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Simple model for river network evolution
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We simulate the evolution of a drainage basin by erosion from precipitation and avalanching on
hillslopes. The avalanches create a competition in growth between neighboring basins and play the cen-
tral role in driving the evolution. The simulated landscapes form drainage systems that share many
qualitative features with Glock's model for natural network evolution and maintain statistical properties
that characterize real river networks. We also present results from a second model with a modified,
mass conserving avalanche scheme. Although the terrains from these two models are qualitatively dis-

similar, their drainage networks share the same general evolution and statistical features.

PACS number(s): 02.70.—c, 07.05.Tp, 92.40.Fb, 92.40.Gc

I. INTRODUCTION

A general understanding of the driving mechanisms for
pattern formation in nature remains incomplete. Recent-
ly, river networks have emerged as a model dynamical
system to study these issues. The basis of this research
has been to identify the underlying sources for the
numerous statistical laws relating different features of
drainage networks. In a closely related area of research,
geomorphologists have developed a qualitative picture of
the characteristic evolution that these networks experi-
ence. The extremely long time scales for this evolution,
however, have greatly restricted the opportunities for
direct observation of temporal changes, and further un-
derstanding of the process has relied on the inference of
an age sequence to groups of river networks selected from
different locations. Consequently, few studies have suc-
cessfully related the evolution of drainage basins to their
statistical properties.

The numerous efforts to model river networks have pri-
marily focused on reproducing the statistical characteris-
tics rather than the temporal behavior of natural net-
works. One popular approach involves modeling rivers
as random-walk paths drawn on a two-dimensional lat-
tice, each path continuing until it joins a previous path or
reaches the lattice boundary [1,2]. The resulting
branched patterns simulate the structure of river net-
works, and the degree of success each model has in repro-
ducing natural networks' statistical features depends on
the specific rules dictating the random-walk paths [3].
Other models [4—9] offer variations on the random-walk
procedure, such as the headward growth of walk pat-
terns, and these simulations have reproduced many of the
statistical characteristics of natural river systems with
reasonable success. However, this success has been criti-
cized as "illusory" [10]. Since river networks constitute
extremely complex systems where many factors vary in-
dependently both spatially and temporally, a network's
response to this multitude of variations appears well
simulated by a random variable [6]. Abrahams [10] has
argued that none of the random-walk simulations offer

insight into the geomorphic processes that determine net-
work evolution.

Recently, the idea that drainage basins may be an ex-
ample of a self-organized critical state has led to the
study of network formation in terms of the attainment of
features which reveal critical scaling. Following an ap-
proach similar to that developed by Howard [11],
Rodriguez-Iturbe et al. [12] have postulated that river
networks arrange themselves to minimize their energy ex-
penditure, and they have compared the networks
modeled on this assumption with natural systems [13].
Similarly, Inaoka and Takayasu [14] have presented a
model in which erosion drives a landscape with random
roughness to a final state where the water is channeled
into a network of rivers. The fully developed networks in
each of these models are static structures with spatial
features that show critical scaling and share statistical
properties with natural rivers. However, real drainage
basins are not static but proceed through a characteristic
evolution on geological time scales. Therefore, one can
ask how river networks maintain their statistical proper-
ties as they evolve in time.

Clearly, to understand the important mechanisms
affecting a river network's evolution one must consider its
interaction with the surrounding landscape. Two new
physical models address this issue. In these models con-
tinuum equations, solved discretely on a lattice, describe
landscape changes due to a variety of erosional processes.
Willgoose et al. [15] have modeled the development of a
drainage network that, initialized at the edge, grows by
erosion to extend throughout the lattice. The rivers, once
present at a lattice site, remain fixed there. However, the
resulting physically realistic depiction of network initia-
tion has allowed them to trace the temporal behavior of a
variety of network statistics during this growth period
[16]. Following a similar strategy, but with a different set
of continuum equations, Howard [17] has simulated the
transformation of a rough surface as it establishes a chan-
neled drainage pattern through a process of retreating
hillslopes and fluvial erosion.

While these physical models make a comprehensive
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effort to describe the relevant processes in drainage basin
evolution, their complexity limits the size of feasible
simulations (the largest simulation in either study con-
tained 10 lattice sites) and correspondingly compromises
the resolution of network and landscape features. Our
simulations of landscape erosion and drainage network
evolution apply a different approach. We have
developed a model whose rules are as simple as possible
but which nonetheless produces rich spatial and temporal
behavior. Maintaining simplicity allows us to identify
unambiguously the sources of the dynamics in the simula-
tions and their consequences. Examining both the
model's successes and limitations provides insight into
mechanisms capable of producing various river network
properties.

