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Fluidization of a two-dimensional granular system: Experimental study and scaling behavior
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Digital high speed photography and computer image processing have been used to investigate the
fluidization behavior of a two-dimensional model granular material undergoing vertical vibration.
Profiles of packing fraction, speed, and velocity distribution functions are measured. The packing frac-
tion is found to be approximately uniform in a narrow region at the base, and a Boltzmann distribution
gives a good fit in the upper regions. Values for the granular temperature, as a function of height, are ex-
tracted from the distribution functions and an approximately hnear decay is found. We also present re-
sults for the scaling behavior of the granular temperature and the height of the center of mass. Finally,
we describe a simple theoretical analysis to investigate the origin of scaling laws.

PACS number(s): 46.10.+z, 05.60.+w, 05.40.+j

I. INTRODUCTION

In recent years a large body of literature has emerged
on the physics of granular materials [1], and in particu-
lar, the vertical vibration of granular materials has been
extensively studied. In the low amplitude regime, the vi-
brations constitute sound propagation as investigated by
Liu and Nagel [2—4]. As the amplitude of vibration in-
creases, a plethora of unusual phenomena is experimen-
tally observed [5], including heaping and convection rolls
[6,7]; and at larger vibration amplitudes, period doubling
instabilities leading to both standing waves [8], and trav-
eling waves [9], on the free surface.

A further important problem, addressed in this paper,
is that of Quidization within a granular material subject
to vertical vibration. Clement et al. [10] separated the
problems of convection and Quidization by considering
the vertical vibration of a one-dimensional column of X
beads. A transition from a condensed phase to a Quidized
phase is controlled by the relative acceleration of the
driving plate. Subsequently, Luding et al. [11] obtained
the conditions required to observe the various regimes
and showed scaling relations for the height of the center
of mass for the system of beads in the Quidized regime.
In two dimensions, Luding, Herrmann, and Blumen [12]
looked at the Quidized regime using molecular dynamics
and event-driven simulation techniques. A scaling rela-
tion for the height of the center of mass was also ob-
tained. Previous experimental studies in two-dimensional
systems have only considered surface fluidization where-
by a condensed phase and fluidized phase coexist [13].

Fluidization behavior can be described using the kinet-
ic theory concept of granular temperature that is widely
used in theories of rapid granular Qow. The reviews by
Campbell [14] and Savage [15], on computer simulation
and theoretical studies, respectively, discuss the concept
of granular temperature and its relevance to granular ma-
terials. To obtain granular temperatures, Quctuations in
particle velocities, with respect to the center-of-mass ve-
locity are usually measured. Techniques have been

developed to measure both the translational and rotation-
al granular temperature via noninvasive high speed pho-
tography techniques [16—18]. The term noninvasive
refers to the use of photographic techniques, thus avoid-
ing the need for probes within the granular material. Un-
fortunately, the glass walls will still give an additional
source of energy dissipation and this is discussed in the
text. When kinetic theories were applied to vibrated
beds, the results suggested that Quidization is greater at
the bottom than at the top [19,20]. In contrast, in an ear-
ly experiment [21], where sand was vibrated in three di-
mensions, it was reported that Quidization was confined
to the upper layers of the material. Density profiles ex-
tracted from y-ray measurements [5] and experiments
with a two-dimensional system of vertically vibrated steel
spheres [13,22] also indicated that a looser packing, and
hence surface fluidization, occurs near the free surface

In this paper, rather than looking at the transitions
from a condensed phase to a surface phase we consider a
regime where the particles are almost entirely Quidized.
In Sec. II we present the experimental method, which is a
development of that in our previous work [16], which
comprises a high speed photography and digital image
processing technique for making noninvasive measure-
ments of system properties such as density and granular
temperature. Such experimental observations are re-
quired to test both theoretical and computer simulation
studies on the physics of granular materials. The experi-
mental results are discussed in Sec. III where we charac-
terize the particle packing fraction and granular tempera-
ture as a function of height. We also consider the scaling
behavior of the granular temperature with system size
and vibration excitation peak velocity. The scaling of the
height of the center of mass is also considered and com-
parisons are made with recent coInputer simulation stud-
ies. Finally, a theoretical study of the scaling law
behavior is given in Sec. IV where we assume the Quid-
ized state to be characterized by an isothermal atmo-
sphere, i.e., a granular material with constant granular
temperature.
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II. EXPERIMENTAL METHODS

