and how many as soft depends on the choice of the pa-
rameter g„p. For a typical (strongly peaked at Q=QO)
normalized angular scattering cross section p(Q), even
relatively small values of the parameter 0„(e.g.,
0„=1) lead to a small average number of hard col-
lisions A"" t (Not, ice t.hat Moliere's definition of the an-
gle y, is equivalent to setting y, =O„, where O„defines
the average number of hard collisions as equal to 1, i.e.,
A,
""t =1). This means that the average number of soft

collisions A,
"'t is large because A,

"'t is equal to
t —

A,""d, t. Since all these soft scatterings are character-
ized by small angular changes, the process Q" '(t) has all
the characteristics of a difFusion process [17,18].

The relatively large average number of soft collisions
allows us to closely approximate the density distribution
f"'(Q, t) for the soft collision process Q" '(t) by the den-
sity distribution f ' (Q, t) for the diffusion process Q ' (t)
[18]

f ' (Q, t)= lim f""(Q,t),
sep

"sort

where n„«denotes the average number of soft collisions
A,"'t. On the other hand, the relatively small average
number of hard collisions allows us to calculate the distri-
bution f""(Q, t) for the hard collision process Q"" (t)
directly from formulas (34)—(36). [Notice that the densi-
ty distributions f " (Q, t) and fd'ff(Q, t) are both rota-
tionally invariant due to the rotational symmetry of sin-
gle angular scattering. We therefore will use the nota-
tions f"" (g, t), f ' (g, t), and f(g, t) in place of

fhard( g t) —e
2"—.t ~ ( t) hard(n)( g) (48)

fdiff(g t) ~ 8 /2Dt—1

2mDt
(50)

for the calculations in the planar coordinate system. In
(49) and (50) D denotes the diffusion constant for the pro-
cess Q ' (t). The diffusion constant D is a local charac-
teristic of the process Q ' (t) and thus it has the same
value in both the spherical coordinate system and the pla-
nar coordinate system (i.e., when the small angle approxi-
mation is imposed). Thus we can write

2
sphere plane (51)

where A, is the average number of soft scattering per unit
path length and cr the angular scattering variance of the
electron for a single soft collision. Substituting (49) into
(46) leads to the following representation of f ( 0, t) in the
spherical coordinate system:

f (g t) — y (2n + 1)& (1/2)n(n+1)Dt1

n=0

X f f p„( cosg')f h„,(0",t)
0 0

X sinO'd O'd y',
where cosO" =cosO cosO'+ sinO sinO'cosy'. Similarly,
substituting (50) into (46) leads to the following represen-
tation off (0, t) in the planar coordinate system:

fpi,„,(0, t)

~
—8' /2Dtf hard (0« t)g~dgrd (53)

where 0"=V 02+ 0'2 —00' s pco'. tFor both formulas

where p"" '"'(0) denotes the normalized angular density
distribution of the charged particle that has experienced
exactly n collisions, each changing the particle s direction
by an angle larger than O„. The explicit recursive for-
mulas for p"" '"'(0), in terms of various single "hard"
scattering angular density distributions p

""
( 0 ), are

given in Appendix B. In fact, we only perform summa-
tion over a finite number nh„d of terms in (48), where

nh„d is appropriately larger than the average number of
hard collisions A,

""t. This is justified since the total con-
tribution from all terms with indices larger than nh„d is
negligible.

The explicit formula for the density distribution
f '

( 0, t) is given by [17,19]

fd' (g, t)= g e ((/2'tn(n+1'Dt(2n +1)p„(cosg)
1

4m „
(49)

for the calculations in the spherical coordinate system
and by
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f "(B,t) is calculated according to the direct method
represented by (34).

To verify when the diffusion limit for soft collisions
holds [i.e., how large n~t, and how small B„should be so
that f"'(O, t) is closely approximated by Eq. (49) or (50)],
the following two tests were performed.