A central feature of the model is an avalanche scheme
which produces a realistic hillslope development and
drives a competition in growth 'between neighboring
drainage basins. Recent experiments have highlighted
the importance of avalanching for the production of
landscape features seen in nature [18]. Our study concen-
trates on the temporal behavior of the landscapes' associ-
ated river networks, and we find that the networks main-
tain many of the statistical characteristics familiar to nat-
ural systems during their evolution. In a previous report
we summarized a version of the model in which
avalanched mass is not conserved and described some of
its results [19]. Because of the importance of avalanches
in driving the network evolution, we have extended our
investigation to a model with an alternative, mass con-
serving avalanche scheme. The contrasting behaviors of
the two models provide insight into the role conserved
variables play in this dynamical system. In this paper we
provide a comprehensive analysis of the features of the
drainage networks that the original model produces, and
compare our findings with results from this new, mass
conserving model.

II. MODEL FOR NETWORK EVOLUTION

A. The rules

In the model a rectangular lattice of points describes
an eroding terrain with the height of the land, h (x,y ),
specified at each point. The lattice has periodic boundary
conditions in the x direction:

h(x,y)=Iy, (2)

where I is the initial slope. The terrain changes from the
effects of a single precipitation event at each iteration ac-
cording to the following procedure.

(i) Precipitation lands at a random site on the lattice.
(ii) The water Rows from the site it occupies to one of

four nearest neighbors until it reaches the lattice edge,
y=0. The probability distribution that determines to
which neighbor the water Aows is

h(x, y)=h(x+ W,y) .

The simulation begins with the landscape as a featureless
incline:

exp(Ehh; )
j=4

~j=1,hh. ~0

]
—1

exp(Eb, h ), gh, &0. ,

0, bh, . &0,

where hh, . is the height of the occupied site minus the
height of the neighbor i, and E is a free parameter in the
model. We choose E &1/I so that precipitation on the
initial slope has nearly equal probability to move in either
the x direction or toward y =0. This exponential depen-
dence directs the water down steep slopes it encounters,
but allows it to take a meandering path on the initial
slope, thus accounting for topographic features on scales
finer than any set by model parameters and introducing
randomness to the otherwise pristine initial slope.

(iii) Once the water reaches y =0, each lattice point
(x,y) that it has visited loses D units of height to simu-
late the water's erosion:

h(x, y)~h(x, y) —D . (4)

h (x„,yh )~h (x„,yh )
—b, h /4 .

In this non-mass-conserving version of the model, these
units of height are simply eliminated as part of the ero-
sion, and avalanches continue until all local slopes are
less than M. In the simulations we use M »D to limit
the landscape changes from a single precipitation event.
After the avalanching has completed, new precipitation
enters the simulation at a random lattice point, and the
process begins again at step (i).

By tracking the effects of single precipitation events of
uniform strength, we avoid complications introduced by
several units acting together, which may, in fact, play an
important role in real drainage evolution. In this respect
our model follows a qualitatively similar approach to that
which Chase has developed in a lattice model for
landscape erosion [20]. Chase's model incorporates a
more complicated erosion scheme than we have used
with a terrain smoothing, mass diffusion process. The
analysis of this model has focused on relating simulated
terrains' structures to natural topographical features [21].

In our simulations we can define the river networks at
any time: every lattice point receives one unit of precipi-
tation which traces a path of steepest descent, without
eroding the terrain, until it reaches the lattice edge, y =0;
all points through which at least R units Bow define the
river network [22]. We have examined the river patterns

This procedure for removing soil, which ignores both
limits to the sediment carrying capacity of the precipita-
tion and possible variations in its erosive strength,
represents the simplest possible erosion process. Conse-
quences of its simplicity become clear in our description
below of the simulated landscapes.

(iv) Following the erosion, the values of b, h in the
landscape are compared against a critical value, M. If
any site differs in height from any nearest neighbor by
more than M, then the higher site (xh, yz) loses b,h/4
units to simulate the avalanching of soil:
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formed for values of R between 20 and 1280 and find
that, besides an effect on the apparent rate of network
evolution and the obvious variation in drainage density,
its value does not strongly inAuence the statistical charac-
teristics of the river networks.

B. The terrain and river network evolution

Figures 1(a)—1(c) show a landscape formed from this
model at three times in its evolution, and Figs. 1(d)—1(h)
show the corresponding river networks defined at five
times in the simulation. The evolution contains two dis-
tinct time scales. During the first few iterations water
typically lands on an uneroded site and takes a meander-
ing path down the initial slope before intersecting the
eroded path from previous precipitation. Once it has in-
tersected this path, if D & I, the probability distribution,
Eq. (3), forces the water to follow it. This early aggrega-
tion process quickly forms a network of shallow incisions
resembling the branching networks of random-walk rnod-
els. With this pattern intact in the landscape, further
evolution follows a largely deterministic process on a
much longer time scale as advantageously positioned
branches continue to deepen from the erosion of aggre-
gating water and to expand their areas of infIuence
through avalanches at the expense of neighboring
branches.