The experiments were performed using an electromag-
netically driven shaker (Ling Dynamics Systems Model
V650) driven by sine waves from a low-distortion signal
generator (Farnell DSG2) and 1 kW power amplifier
(LDS PA1000). The moving part of the shaker is a plat-
form 156 mm in diameter which can attain a maximum
peak to peak displacement of 25.4 mm and a maximum
velocity and acceleration of 1.06 m s ' and 70 g (g =9.81
m s ), respectively. A cell made up of two glass plates
165 mm wide by 285 mm high was mounted on the mov-
ing platform. The width between the plates was con-
trolled by spacers of varying thicknesses to a resolution
of 0.05 mm. Chrome steel spheres, 5 mm in diameter,
were used for all the experiments described here, and by
adjusting the plate spacing to 5.05 mm a close approxi-
mation to an idealized two-dimensional model powder
was obtained. Vertical accelerations were monitored us-
ing two Endevco Model 224 c Piezoelectric accelerome-
ters, one attached to each side of the support; the signals
were monitored by a LDS CA4 charge amplifier. Dis-
placements of the vibrating cell were measured using a
calibrated laser displacement meter (Nippon Automation
LAS-5010V). This allowed the horizontal acceleration to
be checked at various points (a total of eight) on the cell.
The horizontal acceleration was found to be less than 2%
of the vertical acceleration for the working range used in
this paper, indicating an essentially one-dimensional ac-
celeration field.

The motion of the steel spheres was filmed using a Ko-
dak Ektapro 1000 digital high speed camera at 1000
frames s ' and images were transferred to a computer, as
discussed in a previous paper [16]. The system was il-
luminated from the rear using a stabilized halogen light
source and a field lens close to the cell. Each experiment
resulted in 1600 images, each 239 by 192 pixels in size,
which were then downloaded to a computer (Sun IPX
SPARC station). Image processing based on the Hough
transform and particle tracking routines were used to
give information on particle coordinates and velocities in
all frames [16]. The total analysis time per set of 1600
frames (comprising downloading of frames, Hough trans-
form analysis and tracking) was approximately 90 min.
Particles with centers outside the field of view can also be
detected. Particle orientations can also be detected using
Hough transforms [16], but in this paper we do not con-
sider the rotational velocities.

III. EXPERIMENTAL RESULTS AND DISCUSSION

All the experiments reported here were carried out
with a sinusoidal vibration

y(t) = Rosin(cot),

where y (t) is the vertical displacement of the driver base
at time t, Ao is the amplitude, and co is the angular fre-
quency of the vibration, here the experiments were car-
ried out at a fixed frequency of 50 Hz. The number of
spheres were varied from N=27, 40, 60 up to %=90,
and the vibration amplitudes considered were 20=0.5,

1.12, 1.84, and 2.12 mm. An image magnification of 13.3
pixels per ball diameter was used throughout, giving hor-
izontal and vertical fields of view of 89.9 and 72.2 mm,
respectively. The vertical range was extended by filming
each combination of Ao and N at three separate heights.
The coefficient of restitution s was measured by detecting
collision events within the shaking cell [23]. The pre and
postrelative velocities parallel to the line of centers was
extracted and a value of c, =0.92 measured. Coordinate
and velocity data for each experiment was analyzed to ex-
tract data on particle packing fraction and granular tem-
perature profiles. The results from each image were di-
vided up into a 6X6 grid so that when data from the
three different camera positions were combined, informa-
tion on an 18X 6 grid of cells was obtained. System prop-
erties can then be obtained within horizontal and vertical
strips, grid cells, and for the entire field of view.

A. Packing fraction distributions

The particle packing fraction P is defined by

(area of particles)
(total area)

When particles cross grid boundaries, the number of pix-
els of the particle, of known radius, in each cell is count-
ed to give the contribution of the particle area in each
cell. A resolution factor, whereby each pixel is subdivid-
ed into a finer grid, is used to increase accuracy and all
data is averaged over 1600 frames.