(i) For as large a number of average collisions as possi-
ble (A, t of the order of a few hundreds, f (8, t) was calcu-
lated directly from formulas (34)—(36). Then the calcula-
tions for f (O, t) were also performed using the indirect
decomposition method. One can observe in Fig. 4 that
for decreasing values of 8„, the function fs (O, t), cal-

sep

culated by the decomposition method, converged to the
exact function f (8, t), calculated by the direct method us-
ing formulas (34)—(36). This convergence indicates that,
for multiple scattering with an average number of col-
lisions A, t of the order of 100, the process 0"'(t) already
exhibits the character of a diffusion process 0 ' (t) This.
means that in the case under consideration, f"'(O, t) can
be set equal to f ' (O, t) with a high degree of accuracy,
i.e., that the limit condition specified in (47) applies here.

(ii) For an average total number of collisions too large
for direct calculations (A, t is larger than a few thousand),
calculations of f (O, t) were performed using the indirect
decomposition method for various values of parameter
O„~. We know from test (i) that the number of collisions
in this new case is large enough that 0"'(t) will exhibit a
convergence to the diffusion 0 ' (t) with decreasing 8„„.
Therefore it was expected that f"'(8, t) will converge to
f ' (O, t) and that f (O, t), calculated according to formu-
las (52) and (53), will converge to the exact angular prob-
ability density distribution function f (O, t) given by (46).
This convergence is exactly what we observed when the
calculations were performed for a few chosen cases (see,
e.g., Fig. 7). Thus we were able to identify the function
obtained in this limit with the exact angular density dis-
tribution function f (B,t)

p p5 I I & i I I ! i I I I I i I I t I I j I i I I i I i I t I I I I i i I

o b

C

VI. CALCULATIONS

Figure 4 illustrates the convergence of the decomposi-
tion method calculations for decreasing values of 0„.
All curves presented in this graph are calculated accord-
ing to the compound Poisson process method on the
sphere for a 15.7-MeV electron penetrating a 0.001-cm
gold foil. They are calculated using the screened Ruther-
ford single scattering cross section and assuming a stan-
dard normalization of the density function f (O, t) [see
formula (8)]. Different curves are obtained by assuming
different values of 0„ in the decomposition method. The
values of 0„may change from zero to m. For 0„=0all
collisions are classified as hard and the density function
f (O, t) is calculated based on formulas (34)—(36), i.e.,
direct calculation. For 0„=m all collisions are classified
as soft and the density f (8, t) is calculated based on for-
mula (49). The value of O„determines uniquely the ratio
r of the average hard collision number to the average to-
tal collision number. Therefore the ratio r equals 100%
(direct) if 8„~=0and it is O%%uo if Osc~=m. The r values for
different 0„are listed in Table I.

Figure 5 presents graphs of the angular probability
density distributions calculated by the indirect CPP
method in the planar coordinate system by setting 0„
equal to 1 and 57.1, respectively. The results are com-
pared with that calculated by Fermi-Eyges (FE) theory
and Moliere theory. As may be expected, the graph from
CPP calculations with O„~=57. 1' ( = rad} and
r =0.0025% is almost identical to the graph from the
Fermi model [15]. This is so because (i} Fermi model cal-
culations are identical to CPP calculations, which include
soft collisions only and for which 0„ is being set equal to
a cutoff angle that is not larger than 1 rad, and (ii) the
effect of a small average number of hard collisions (which
are included in the graph of CPP calculation in the figure
with Osc&=57. 1' and r =0.0025%) on the final distribu-
tion function f (O, t) is negligible. On the other hand, the
graph based on Moliere theory agrees very well with the
graph of a function parametrized by 8„=1' ( r =