The resulting evolution of the landscape and its corre-
sponding drainage network contains many elements in
common with Glock's [23] theory for the evolution of
natural basins. Glock divided the evolution of a
network's morphology into an early period of "exten-
sion" followed by a later period of "integration. " During
extension the river network experiences "elongation" by
headward growth of main branches into the available
land area and "elaboration" with the addition of tribu-
tary networks off of the main branches. After the net-
work reaches maximum extension, integration begins

with the "abstraction, " or elimination, of small internal
branches of the network as the main branches increase
their own drainage area. Additional minor tributaries
suffer "absorption" during integration, ceasing to exist
except immediately after rainfall. A third characteristic
of integration, which Glock suggested may be difFicult to
identify and for which no clear field evidence exists, is the
aggressive adjustment of the main branches to minimize
their route to the sea. Glock also noted that, simultane-
ous with this evolution, stream capture, or "piracy, "
causes major changes between networks. In stream cap-
ture a growing basin intercepts a neighboring stream and
diverts it into its own network [24].

A variety of observations on natural river systems has
supported Glock's model [25]. However, several of these
studies [26,27] noted that the integration stage began be-
fore extension in the network was complete, as Glock in-
dicated might occur. In addition, laboratory studies have
revealed network evolution well described by Glock's
model, again with pronounced temporal overlap of exten-
sion and integration [28].

In our model the headward growth and broadening of
V-shaped valleys play a central role in the evolution. The
terrain in Figs. 1(a)—1(c) demonstrates this headward in-
vasion, as the valleys, initiated at the y =0 edge, grow to
fill the available space. As they erode, the valley sides
maintain fiat slopes, with slope equal to 3M/4 dictated
by the avalanching. Figure 2, showing the changing
cross section of the landscape in Fig. 1 at fixed y, illus-
trates this process. Such a parallel retreat of Aat
hillslopes emulates the natural maintenance of threshold,
regolith covered slopes, on which the shear stability of
debris dictates slope angle [29,30]. (While this headward
encroachment of the river valleys into the available ter-
rain is reminiscent of Glock's extension stage, the river
patterns themselves fail to share this headward growth.
The rule defining the rivers in terms of a threshold pa-
rameter, R, forces the rivers to reach within R of every
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FICx. 1.. The evolution of the landscape: (a) at t=1X10 iterations, (b) at t=5X10 iterations, and (c) at t=9X10 iterations; and
the corresponding river networks (d) at t = 1 X 10 iterations, (e) at t =3 X 10 iterations, (f) at t = 5 X 10 iterations, (g) at t =7 X 10
iterations, (h) at t =9X 10 iterations, in a 300X200 site simulation. The model parameters were D =10, E=0.05, I=1.0, M=2000,
and R = 100.
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point on the lattice, so that the river networks appear at
nearly full extension at very early times. )

However, the simulations follow the later patterns of
natural network evolution. Internal tributaries suffer
abstraction, losing their identity to the growing valleys of
the main branches. In addition, stream capture occurs as
the valleys of well-fed branches erode into paths of other
rivers, redirecting them into the valley s branch. Figures
3(a) and 3(b), details from Figs. 1(e) and 1(f), show exam-
ples of abstraction and stream capture.

Coinciding with these changes is an increasing tenden-
cy for the main branches to straighten their paths. Figure
4, showing the distribution of the number of steps water
takes without changing direction, s, as it Aows through
the rivers' main branches, illustrates the strong trend to-
ward increasingly straighter paths as time increases.
While Glock's prediction for this phenomenon does not
include a precise description, straightening of main
branches clearly plays an important role in the simula-
tions. These features of integration that the simulations
display occur as the valleys continue their headward
growth, consistent with several observations of natural
systems that show a pronounced temporal overlap of ex-
tension and integration.

Eventually, the valley sides of the main branches be-
come large compared to R, and tributaries from runoff
down the hillslopes appear. Figure 3(b) shows examples
of these branches. Such second-generation tributaries

FIG. 4. Histograms of s, the length in steps of the straight
line sections that comprise the river networks' main branches
(Strahler order & 1), at three times in the evolution: (4 ) t = 10
iterations, (X ) t=5X10 iterations, and (o) t=11X10 itera-
tions. The data are a collection from fourteen 300X200 site
simulations generated with the same model parameters that pro-
duced Fig. 1 and are compiled in bins spaced equally in loga-
rithmic steps. Each point is the number of straight sections
with lengths that fall within its bin divided by bin size. As time

progresses, the number of long straight paths increases.

have formed in experimental basins when conditions al-
low rapid incision of the main valley into the landscape
[28]. However, because we typically set E) 1/M, these
second-generation branches align parallel to one another
and show little meandering, simulating structures more
reminiscent of hillslope runoff than stream segments. In
this respect the appearance of these branches rejects a
shortcoming in the procedure to identify rivers on the
terrain, and their consequence for the statistical proper-
ties of model's rivers becomes apparent late in the simula-
tions, as we describe below.