In this section we consider the regime of nearly com-
plete fluidization rather than partial, surface fluidization,
which was observed at smaller particle sizes over a simi-
lar range of frequency and amplitude of shaking. Figures
1(a)—1(d) show three-dimensional packing fraction sur-
faces for the case f=50 Hz and A 0

=2. 12 mm with
N=27, 40, 60, and 90, respectively. The data in these
figures were obtained by averaging over 1600 frames.
The width profile strip axis represents variations of pack-
ing fraction between the side walls while the height
profile strips show the height variation of the packing
fraction. The packing fraction shows increased local Auc-
tuations at low N which die down as N is increased. Fur-
ther, no significant wall effects are evident; those in Fig.
1(a) merely reflect the large fluctuations in the packing
fraction.

By averaging the plots shown in Fig. 1 along the hor-
izontal axis, we obtain the packing fraction profiles
shown in Fig. 2(a). Figure 2(b) shows similar packing
fractions for N=90 over the range of amplitudes from
Ao =0.5 mm to Ao =2. 12 mm. Error bars were found to
be of the order /+2. 5X 10 and they were therefore
omitted from the figures. The data from Fig. 2(a) are re-
plotted on log-linear axes in Fig. 2(c) and exponential de-
cay in the tails is now clearly evident. By masking out
the data points in this bottom boundary layer we can fit
an exponential curve to the tail of the packing fraction
profiles. Figure 2(d) shows the exponential fit to the
profile for the case N=90 and Ao =2. 12 mm. From the
decay rate in the fitted exponential we can extract a value
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for the granular temperature Eo from the experiment and
use it in scaling law tests, as discussed in Sec. II B. Fig-
ure 2(a) indicates that at the base of the array the density
is approximately constant with a dip at the very bottom.
At constant Ao the size of the dip and the width of the
constant density region increases with larger X indicating
that the system is harder to completely fluidize as 1V in-
creases. For any given vibration amplitude, it is found
that the height of the center of mass (obtained by in-
tegrating the packing fraction profiles) increases with de-
creasing N and the extent of the Boltzmann distribution
fit is greater as N decreases because the system is more
fully fluidized at the base. A similar increase in height di-
lation as N decreases, was observed in a one-dimensional
column of spheres [11]. As X increases, the local packing

fraction at the base increases and hence both the collision
frequency and the energy dissipation rate will increase
causing less Auidization at the base.

Despite the boundary layer at the base, the exponential
distribution function suggests that thermodynamic and
kinetic theory concepts should be applicable, at least as a
first approximation, in such granular assemblies. Energy
input from the driving base and energy dissipation from
inelastic collisions should balance at steady-state and
quasithermodynamic concepts like granular temperature
and packing fraction, and kinetic pressure may enable
such systems to be characterized. Bernu, Delyon, and
Mazighi [24] solved the dissipative Boltzmann equation,
in the limit of low dissipation, for a one-dimensional ar-
ray of spheres and found a density profile which was
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nearly exponential. Such a calculation for a two-
dimensional system would be dificult and it has not been
attempted as far as we are aware. Experimental and
simulation data in one dimension [11]shows evidence for
exponential distributions and simulations in two dimen-
sions [12] found deviations from the exponential attribut-
ed to inelastic collisions. Further work is required to see
over what range of the parameter space in one and two
dimensions such distributions are exhibited.

B. Velocity distributions

Granular temperatures are measured by constructing
velocity and speed distribution functions and fitting
Maxwell and Rayleigh distribution functions to the data
[16]. To measure granular temperature profiles, distribu-
tion functions are generated using velocity data from par-
ticles whose centers lie within a strip or cell. The granu-
lar temperature of a strip or cell is then obtained from the
best fit from that strip or cell.

We next consider the distribution functions for particle
x and y velocities from which we can extract a value for