l%%uo ).
Both these latter graphs should give an accurate descrip-
tion of the angular scattering process according to the
discussion provided in Sec. V. This prediction is convinc-
ingly confirmed by comparing our results to the experi-
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FIG. 4. Angular distributions of a 15.7-MeV electron after
penetrating a 0.001-cm gold foil, calculated by the CPP method
in the spherical coordinate system using the screened Ruther-
ford cross sections. (a) r =100% (direct), 0„p=0', (b) r =20%,
0 p 0 2 (c) r 10% 0 p 0 3 (d) r 1% 0 p 1 0 (e)
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FIG. 5. Angular distributions of a 15.7-MeV electron after
penetrating a 0.001-cm gold foil. (a) Moliere's theory; (b)
Fermi's theory; (c) the CPP method, r =1%, 0„~=1.0; (d) the
CPP method, r =0.00025%, L9„p=57.1'. Both (c) and (d) are
calculated in a planar coordinate system using the screened
Rutherford cross sections.

FIG. 7. Angular distribution of a 1-MeV electron after
penetrating a 701-pm aluminum foil. (a) Moliere's theory; (b)
r =1%, 0„„=4.3, planar coordinates; (c) r =1%, 8„~=4.3,
spherical coordinates. Both (b) and (c) are calculated using the
screened Rutherford cross sections.

derestimation of the large angle contributions to the an-
gular spectrum of low-energy electrons.

mental data of Hanson et al. [20]. Thus Fig. 5 may be
seen as clarifying the relationship between the Fermi and
Moliere models of multiple angular scattering. They are
both manifestations of approximate evaluations of a com-
pound Poisson process model of angular scattering in the
planar coordinate system.

Figures 6 and 7 show a few graphs off (O, t) calculated
by the method described in this paper. The graphs are
compared with that obtained by Moliere theory. They
show that, for the particular cases considered, our ap-
proach is advantageous. In particular, Fig. 6 illustrates
how Moliere theory breaks down for a few collisions (and
even gives negative probability densities) while the CPP
method leads to the correct result. Figure 7 shows how
the small angle approximation in Moliere theory can sub-
stantially distort the distribution for low-energy elec-
trons. Finally, Fig. 8 illustrates how the unavoidable reli-
ance on the screened Rutherford cross section can be re-
sponsible for overestimation of the small angle and un-
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APPENDIX A: INSTRUCTION
FOR CALCULATIONS USING THE CPP METHOD

Utilizing the method of compound Poisson processes
described in this work, a sequence of calculations was
performed for the angular scattering probability density
function f (O, t) The calc.ulations were performed in
both the spherical coordinate system and in the planar
coordinate system (when the small angle approximation
was imposed). The single scattering angular cross section
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FIG. 8. Angular distributions of a 0.128-MeV electron after
penetrating 1.33-pm gold foil, calculated directly in the spheri-
cal coordinate system using the screened Rutherford cross sec-
tion and the partial wave analysis cross section.
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FIG. 6. Angular distributions of a 0.128-MeV electron after
penetrating a 0.1770-pm gold foil.
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TABLE II. Categories of the calculations performed.

Spherical coordinate system
Indirect

Planar coordinate system
Indirect

Method Direct Soft Hard Direct Soft Hard

Screened
Rutherford
Partial
wave

A 8

H

D F

used was either the screened Rutherford cross section or
the more accurate partial wave analysis cross section.
Moreover, the calculations were performed using both
the direct and indirect approaches. To illustrate concise-
ly all the categories for which the calculations were per-
formed we present Table II.

Each one of the nine letters (from A to I) labeled in
Table II indicates a category for which the calculation of
f (8, t) was performed. For each direct calculation
method we have to know only the formulas for p'"'(8)
and A, [Eq. (34)]. We may compute p'"'(8) for all
n =2, 3,4, . . . according to the recursive relation of for-
mula (36) only if expressions for p(8) and q(8, 8') are
known. Therefore, in the Appendix we list the basic for-
mulas for A, , p (0), and q (0,0') for each category of direct
calculation of f(g, t) [14]. To avoid confusion, in each
category under consideration, the quantities A, , p (8), and
q (8,8') will be equipped with appropriate subscripts and
superscripts to indicate the kind of calculations to which
they pertain. For example, the categories D, E, and F in-
volve computations with the screened Rutherford single
scattering cross section and small angle approximation
(planar coordinates), subsequently the quantities A, , p (8),