The steady growth of dominant hillslopes, which pro-
vide the environment for these second-generation
streams, occurs as erosion continues to lower the valley
levels. Implementing more complicated, but empirically
more physical erosion procedures [31], or alternatively
setting a base level below which erosive forces become
ineffective, would provide the model with mechanisms
which counteract this trend [32]. Also, as we discuss in
Sec. III, deposition of avalanched mass acts to mitigate
this growth, thus providing a more spatially uniform
landscape evolution.
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FIG. 3. Details from Figs. 1(e) and 1(f) illustrating changes in
the simulated networks with time. In (a) "A" labels streams
that will suffer abstraction and "S"marks locations for stream
capture. In (b) "2" labels newly formed, second generation
branches.

C. Statistical properties of the model networks

Analyzing the simulations' statistical features as they
proceed through their evolution, we find that the struc-
ture of the simulated networks maintains agreement with
statistical properties characteristic of natural river net-
works. This maintenance of quantitatively correct river
network features during a realistic evolutionary process
is, we believe, the model's strongest attribute. In the fol-
lowing sections, we discuss several examples of these
comparisons.
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1. Horton's laws

The hierarchical ordering scheme for the segments of
river systems, introduced by Horton [33] and later
modified by Strahler [34], has formed the basis for a
quantitative description of drainage network morpholo-
gy. In Strahler's scheme all channels from a head down-
stream to the first intersection are first-order segments,
u =1. When two streams of the same order, u, meet,
they form a segment with order u + 1. When two streams
of different order meet, the lower-order segment ter-
minates and the downstream channel remains part of the
higher-order stream.

Applying this ordering scheme to a natural river net-
work, one finds that the number of segments, N(u ), and
the mean length of segments, (I(u )), of each order fol-
low geometric relations [33]:

example of the dependence of [ ( A ( u ) ) —R ] on order
number, u, at one time in a simulation. The variations in
r, with time, shown in Fig. 5(b), correlate strongly with
those of rb, so that the ratio 2rb jr„plotted in Fig. 5(c),
remains close to 1.8 throughout the evolution. Nikora
[37] and Rosso et al. [38] calculated this ratio for a large
number of river basins. With few exceptions, they found
values grouped between 1.6 and 2.0, consistent with the
values in the simulations.

The simulations follow the geometrical relation for
mean stream length, Eq. (6b), only during the early stage
of network development and begin to deviate from it at a
time before rb and r, have reached their peak values.
These deviations occur as the mean length of first-order
segments increases disproportionately to that of second
order. This growth in the mean length of first-order seg-

N(u ) ~ exp( r„u—),
(l(u)) ~exp(r&u),

(6a)

(6b)

2.3

2.1

where rb and rl are the natural logarithms of the bifurca-
tion and length ratios, R b and R &, respectively,
rb=ln(Rb) and r&=ln(R&). By defining the network's
drainage basin as the area of land which receives precipi-
tation that ultimately contributes to the rivers, one finds
that the mean areas of basins, ( A(u)), also follows a
geometric relation [26]:

1.9

1.7

(A(u)) ~exp(r, u), (6c)
2. 1

where r, is the natural logarithm of the area ratio,
r, =ln(R, ).

Using the Strahler ordering scheme, we find that
Horton's law of stream numbers, Eq. (6a), holds
throughout the simulated river evolution. The inset of
Fig. 5(a) gives an example of the number of segments
versus order number at one instant in a simulation. rb
evolves with time as shown in Fig. 5(a): it displays a rapid
increase to a peak followed by a steady decline. While
the long time scales for evolution in nature make direct
comparison with this behavior impossible, Abrahams'
[35] study of the correlation between decreasing rb and
declining basin relief in a group of natural mature basins
provides an indirect measurement of their temporal
behavior. Noting that basin relief tends to decrease with
age, he identified the correlation as evidence for a reduc-
tion in rb with time during the late stages of basin evolu-
tion, similar to the reduction seen in late times in our
model.