the x and y components of the granular temperature ten-
sor, in order to probe further the thermodynamic nature
of these systems. Here, the x and y degrees of freedom
are tangential and normal, respectively, to the direction
of shaking, which is vertical. In Sec. II C, we explore the
scaling law behavior of the system bulk granular temper-
ature which is obtained by measuring the distribution
functions for the entire field of view. Here, we make a
preliminary exploration of the height dependence of the
granular temperature to see whether the isothermal at-
mosphere provides a useful model for describing the sys-
tems. In Figs. 3 and 4 we show examples of the velocity
distribution functions at various heights in the cell for the
case of N=90 and Ho=2. 12 mm. Figures 3(a)—3(c)
shows the x-velocity distributions for strips 1, 6, and 11,
with strip 1 at the bottom of the cell and Figs. 4(a) —4(c)
show the corresponding y-velocity distributions in the
same strips. In all cases the width of the profile strips is
32 pixels. The combination of the small number of parti-
cles & the exponential decay of packing density with
height, and the fact that the images were subdivided into
strips to improve spatial resolution meant that it was
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FIG. 2. (a) Effect of system size on the average packing fraction profiles. Crosses, triangles, squares, and diamonds correspond to
%=27, 40, 60, and 90, respectively, all with 20=2. 12 mm. (b) Effect of vibration amplitude on the average packing fraction profiles
for N=90. Crosses, triangles, squares, and diamonds correspond to Ao =0.5, 1.123, 1.84, and 2.12 mm, respectively. (c) Profiles in
(a) plotted on a log-linear scale. (d) Boltzmann distributions, Eq. (5), fitted to the exponential tails of (c).
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necessary to use a small number of bins and a large bin-
ning interval. For all distribution function profiles we
used 20 bins and an x and y velocity interval of 0.297
ms '. These values contrast with the typical 1000 bins
with intervals of the order 10 m s ' used with denser
systems [16]. The general trend from these figures is that
the distributions become narrower as one moves up to

higher strips. This indicates a decrease in the granular
temperature with height, as will be seen shortly.

A number of issues relating to these distribution func-
tions need to be raised at this point. The concept of
granular temperature is normally associated with veloci-
ties which are measured with respect to the center-of-
mass velocity v, . This velocity is, however, dificult to
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FIG. 3. Horizontal strip profiles of the v„distribution func-
tions for N=90 and AD=2. 12 mm. 20 v„bins, each of width
0.297 m s, were used in the distributions and the height of the
profile strips is 32 pixels. Distributions are plotted for (a) strip 1

with a midpoint height of 5.89 mm; (b) strip 6 at 64.77 mm; (c)
strip 11 at 123.65 mm. Crosses correspond to data points and
the dashed line is the best fit Gaussian curve.

FIG. 4. Horizontal strip profiles of the v~ velocity distribu-
tion functions for 1V=90 and Ao =2.12 mm. 20 v~ bins, each of
width 0.297 m s, were used in the distributions and the width
of the profile strips is 32 pixels. Distributions are plotted for (a)
strip 1 with a midpoint height of 5.89 mm; (b) strip 6 at 64.77
mm; (c) strip 11 at 123.65 mm. Crosses correspond to data
points and the dashed line is the best fit Gaussian curve.
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measure in the case of low N and large number of strips
since only a small number of particles (sometimes less
than one) will be in each strip on any one frame. Estima-
tion of v, by averaging the velocities within a strip
therefore results in a significant bias. In the limiting case
of a single particle, v, would be calculated as the veloc-

FIG. 5. Amplitude spectrum obtained from FFT analysis of
the y-center-of-mass coordinate data over 1600 frames for the
case % =90 and HO=2. 12 mm.

ity of that particle and the fluctuation velocity would
then be calculated to be zero. Even with averaging over
several frames and cycles, significant distortions to the
distributions are produced by this effect. To make any
progress, all distribution functions use velocities mea-
sured in the absolute reference frame and choosing a
higher vibration frequency of 50 Hz ensures the system of
spheres behaves like a fluidized gas with limited Quctua-
tion in the center-of-mass velocity. We have checked to
see if the center-of-mass (c.m. ) coordinate exhibits any
harmonics or subharmonics of the driving frequency by
computing the amplitude spectrum of the center-of-mass
data. We computed the fast Fourier transform (FFT) of
the data using each of the 1600 frames. An amplitude
spectra for the y center-of-mass (c.m. ) coordinate is
shown in Fig. 5 for %=90 with Ho=2. 12 mm. The
spectra shows no evidence of excess energy in any har-
monics related to the driving frequency or any other fre-
quency. There is a small peak close to 50 Hz which in-
creases in height as X decreases; for example, the energy
in the harmonics around 50 Hz for the x-c.m. coordinate
is 0.02 and 0.05 % of the total energy (over 0 to 500 Hz
frequency range), respectively, for N =90 and X=27.
For the y-c.m. coordinates the corresponding percentages
are, respectively, 0.01% and 0. 1%%uo. The approximation
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of using absolute velocities rather than velocities in the
center-of-mass frame is therefore a reasonable one.