and q(0, 8') are denoted by Ap, ane sR, Pp»ne sR(8), and

qp»«sR(8, 8'), respectively. Similarly for the categories
C, F, and I of the hard component of indirect calcula-
tions, the basic quantities A, , p (8), and q (8,0') are denot-
ed by A,"",p"" (8), and q"" (8, 0'). Thus for category F
the quantities A, , p (8), and q(0, 0') are denoted by
Ap~ta'ne sR, Pp~(a'ne sR(8), and qpt'ane sR(8, 8'), resPectively.
Finally, for the soft component of the indirect calcula-
tions the basic quantities, as seen from Eq. (51), are A,

"'
and the scattering variance (o )"'. They determine
uniquely the diffusion constant D and also the diffusion
component f ' (g, t) of the angular probability density
distribution f (g, t). Therefore the quantities A, and o.
with appropriate subscripts and superscripts [e.g.,
AP,"ne sR and (o )p»'ne sR] a«also listed in APPendix B.

APPENDIX B: BASIC FORMULAS
FOR A,, p(0), AND q(0, 0')

For category A,

4n.k
sphere, SR 02 (4+ 02

min min

82;„(4+8;„)
Ss he...SR(0)=

g2,.„(4+g2,.„)( 1+—'02,„—cos8 cosg' )

g[(1+—,'g2,„—cosgcos8')2 —(singsing') ] ~

for category B,
m.k (1 —cosg„p)

gsoft
2 soft 2 soft plane, SR

)sphere, SR (~ )plane, SR s&&fr

~sphere, SR

[see category E for (cr )p»a„, sR and A, '&,'„, sR] and for category C,

mk(1+ cosg„p)
p""'" (4+82;„)(1+21 82;„—cosg,.p)

'

0, 0(6I&e,.phard (g)P sphere, SR (4+ g2 )( 1+ 1 g2 cOsg )min min sep

4~(1+ cosg,.p)(1+r102;„—cosg)2' "P
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TABLE III. Conditional formulas for q,"'h„, sR(g, 0').

Condition
on 0 and 0'

0+0™O„p
or 2m —(0+0') &O„p

/8 —e /&8„,

0=0, O„p & 0' ~ ~

O„p&0~~, 0'=0

le —8'1&8. and 8+8'&8...

9 sphere, SR ( 0~ 0 )

2a

(a —b )
3 /2 arctan

(4+ gmjn )( 1 +
2 gmjn cosgsep )( 1 +

2 Omjn cosg cosg )

2(1+ cose„p) [(1+
2 8;„—cose cose') —(sine sine') ]'~

(4+0;„)(1+—'0;„—cosg„p)

2( 1+ cosg„p ) ( 1+—'0;„—cosg')
(4+0;„)(1+—'0;„—cosg„)

2(1+ cosg„„)(1+—'0;„—cosg)

2 3/2+2m.(1+ cosg ) (a —b )' (a' —b )(a+b cosy&)
Va' —b tan( —'p'i)

The conditional formulas for q,"ph„, sR ( 8, 8') are
given in Table III, where a = 1+—,

' 0;„—cosO cosO',
b = —sing sing', and q2', =arccosr(cosg„„—cosg cosg')/
sing sing'].

For category D,

~kO„
gsoft

plane, SR 82 ( 82 +82
min min sep

2 2
2 soft 1 2 min+ sep

)plane, SR gmin2 g,

and for category F,

g2 +$2 —1
2 9

min

mk
plane, SR

min

t92

Pplane, SR (82+82
(8)=

min

28;„(8 +8' +8;„)
pie~a sR ' [(g2+gi2+g2 )2 482gr2]312q ia.e, SR(g 8')=

for category E,

ghard
plane, SR ~2 +2

min sep

0, 0&0&0„,
P "i",sR(g) =

2 2
min+ ~sep

2r(g +8;„)2 2 ' sep—

The conditional formulas for qpl,'„,sR(g, g') are given in
T ble IV, where a =0 +0' +0;„, b = —200', and
ip'i =arccos[(g +8' —g„p)/288'].