We also find agreement in the simulations with Eq.
(6c), the geometrical relation for mean basin area, when
we account for an offset to the basin area that the model
introduces. Because the model requires that at least R
units How through any site which is part of a river, basins
formed in the simulations have a minimum area of R.
Consequently, we modify the law of basin areas as

[( A(u ))—R ] ~exp(r, u )

and this form of the law holds well throughout the net-
work evolution [36]. The inset of Fig. 5(b) provides an
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FIG. 5. The time development of rb and r, from Horton's
laws and of their ratio 2rb/r, . The steady decrease in rb at late
times, shown in (a), matches a trend that measurements suggest
exists in natural mature basins [35]. The temporal development
of r„shown in (b), reveals a strong correlation over time with

rb. The roughly constant ratio, 2rb/r„ in (c) maintains a value
consistent with data from natural networks [37,38]. As an ex-

ample, the inset of (a) shows the scaling of the number of
branches, X, with order number u, at t=90X10 iterations.
The inset of (b) shows the scaling of the mean basin area minus
the ofFset that the model introduces, (( A ) —R), with u at the
same time. The data result from a 1500X 1000 site simulation
with model parameters: D = 10, E=0.05, I= 1.0, M=2000, and
R =70.
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2. Flack's law

Aside from Horton's laws, numerous other scaling re-
lations exist among features of river systems. Hack [41]
discovered one such characteristic of river network mor-
phology which has become the focus of wide interest
[38,42 —45]. Defining a principal river in each basin,
Hack found that its length scaled with basin area as

L ~A
P (8)

with o; =0.6 for a group of small drainage systems.
Again, because of the o6'set introduced to basin areas

in the simulations, we modify Hack's law as

ments continues throughout the evolution and is con-
sistent with experimental observations of networks that
have reached maximum extension [28]. Field measure-
ments also often fail to agree with the law of stream
lengths, particularly when Strahler's ordering scheme is
applied, and as with the simulations the observed devia-
tions result from excessively long first-order segments
[39].

We note that comparison of the simulations with
Horton's laws is not a stringent test for the model.
Shreve [40] used general statistical arguments to show
that the law of stream numbers follows naturally from
the ordering procedure in a topologically random assort-
ment of branched networks. In addition, he derived good
agreement with the laws of stream lengths and basin
areas when he assumed realistic forms for the distribu-
tions of lengths and areas that each section of river con-
tributes to a network [39]. However, certain aspects of
the simulations, viewed with regard to Horton's laws,
such as the temporal behaviors of rb and 2rb Ir, and the
systematic deviations from Eq. (6b), indicate a correspon-
dence with nature that extends beyond what one would
expect for a topologically random set of branched net-
works.

the simulations cease to agree with Hack's law, as the
quality of the fits rapidly deteriorates. We associate this
failure with the growth of hillslopes to sizes in which
second-generation branches, like those shown in Fig. 3(b),
enter the calculation of a (L & 10 ).

Figure 6 illustrates the behavior of most of the simula-
tions. However, in several simulations a has settled at its
second stationary value closer to 0.5 than 0.47. We also
note that increasing the lattice size in y, relative to its size
in x, can enhance the sharpness of the transition in a be-
tween 0.6 and 0.47 [47], indicating that the lateral
confinement of the basins on the simulation lattice may
play a role in producing this feature.

We have found that the temporal behavior of a in the
model corresponds to variations found in nature [19].
Analyzing several thousand data sets, Mueller [48] noted
that +=0.6 for small basins and that o;=0.5 for basins
with areas between 8000 and 100000 square miles. He
also noted a second rapid change to a=0.466 for basins
larger than 100000 square miles. Thus, the early and late
stationary values of n in the simulations match those for
small and large natural basins, respectively. This
correspondence suggests a connection between size and
age in drainage basin morphology that has been the sub-
ject of criticism [49,50]. However, given the evidence
that lateral confinement to the lattice inAuences the simu-
lations' statistics and the idea that such confinement may
at least crudely model constraints on very large basins in
nature, we find the association between a as a function of
size in nature and as a function of time in the simulations
intriguing.

3. Stream length distributions

Recently, the availability of digital elevation maps for
large tracts of terrain in the United States has motivated
methods for identifying river systems from the structure

L ~(A —R) (9)
0.70 I

6

We find that this expression holds during the evolution of
the drainage networks, where for L we use the longest
river in each basin. The inset of Fig. 6 shows the scaling
of L with 3 at one time in a simulation. Because of the
clear deviations from a power law at low L, we consider
only the behavior for L ) 10 in evaluating n. Figure 6
shows the variation of a with time. Initially, while the
paths of single units of precipitation on the featureless
terrain dictate the resulting river patterns, o.=0.67,
closely matching the value of 0.669+0.001 for the
directed-walk model on a square lattice [3]. This result is
not surprising since the first units of water transversing
the lattice choose among three accessible sites (x+ l,y ),
(x —l,y ), (x,y —1) as they perform random walks down
the slope, mimicking the rules for the random walks in
the directed-walk model [46]. As the landscape evolves,
a decreases to a stationary value near a=0.6, the value
originally measured by Hack. At a more developed stage
in the simulations, a decreases from 0.6 to a second sta-
tionary value near a=0.47. Finally, at very late stages
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FICx. 6. The time development of the scaling exponent in
Hack's law for the same simulation that produced the results in
Fig. 5. The stationary values a=0.6 and 0.47 match those
values measured for small and large drainage basins, respective-
ly [48]. The inset shows the scaling of the principal river length
with basin area at t =25 X 10 iterations.
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of natural landscapes. Assigning Aow directions between
the points on the maps' grids allows the construction of
extensive drainage patterns. Studying networks defined
on the digital elevation maps, Tarboton et al. [51] have
fit the length distributions for Strahler segments to a
power law at large lengths:

