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Energy input and scaling laws for a single particle vibrating in one dimension
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The one-dimensional motion of a single particle on a vibrating base is considered in the limit of high
excitation (vibration frequency )) collision rate). An exact expression for the time averaged rate of en-

ergy input from the vibrating base to the particle is derived. By assuming a Gaussian form for the parti-
cle velocity distribution function, the expression can be numerically evaluated to obtain the one particle
granular temperature as a function of the base velocity V and particle-base restitution coefficient c. The
granular temperature is shown to scale as V and to scale approximately as (1—c) '. The velocity scal-
ing is also shown to hold over a generic class of velocity distribution functions. Assuming sinusoidal ex-
citation yields scaling behavior identical to the sawtooth excitations used in the analysis, two different
stable states can exist [(i) particle bouncing and (ii) particle not bouncing] when the peak base accelera-
tion is less than g.

PACS number(s): 46.10.+z, 05.60.+w, 05.40.+j

I. INTRODUCTION

Granular materials subjected to vertical vibration ex-
hibit a wide range of unusual behavior [1,2]. In model
two-dimensional systems where high restitution
coefficient particles are vertically vibrated, either surface
fluidization [3] or almost total fluidization [4,5] can be
observed. Total fluidization is confined to small system
sizes and experimental observations, based on high speed
photography and computer image processing [6], indicate
that thermodynamic and kinetic theory concepts should
be applicable, at least as a first approximation, to such
granular assemblies [4,5]. The scaling behavior for the
height of the center of mass in two dimensions has been
obtained by computer simulation [5,7] and experimental-
ly [4]; in the latter case the scaling for the system granu-
lar temperature was also investigated. Effort has there-
fore been made to gain an understanding of such fluidized
granular materials by applying simplified rather than a
rigorous kinetic theory of granular materials [8—11].

In an elementary treatment two main issues need to be
considered. Firstly, the vibrating base acts as an energy
source and the energy input to the particles as a function
of base velocity and restitution coefficient needs to be
evaluated. Secondly, particle-particle collisions are in-
elastic and therefore act as a source of energy dissipation.
Calculation of the rate of energy input and rate of energy
dissipation then allows one to determine the steady-state
behavior of the system from an energy balance. Such a
calculation has been performed in a highly fluidized two-
dimensional system [4] where approximations were made
so that a simple solution could be obtained. Similar scal-
ing laws have also been obtained, for the almost con-
densed phase, in two dimensions by solving a Navier-
Stokes type equation [5].

We consider here the simpler problem of a single parti-
cle undergoing one-dimensional (1D) vertical vibration.
Previous work on the vibration of a single particle has

concentrated on the rich phase behavior of the system
which shows transitions to chaos [12—16]. These studies
apply over a range of restitution coefficient c and base ac-
celeration I . It is found that the time for a cycle to re-
peat itself diverges as the power law ( 1 —E ) for E~ 1

and as I as I ~~. A one-dimensional column of beads
has been shown to exhibit a transition from a condensed
(high dissipation) to a fluidized (low dissipation) regime
[17,18] and an analysis based on the dissipative
Boltzmann equation, in the limit of low dissipation [19],
has derived expressions which can be evaluated numeri-
cally to obtain density profiles and velocity distribution
functions.

In this paper we derive an exact expression for the rate
of energy input into the system. By assuming a form for
the velocity distribution function of the particle we can
numerically evaluate the expression and obtain the scal-
ing laws for the particle granular temperature with base
velocity and restitution coefficient for particle-base col-
lisions. An understanding of this one-dimensional prob-
lem should then also be relevant to the related two-
dimensional system in the low density Auidized regime.

II. SCALING ANALYSIS

A. Model

We consider a simple analysis which attempts to derive
the scaling relationship, in a one-dimensional system, for
the granular temperature as a function of the base veloci-
ty Aoco and the restitution coefficient c. for particle-base
collisions. In the spirit of our previous work [4], we con-
sider the rate at which energy is put into the system by
making the following initial assumptions. The sinusoidal
oscillating base, amplitude Ao and angular frequency co,

is approximated by a sawtooth with amplitude sufficiently
small that the velocity of a particle corning down will not
change appreciably due to the effect of gravity over a dis-
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tance equal to the amplitude. We further assume that the
frequency of the base is so high that the particle coming
down sees the base moving at a velocity which is uncorre-
lated with the value on previous collisions. This seems a
reasonable assumption provided that the excitation is
sufficiently strong to ensure that the mean time between
collisions is much greater than the vibration period. The
time at which the particle passes the origin of the vertical
axis on its way down can therefore be regarded as a ran-
dom variable with uniform probability distribution over
the period of the base.