Condition
on 0 and 0'

0+0'~ O„p

TABI-E IV. Conditional formulas for q"," sR(g g').

9 plane, SR(g& 0 )

/8 —e
/
&8„„

2( g2 +g2 )(g2+ 0~2+ g2 )

~(g2+ gi2+ g2 )2 482gi2]312

/8 —e
/ &8„,

gmjn+ gsep 2~a 2b smyth
2 3/2+(a —b ) (a —b )(a +b cosy) )

4a
(a —b )

3 /2 arctan
3/a' —b'tan( —

2' p', )

a+b
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For category 6,
Nap

~sphere, PWA A
~sphere, PWA

P sphere, PWA ( 8 )
R 4 A 6

+ g C„P„(cos8)
&sphe~~ pwA m —

~ ( 1 —COS8+ 2B )

4 A
(8 8')= . g P, + g C„P„(cos8)P (cos8') . ,

~sphere, pwA m =1 (a b ) +a b n =0

Os here PWA 2~R ' A1 1Q
1+B 4 1

z (m —1)2 ' B
+2CO

(1+B)m —i

for category H,

soft
N n

soft
~sphere, PWA A ~sphere, PWA t

2 soft
)sphere, PWA

'.p
6I g, q

+ Q CP(1—
—,'8) 8d8,

~spphere, PWA m =1 ( 2
8 + ) n =0

~sphere, PWA=2~R - A1 1n
+2B —cos8

2B

A

2 m —1 (2B)m
—i

( 1+2B —cos8„)

+C0(1—cos8sep) —sin8sep g,
)
P„( cos8sep t

, n(n+1

Condition
on 8 and 8'

8+8' (8„p
8=0 and 8„p ~ 8' ~ ~

8„p~8 ~ and 8'=0

8,8'%0

and i8 —8i~8„,

8,8'%0

and i8—8'i &8„

TABLE V. Conditional formulas for q ph pwA(8 8 ).

2mR
hard

~sphere, PWA

2mR
hard

~sphere, PWA

'V sphere, PWA ( 8& 8 )

0
4 A +
=, (1—cos8'+2B)
4 A +
=, (1—cos8+2B)

6

g C„P„(cos8') .
n=0

6

g C„P„(cos8) .

+a —b 2tan( —,
' g', )

a+b
2

where Iz = ~—2 arctan&a' b' . —
2b sing& aI +

2 . I~
(a —b )(a+b cosy&) a —b

1 b singe] 1 3a 2a'+ b'
a b[ a +b cosy', a—+b cosy', a' b2 2(a—2 —b~)

2 z i P, —+ g C„P„(cos8)P„(cos8')2~R ' A a

rTsphere, pwA m =1 (a b ) a b« —=p

R 6

A I„+QC„Ic
~sphere, PWA m =1 n =0

b sing&

3(a —b ) a +b cos
2 5a 11a +4b2 6a +9ab

( +b ~ )2 (
2 b2)( +b ) (

2 b2)2 2( 2 b2)2

(n —m)t sinm qp&

Iz =2(sr —p', )P„(cos8)P„( cos8) —4 g P„(cos8)P„( cos8')
0 (n+m)! m
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and for category I,

&oP 2(1+B)
sphere, PWA A 1

1 +2B —COSH„

A
IL

(1+2B—cosO„)
1

(2+2B)m —1

+Co(1+ cosO„)+sinO„Q P„'( cosO„) . ,
, n n+1

hard+ sphere, PWA
4 6

+ g C„P„(cosO), O„~O~rr.
+sphere, pwA m =, ( 1 —cosO+2B) n =o

The conditional formulas for q,"g„pw~(8, 8') are given in Table V, where a =1+—,'8;„—cosOcosO', b = —sinOsinO'
and y& =arccos[(cosO„—cosO cosO')/sinOsinO'].
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