N(l &b) b (10)

4 I I I I I
IL 4

.47

with y=1.8 to 1.9. At shorter lengths the distributions
deviate from this power law, approaching b=0 with
nearly zero slope. The simulations produce very similar
behavior throughout their evolution. Figure 7 shows the
distribution of Strahler lengths at three times in a simula-
tion. At all times the distribution approaches b =0 with
nearly zero slope. Initially, a power-law fit at large
lengths gives y=1.5. At intermediate times, an excess
number of long segments appears, creating a bimodal de-
viation from power-law decay. However, at later times
the distribution again fits reasonably to the power-law de-
cay at large lengths with @=1.9, the value measured in
natural networks. Given the constraints on the simula-
tion data both spatially (with finite size effects entering at
large lengths and the rolloff toward b =0 at small) and
temporally (with strong deviations at intermediate times),
we hesitate to consider the power-law fits as more than a
guide. Likewise, the data from the digital elevation maps
appear similarly constrained given the limited range of
the fits (less than two decades) and the sparseness of data
over much of that region [51]. However, the forms of the
simulated and natural distributions show strong similari-

ties with one another, particularly at later times in the
simulations.

4. Link length distributions

Field measurements have revealed that the lengths of
external links (first-order Strahler segments) and internal
links (pieces of higher-order segments) in natural river
networks follow either log-normal distributions [26,52] or
gamma distributions [8,37,53]. Figures 8 and 9 display
the distributions of external and internal link lengths, re-
spectively, at two times in the evolution. For the external
links, while some simulations have suggested that the
gamma distribution offers a better description, the data
do not indicate that either form is superior during any ex-
tended stage in the evolution. The internal link lengths,
on the other hand, clearly follow the gamma distribution
at early times. At late times the formation of second-
generation branches, subdividing the main branches into
progressively smaller links, moves the peak in the inter-
nal link length distribution to lower values. While the
functional forms continue to hold at these late times, as
Fig. 9(b) illustrates, this abundance of short links caused
by the second-generation tributaries in the simulations
represents a deviation from natural distributions.

5. Area distributions

Rodriguez-Iturbe et al. [54], also using digital eleva-
tion maps, fit a power-law distribution to the area drained
through each link of a network:

N(A &m) ~m

where P=0.43. Figure 10 shows the distribution of
drainage areas at three times in a simulation [55]. Be-
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FICx. 7. The distribution of Strahler segment lengths at three
times in the same simulation that produced Fig. 5: ( E )

t = 5 X 10 iterations, () t =40 X 10 iterations, and ( X )
t=70X10 iterations. The distributions at t =5X10 iterations
and t =40X 10 iterations have been o8'set for clarity. At early
and late times the distribution at large lengths approximates a
power-law decay with scaling exponent y=1.5 at early times
and @=1.9 at late times. At intermediate times, such as
t =40 X 10 iterations, the distribution deviates from this
behavior. The late time distribution with y = 1.9 shows quanti-
tative agreement with data obtained from digital elevation maps
[51].
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FIG. 8. The distribution of external link lengths, L„attwo
times in a 1500X 1000 site simulation: (a) t =5X 10 iterations
and (b) t =60X 10 iterations. The solid (dashed) lines are fits to
a gamma (log normal) distribution. The model parameters used
in the simulation were D =10, E=0.05, I=1.0, M=2000, and
R =70.
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inated by the hillslopes of a few large basins. Data from
the latest time in Fig. 10 show such a distribution. Dur-
ing the period in which power-law fits seem reasonable,
however, the scaling exponent P approaches the one mea-
sured from the digital elevation maps.

6. Energy optimization
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We have also analyzed the changing morphology of the
model networks in terms of the energy expenditure cri-
teria postulated by Rodriguez-Iturbe et al. [12]. Accord-
ing to these criteria branches configure themselves to
minimize the network's total power loss, given by

g 400 P~ QLJAo', (12)

10 100 1000

FIG. 9. The distribution of internal link lengths, L;, at two
times in the same simulation that produced Fig. 8: (a) t =5 X 10
iterations and (b) t =60 X 10 iterations. The solid (dashed) lines
are fits to a gamm. a (log normal) distribution.