We extend our previous analysis [4] by identifying all
possible collision events together with their probabilities
of occurrence and the energy changes associated with
them. In the laboratory reference frame, we denote the
precollisional particle velocity and the base velocity by v
and vb, respectively. In general, the definition of the res-
titution coefficient leads to a postcollisional velocity for
the particle of ( I+s)v& —Ev and there are two initial
cases that need to be considered. Defining upwards as
positive, we denote the two situations by case I and case
II defined with the base moving upwards or downwards,
respectively.

We let P, and P2 denote the probabilities of cases I
and II occurring in a given collision. Considering a parti-
cle moving down towards the base then we denote the
particle velocity by vz = —v (where v~O), and the base
velocity by vb =+V (where V~ 0). If v~ V the particle
will never catch the base on the way down and only a
case I collision will result. For v) Vboth case I and case
II collisions can occur. Referring to the position time di-
agram in Fig. 1, the probabilities of such a case I and case
II collision occurring can be calculated. If the particle
passes through the line y =0 in region A —8 then case I
applies otherwise case II applies; the relative probabilities
only depend on the lengths Lo„and LAB. From the
geometry of the figure we have

T V
LAB =LAc+LcB 1+—

2 v

and

T VL =L —LOA OB AB

so that the probabilities, P, and P2 are given by the ratios
L zz /Los and Lo& /Los, respectively, resulting in

. 1 V1+—,v+ V
2 v

0, v~V
P2=

1 V
1 ——

2 v
v~ V.

(2)

After a case I collision, the particle velocity is
ev+(1+ E) V. After a case II collision, the particle veloc-
ity is Ev —(1+E)V and if this postcollisional velocity is
negative (particle still moving down) then a second im-

pact will always occur. The condition for this is
V ~ v ~ (1+1/E ) V. Conversely if the initial postcollision-
al velocity is positive and greater than V only the single
impact will occur. The condition for this is
v~ (1+2/c. ) V. However, for intermediate preimpact ve-
locities [(I+1/s)V~ v~ (1+2/E)V] the postimpact ve-

locity will be positive but less than V and either a single
or a double collision can occur. Since the initial postcol-
lisional velocity after the first case II collision is
v2=Ev —(1+8)V, the velocity after a second collision is
(1+E) V —E v.

When a case II collision takes place we let P3 and P4,
respectively, denote the probability that a second col-
lision with the base, after it changes direction and moves
upwards again, either does not or does take place. The
intermediate velocity range (1+1/E, ) V ~ v ~ (1+2/E) V is
considered in Fig. 2. If the initial case II collision takes
place in the projected region LFG then a double collision
occurs, whereas if it takes place in projected region LGH
then only this initial single collision will occur. From the
geometry of Fig. 2 we find that a double (case IV) col-
lision takes place if —[VT/e(v V)] ~ t ~ —T—/2 and a
single (case III) collision takes place if
—T~ t ~ —[VT/E(v V)]. The —probabilities P3 and P4,
which are valid in the interval ( 1+1/s ) V
~ v~ (I+2/E) V, are then given by the ratios LGH/LF~

y1
g G

T

F T/2

icle speed v

y2
——Vt

FIG. 1. Distance time graph for a particle approaching the
sawtooth base. The probabilities Pl and P2 are calculated from
this plot as discussed in the text.

FIG. 2. Distance time graph for particle trajectories after the
first collision with the base moving downwards. The probabili-
ties P3 and P4 are calculated from this plot as discussed in the
text.
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and L,~G/I. FH, respectively. Including the trivial cases
we therefore have that E=no f bE, f(v)vdv+ f bE&P, f(v)vdv

0 V

0, V~v~(i+I/e)V
2[v(v —V) —V]

E(v —V)

1, (I+2/E)V~v~ ~

(1+I/e) V ~ v ~ ( 1+2/c, ) V

(3)

(1+2/E) V+ f bE2P, P,f(v)vdv
(1+1/E) V
(1+2/E, ) V+ f bE~P2P&f(v)vdv

(1+1/E) V

+ f bE;P,f(v)vdv ',
(1+2/E) V

'1, V + v ~ (1+ I /e) V

[E( V —v)+2V]
E( v —V)

0, (I+2/e) V~ v~ ao .

(1+1/E)V~ v~ ( I+2/s) V

In the interval (1+1/E)V~ v (1+2/E) Vthe total prob-
ability of a double and single collision are given by P2P4
and P2P3, respectively.