One consequence of the absolute reference frame is the
distortion of the y-velocity distribution in the bottom few
strips due to the e6'ect of the driving base as can be seen
in Fig. 4(a). By strips 5 and 6 this distortion in the y-
velocity distribution has nearly gone, as Fig. 4(b) shows.
From strips 1 to 10 the x velocities are well approximated
by a Gaussian but with slight distortion in the bottom
strips. In some cases slight departures from a Gaussian
can be seen in one or both tails. The nature and reasons
for non-Gaussian velocities has become a subject of some
debate [25—27]; at present we do not consider the fine de-
tail of the velocity distributions but consider the Gauss-
ian to be a good approximation to the data from which
granular temperatures can be extracted. As one moves
towards the upper strips the ability to measure velocity
distributions from 1.6 s worth of data starts to break
down', strip 11, for example, contains 880 particles over
1600 frames. In Fig. 3(c) an insufficient number of in-
dependent velocities means we have too many bins for
the number of velocities and the scatter becomes much
larger. In Fig. 4(c) the y-velocity distribution is fit well by
a Gaussian so N is still large enough to obtain good
statistics. Above strips 11 and 12 however, the distribu-
tions break down and no fitting was attempted in any
strips beyond number 12 even though particles were
found in a further six strips. At these low N values the
changes in the distribution functions are only slight; at
larger N and higher densities more pronounced changes
are clearly visible.

Using the velocity distribution function profile data we
extracted the granular temperature as a function of
height (see Ref. [16]for details where we take the particle
mass to be 4.79X10 kg). Figures 6(a)—6(d) show both
the x and y components of the granular temperature as a
function of height for %=90, 60, 40, and 27, all at a vi-
bration amplitude of A o

=2. 12 mm. Fluctuations occur
due to the small numbers of particles within each analysis
area; the error bars were therefore estimated by calculat-
ing the root Incan square granular temperature 6uctua-
tion as a function of sample size at higher density regions
of the cell. All the profiles show that the granular tern-
peratures are anisotropic over the entire height. The
reaso~ for this may be that the driving base generates an
initially anisotropic collective motion within the cell and
the collisions are unable to completely randomize the
motion. It is possible to observe almost completely iso-
tropic velocities in the center-of-mass frame [13,28] but
here the degree of anisotropy is sufficiently small that we
can characterize the systems by a granular temperature
given by the trace of the tensor components. In such
cases the speed distribution functions are closely approxi-
mated by the Maxwell-Boltzmann distribution function,
as shown in Fig. 7 which shows the speed distribution in
strip one for X=90 and Ao =2. 12 mm. When the degree
of anisotropy becomes large a characteristic deviation
from the Maxwell-Boltzmann distribution is observed
[28]. Qualitative observation of the profiles in Fig. 6 sug-
gests that the granular temperature decays approximately
linearly with height. At present the statistics are uncer-

ON—

0.15-

01—

0.05 — '

0$
I l 1

1 1.5 2
sp~ bin (I/8)

FIG. 7. Speeds fitted by the Maxwell-Boltzmann distribution
function for strip one with %=90 and Ho=2. 12 mm. The de-

gree of anisotropy present in these systems is not su%cient to
cause a noticeable deviation from the theoretical form. The
small deviations are caused by the slight distortions from the
Gaussian in the velocity 6ts.

tain and we have not been able to extract any meaningful
correlation of the decay rate of granular temperature
with amplitude and system size. Detailed theoretical
work is needed to determine the height dependence of the
granular temperature for a system with dissipative col-
lisions.

C. Experimental tests of scaling laws

where h, is the height of the center of mass, h, o is
the height of the assembly of beads at rest, and
X=(N/n&)(1 —s) is an e8'ective dissipation parameter.
An expression for h, 0 is given as

h, o= [(1—i/3/2)ni, +(V'3/2)ni, ]

no+ [1+&3ni,],2%
(4)

where nb =I.fd —0.5 is the average number of beads per
layer in a cell of width L, and d is the bead diameter.
The other terms are n& =n int(N/n& ) which is the num-

ber of full layers and no=N —
n& nb which is the number

of beads in the final layer.
We investigate the scaling behavior in three ways: first,

by using the value of the granular temperature (denoted

Following the recent publication of a scaling analysis
and experimental study on a one-dimensional column of
spheres [ll] and computer simulation studies of similar
scaling behavior in a two-dimensional array of spheres
[12], we next present experimental results which test
these scaling predictions. In Sec. IV we consider a simple
theoretical analysis in an attempt to derive the form of
the scaling law from first principles. The scaling law pro-
posed for a two-dimensional system by Luding,
Herrmann, and Blumen [12] takes the form