cause the finite lattice size leads to a sharp deviation from
any power law at large basin area, we fit the distributions
only for tn & 10 . As the simulations evolve, P increases
from P=0.38 (close to the result of the directed-walk
model, P=0.35[3]) to P=0.42 (a value closer to the re-
sult from the digital elevation maps). Small but reprodu-
cible curvatures exist in log-log representations of these
early time distributions. These curvatures grow at later
stages of evolution, as the entire landscape becomes dom-

where the sum is over all links in the network, and Ij and
A. are the length and drainage area of the jth link. Fig-
ure 11 shows P(t)/P(t =SOO) averaged over 40 separate
300X200 networks, with R =100 and R =200. As the
networks evolve from their initial random-walk patterns,
their energy expenditure, as expressed by Eq. (12), de-
creases. Thus, the evolution of this early period drives
the system toward an optimal state as viewed by
Rodnguez-Iturbe et al. However, for smaller R the total
power increases at later times. We identify this increase
with the formation of second-generation branches on
large hillslopes. As discussed by Rigon et al. [56], such
straight, parallel flow, characteristic of hillslope runoff,
should not optimize Eq. (12).

III. MASS CONSERVING MODEL

The avalanche scheme plays the central role in produc-
ing the temporal changes in the simulated landscapes.
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FIG. 10. The distribution of drainage areas, A, for all sites at
three times in the same simulation that produced Fig. 8: (E ) at
t = I X 10 iterations, ( X ) at t = 15 X 10 iterations, and (~} at
t =30X 10 iterations. The distributions at t =1X 10 iterations
and t = 15 X 10 iterations have been offset for clarity. At early
times power-law scaling provides a good description of the dis-
tribution with the scaling exponent approaching with time
P=0.43, the value measured from digital elevation maps [54].
Deviations from the power-law scaling become pronounced at
later times.
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FIG. 11. The variation with time of the total power loss, P,
as defined by Eq. (13), normalized to the power loss after 500
iterations. The data, compiled from forty 300X200 site simula-
tions with model parameters D = 10, E=0.05, I= 1.0,
M=2000, are for two values of the threshold parameter: (4)
R =100 and (~ ) R =200. The steady decrease in power loss
with time indicates that the evolving networks are approaching
an optimal configuration, as described by Rodriguez-Iturbe
et al. [12]. The increase at late times for R =100 reflects the
contributions to the networks of second-generation tributaries
on the hillslopes.
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h (xq, yq )~h (xq, yq ) —b, h /8,
h (x, ,y, )~h (x, ,y, ) +b.h /8,

(13a)

(13b)

thereby conserving the avalanched soil by redistributing
it to the low side, (xl,y& ), of the steep slope.

This alteration in the model introduces the complica-
tion that local minima form in the interior of the lattice
from which the probability distribution, Eq. (3), makes no
allowance for escape. Therefore, when Eq. (3), with the
proviso that the water not return to the site it immediate-
ly vacated, leads to zero probability of movement in all
directions, the water automatically Aows from the occu-
pied site in the same direction as the last unit of precipi-
tation to visit that site. In the escape of a minimum, this
rule leads to Aow to a site of higher elevation. When
recording the erosive effects of the water in step (iii), the
model does not apply Eq. (4) to those sites from which
the Aow is uphill, so that the erosion of subsequent pre-
cipitation quickly removes any local minima formed
upstream of avalanched soil. Occasionally (less than 1%
of all iterations), the water enters a pathologically
configured minimum for which this escape procedure
fails. In such cases the water follows the path of its im-
mediate predecessor not only out of the minimum but to
the edge of the lattice, y =0. Again, because sites from
which the Bow is uphill do not erode, these pathologies
are short lived. The definition of the rivers is the same in
this model as for the non-mass conserving model with the
stipulation that, if a test unit enters a minimum, it leaves
following the direction of the last eroding precipitation to
visit the site.

In choosing parameter values for simulations with this

Therefore, we have varied the way the avalanches occur
in the model to test the sensitivity of the evolution to
their precise form. The simulations with this modified
model follow the same iterative procedure outlined in
Sec. II A, except that Eq. (5) in step (iv) is replaced by

version of the model we followed the same procedures de-
scribed in Sec. II A. However, we typically used a small-
er value of M, while maintaining M )D, to limit the size
of barriers forming minima in the landscape. Also, we
moved hh /8 units in the avalanche scheme so that the
relative change in slope after an avalanche matched that
in the simulations with the non-mass-conserving model.