Given the above probability model and the velocity
changes associated with the various collision events we
can now calculate the corresponding energy changes.
For a simple case I collision, the energy change is given
by

0&v&V
P) P2

where P&, Pz, P3, and P& are given in Eqs. (1)—(4) and
bE„bE2, and bE2 are given in Eqs. (5)—(7). Iff(v) is a
very narrow distribution (low speed particles) then only
the first term will contribute; since this is positive the en-
semble will gain energy from the base, causing f(v) to
broaden. If, on the other hand, f(v) is very broad (many
high speed particles) then the second and last terms will
dominate (with P, and P2= —,'). The sum of these two
terms is negative so energy is extracted from the parti-

bE& = [(E —1)v +2m(l+e)vV+( I+E) V ] .

In the regime after a case II collision two energy change
equations are required given by

y
v( p( oo

Case 1 & s Case II

b,E'2= [(E —1)v —2s(1+v)vV+(1+a) V ]

1+— —1—
2 v 2 0

and
V& v& (1+1/ E)V

P3 P4

bE2 = [(e —1)v —2( 1+E) E vV+( I+a) V ],

where the superscripts s and d refer to a single and dou-
ble collision, respectively.

The various cases are summarized in Fig. 3. Given the
probability of the occurrence of the various collision
events and the kinetic energy changes associated with
them we can now proceed to calculate an exact expres-
sion for the net rate of energy transfer to the particle
from the base. It is easier from a conceptual viewpoint
(although not necessary from a mathematical one) to im-
agine a large set of equivalent but uncorrelated and
noninteracting bouncing particles. This then allows
straightforward application of standard gas kinetic
theory, though in 1D rather than three dimensions (3D).
If the instantaneous velocity distribution function and
number density at y =0 for the ensemble are f(v) and no,
respectively, then the number of particles passing
through y =0 per unit time with velocities in the range v
to v+dv is novf(v)dv. The net rate of energy transfer
to the particles from the base is then given by

(1+1/E)V & v&(1+2/E) V

Case III Case IV

2(E(v —V) —V) E( V —v) + 2 V

E(V- V) E(v —V)

(1+ 2/E)V& v&-

FIG. 3. Summary of the various collision cases and their as-

sociated probabilities and energy changes. P, is given by Eq. (1)
for all v& V. The various velocity ranges and energy changes
are calculated in the text.
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f(v)=
2~Eo

I
P

where E0 is the granular temperature of the particle.
The integrals can be simplified by defining two-
dimensionless variables

cles, on average, causing f(v) to narrow. We therefore
expect some equilibrium f(v) and no to be set up such
that E=0.

To proceed further, we assume that f(v) takes the usu-
al Gaussian form from gas kinetic theory

1/2

(1O)

and

U5=—
V

'

where the only new variable introduced U is the width of
the Gaussian velocity distribution, that is U=QEO/m.
Making the substitutions of Eqs. (10) and (11) in Eq. (8)
then leads to

E=A-2 c2 1 3+281+6 2+ 1+6 2 exp
0

d
25

+ c2 1 2+261+6 + 1+62 1+ exp—
1

d
25

+ c4 —1 2 —2 1+6 282 + 1+6 4 —1 exp
1

d
25

+2 c. —1 —2c. 1+v + 1+v —1 —1 c. exp
1+1/c,

d
25

2

+ f [(c, —1)P —2(1+E) e P+(1+s) ][(1—P)+2/E]exp — d/3
1+1/E 26

+ 62 1
2 2c 1+6 + 1+62 1exp

1+2/e

P'
25

(12)

Fo =g(E) V (14)

In order to calculate the value of 5 which makes E =0

where A is given by

mV no(U)

4&2~U

We next consider how to extract the scaling law for the
particle granular temperature E0 with the base velocity V
and particle-base restitution coefficient c.. For each value
of V or c one can take a value for the granular tempera-
ture (contained within the term U) and calculate the in-
tegral in Eq. (12) to obtain the rate of energy transfer
from the base to the particle. By selecting the appropriate
granular temperature which gives zero rate of energy
transfer, the equilibrium condition established can be ob-
tained. The integrals in Eq. (12) are functions only of P
and 5 and the prefactor A can never be zero (because we
neglect the cases V=O and U= infinity). Zero rate of en-
ergy transfer therefore requires the total integral to be
zero. For a fixed c., this will happen at a particular value
of 6 and any combination of U and V which have this ra-
tio will make the rate of energy transfer zero and hence
determine the steady-state granular temperature that
would be produced. Thus U must scale in proportion to
V and the granular temperature scale as V . We can
therefore write

f(v, U) = U 'h (v/U), (15)

where U is now some characteristic width of the distribu-
tion. Equation (15) is satisfied if the shape of the distribu-
tion, after normalization of the velocity axis by U, does
not change with U.

B. Results and discussion

Figure 4 shows a nondimensional plot of 5 versus the
restitution coefficient c. As c increases, the steady-state
characteristic grain velocity U becomes steadily larger
than the base velocity V. There is a divergence to infinity
when epsilon equals unity which corresponds to a con-
tinual increase of granular temperature with time because

I

for each value of c. and thus to determine the function
g(s) we evaluated Eq. (12) numerically, using Numerical
Algorithm Group (NAG) library routines dOlakf and
d01amf. The total integral was calculated as a function
of the granular temperature and a simple interval bisec-
tion routine used to find the granular temperature that
gives a zero rate of energy transfer. Only a single root
was found to exist over the range of c. studied.

It is worth pointing out that the scaling of E0 with V

[Eq. (14)] does not necessarily require f(v) to be Gauss-
ian, but will hold provided f(v) can be expressed in the
form
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equals V (i.e., A o
= V/co). If this is the case, one interest-

ing consequence of the analysis is that "fluidization" is
sustainable even for peak base acceleration less than g.
This follows from the requirement that the time between
contacts is much greater than the driving period, i.e., that

++
+ +

+
+ +

2U 2m))
g CO

and hence that

(18)

0
0.4 0.5

I

0.6
I

0.7
E

O.S 0.9 2A pco 1/2»2.4(1 —E) i (19)

FIG. 4. Nondimensional plot of 5, defined by Eq. (14),
against c,, the particle-base restitution coefBcient. 5 governs the
magnitude of Eo relative to the base velocity V.

mVEp=mU =1.7
(1—e)

(17)

The scaling laws derived for the granular temperature
of a single particle are identical to those found for a one-
dimensional column of particles in the fluidized regime
[17]. In the limit of low density, these results should also
govern the scaling behavior in two-dimensional systems.

Although the analysis presented here used a sawtooth
displacement-time function for the base, it is reasonable
to assume that the same scaling dependence will arise
with sinusoidal excitation at the same angular frequency
co and with amplitude Ap such that the peak velocity also

no energy is dissipated in particle-base collisions. The c.

dependence is replotted in Fig. 5, where 5 is shown
against ( 1 —e ). This indicates quite a close approxima-
tion to power law behavior, though with some deviation
below around c.=0.7; masking these points out allows a
power law exponent of —0.52 to be fitted to all the data.
Figure (5) therefore shows, to a good approximation, that

—=1.3(1—e)
U —0.52

V

and thus

The analysis presented here (sustainable bouncing on
the base) is therefore valid even if the left hand side of Eq.
, 19) is less than unity, provided the collisions are
sufficiently elastic. On the other hand, a grain initially at
rest on a stationary base will remain in contact with the
base until the peak acceleration Apso reaches g. This im-

plies that there are two stable states for the system when
A pro & g, possessing different mean center-of-mass
heights, and the actual state adopted depends on the past
history of the system.

Finally, we note that the form of the velocity distribu-
tion function, when velocities are normalized by V, is in-
dependent of the magnitude of the base velocity. This is
because the collision probabilities and postcollisional ve-
locities are functions only of the norma1ized velocities.
Thus if we imagine a set of velocities produced by a set of
bounces and now double the base velocity V and the ini-
tial velocity before the first bounce, then the subsequent
set of velocities will also be exactly doubled in magnitude
and therefore the resulting distribution function is un-
changed when the velocities are normalized. Experi-
ments are currently in progress to measure the velocity
distribution function for a one-dimensional bouncing ball
from which the granular temperature can be extracted.
A frequency and vibration amplitude Ap of 100 Hz and
upto 3/4 mm, respectively, are found to be realistic ex-
perimental conditions for satisfying the assumptions in
the model.

III. CONCLUSIONS

10—

'+,
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0.01 0.1

1—p

FICi. 5. Results from Fig. 4 replotted to show variation of 5
with (1—c).

An exact expression for the time averaged rate of ener-

gy input to a single particle undergoing one-dimensional
vertical vibration has been derived. By assuming a
Gaussian velocity distribution we have numerically cal-
culated the granular temperature as a function of base ve-
locity V and particle-base restitution coefficient c. The
granular temperature is shown to scale as V and to scale
as ( 1 —E ) . If it is assumed that sinusoidal excitation
produces the same scaling laws as sawtooth excitations
then the system exhibits bistable behavior for highly elas-
tic impacts when the peak acceleration is less than g.
Our result is based on elementary kinetic theory concepts
and should provide a useful starting point for developing
a more complete theory of granular materials.
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