Figures 12(a)—12(c) show an evolving terrain simulated
with the mass conserving model. Comparison with Fig. 1

reveals qualitative differences between these landscapes
and those formed using the non-mass-conserving model.
Both simulations begin with V-shaped valleys initiating at
y=0. However, this formative stage comprises a much
smaller fraction of the total time of evolution when
avalanched mass is redeposited. In simulations with the
non-mass-conserving model, the valleys quickly broaden
near their mouths, so that the region near y =0 becomes
dominated by a few large basins before the terrains'
upper reaches suffer any significant erosion. In contrast,
when avalanched soil replenishes the valley bottoms, the
headward growing valleys fill the landscape before the re-
gion near y =0 reaches more advanced stages of erosion.
These two morphologies represent two extremes with
respect to the ability of the river system to transport
avalanche debris. In the original model the rivers can
fully support the instantaneous removal of avalanched
mass. In the mass conserving model, however, this sedi-
mentation erodes no more easily than the undetached ter-
rain beneath. These differences provide an example of
the effect a conserved variable introduces to the dynamics
in the simulations.

Despite these differing landscape features, the river
networks created in the mass conserving model, shown in
Figs. 12(d) —12(h), have the same general features as those
in Fig. 1. In particular, the dominant characteristics of
their evolution remain: abstraction and stream capture as
well as the straightening of main branches and the
growth of second-generation streams at late times. How-
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FICs. 12. The evolution of a landscape: (a) t =400 iterations, (b) t=4X10 iterations, and (c) t=25X10 iterations; and corre-
sponding river networks: (d) t =400 iterations, (e) t=1X10 iterations, (f) t=4X10" iterations, (g) t=10X10 iterations, and {h)
t=25X10 iterations, produced by the mass conserving model. The model parameters used in the 300X200 site simulation were
D =10,E=0.05, I=1.0, M=80, and R =100.
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ever, because the mass conserving model produces a more
spatially uniform valley development, its simulations do
not share the pronounced temporal overlap of the head-
ward invasion of valleys and the abstraction of tributaries
that the non-mass-conserving model displays.

The statistical properties of river networks produced
with each model reveal slightly different temporal
behavior, rejecting the differences in the landscape evolu-
tion. Figures 13(a) and 13(b) show the variation with
time of rb from Horton's law and cx from Hack's law, re-
spectively, in a simulation produced with the mass con-
serving model. Compared with the original model the
rapid increase in rI, and decrease from 0.67 to 0.6 in a
comprise a much smaller portion of the total time of evo-
lution. However, the exponents vary in the same general
manner as they do in simulations with the non-mass-
conserving model: rb shows a steady decrease during
most of the evolution and e has two stationary values
near 0.6 and 0.47. Indeed, we have repeated our analysis
for the mass conserving model of all of the statistical
properties of river networks described in Sec. IIC and
have found that, despite the differences in landscape
features, the behavior for each property shows agreement
with the original model.

0.40 I I I I I I

0 10 20 30 40 50 60 70

t (10 iterations)

FIG. 13. The time developments of rb from Horton's law,
shown in (a), and a from Hack's law, shown in (b), for a
1200X 1000 site simulation produced with the mass conserving
model. The model parameters used were D=10, E=0.05,
I=1.0, M=80, and R =70. The variations in time of these sta-
tistical features repeat the behavior seen in the non-mass-
conserving model, shown in Figs. 5(a) and 6, although over a
greatly extended time scale.

IV. CONCLUSION

In the sections above we have stressed the correspon-
dence between the spatial and temporal features of the
simulations and those observed in nature. Despite these
successes we note that the model may serve less as a con-
cise enumeration of mechanisms driving network evolu-
tion than as a warning about the ease of producing
branches structures that possess certain statistical
characteristics. As Shreve demonstrated for Horton's
laws, many bifurcating branched networks could, as a
general property of their form, possess statistical proper-
ties that are considered distinguishing characteristics of
river networks. However, a noteworthy attribute of the
models' performance is that the simulated networks im-

prove their compliance with several statistical features,
such as Hack's law and the stream length and area distri-
butions, as they evolve from their initial configuration of
random-walk aggregates. Thus, with only simple pro-
cedures for erosion and avalanching, the model produces
a realistic evolution that maintains or improves the net-
works' agreement with natural river systems.

Finally, along with its successes the model's limitations
may offer insight, particularly when the missing elements
that would extend its correspondence with natural sys-
tems can be identified. For example, the use of the
threshold parameter, R, in defining the rivers, while an
extremely simple criterion to implement, results in net-
work extension incommensurate with the degree of ero-
sion at early times and introduces second-generation tri-
butaries on large hillslopes which adversely effect some
statistical features at late times. Current research to im-

prove methods of locating rivers on digital elevation
maps [57] may prove helpful in the definition of rivers in
lattice simulations which avoid these problems. In addi-
tion, only with a more realistic description of the trans-
port and sedimentation of soil eroded via Eq. (4) could we

hope to compare some of the statistical properties of the
simulated terrains against natural features, such as the
variation of stream gradient with drainage area [58] or
the roughness of the erosional landscapes [18,59]. Given
the simplicity of the model in its present form, the
breadth of comparisons we have been able to make in
both its temporal and statistical behavior with natural
river networks provides encouragement for future work.
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