(3)
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here by Eo) extracted from the bulk speed distribution
functions from the bottom camera position (i.e., strips
one —six inclusive); second, by using the value of Eo ex-
tracted from the exponential fit to the tails of the packing
fraction profiles; and third, by extracting the height of
the center of mass from the packing fraction profiles in
order to make a direct comparison with the results of
Luding, Herrmann, and Blumen [12].

In the first case the bulk distribution functions were
based on SO bins with binning intervals for speeds and ve-
locities of 0.131 m s ' and 0.198 m s ', respectively. As
stated earlier, velocities are measured in the absolute
reference frame without subtracting the center-of-mass
velocity. A small degree of skew exists in some v distri-
butions and the v distributions are well approximated by
Gaussians. The scaling analysis is based on Eo values
from the speed fits (rather than v„and v fits) because
these average out t;he small degree of anisotropy present
and are less affected by small distortions from the Gauss-
ians. The distribution functions are evaluated for each of
the four system sizes and four vibration amplitudes, all at
a frequency of 50 Hz. For increasing amplitudes, the
nondimensional accelerations I = Aoco /g are, respec-
tively, 5.03, 11.23, 18.37, and 21.33. Figures 8 and 9
show the scaling of Eo with the characteristic velocity
Aoco and system size nb/N, respectively. Power law
curves have been fitted to these data sets and the ex-
ponents are given in the captions. From the figures the
average exponent for the ADA scaling is 1.41+0.03 and
that for the nb /N scaling is 0.6+0.03. In Figs. 10 and 11
we scale out the effects of system size and characteristic
velocity, respectively, using the average exponents. The
scaling with Aoco is quite good although the exponent of
1.41+0.03 is slightly below the value of 1.5 found by
Luding, Hermann, and Blumen [12],for the scaling of the
center of mass. The scaling with nb/N is poorer with the
data at the largest amplitude showing the greatest devia-
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FIG. 9. Granular temperature Eo as a function of nb /N with
Eo measured from bulk speed distribution functions. Crosses,
triangles, squares, and diamonds correspond to 20=0.5, 1.12,
1.84, and 2.12 mm, respectively. Power law fits shown in the
figures {nb /N }Sgive exponents of P=0.65, 0.57, 0.59, and 0.58,
respectively, for each of the above cases.

tions. Again the exponent of 0.6+0.03 is somewhat less
than the value of one in [12].

The second scaling analysis used Eo values extracted
from exponential fits to the tails of the packing fraction
profiles (as outlined in Sec. III B). Figures 12 and 13
show the scaling plots in this case. Results for the Aoco
scaling are very poor here and no fitting was attempted;
for the nb/N scaling the results approximately scale ex-
cept for the smallest amplitude, and the exponents are
given in the figure caption and are closer to 1.0 than the
previous values.

We finally try and make a direct comparison with the
results of Luding, Herrmann, and Blumen [12] by looking
at the scaling of the height of the center-of-mass velocity.
In Ref. [12], h, —h, o is considered where h, is
the height of the center of mass of the array of spheres
during vibration and h, o is the corresponding height

0.001

0.001

10'-

10

10
0.1 A w (I/s) 10

FIG. 8. Granular temperature Eo as a function of Aoco with

Eo measured from bulk speed distribution functions. Crosses,
triangles, squares, and diamonds correspond to N=27, 40, 60,
and 90, respectively. Power law fits shown in the figures ( AOQ))

give exponents of a= 1.36, 1.43, 1.45, and 1.41, respectively, for
each of the above cases.

0.1 A w(m/s)

FIG. 10. Granular temperature Eo as a function of Aoco with
the e8'ects of system size scaled out using the average exponent
P=0.60 from Fig. 9. Crosses, triangles, squares, and diamonds
correspond to %=27, 40, 60, and 90, respectively.



52 FLUIDIZATION OF A TWO-DIMENSIONAL GRANULAR. . . 5591

0.001 I I I 0.001

10-4

nb/N

10

nb/N

FIG. 11. Granular temperature Ep as a function of nb/N
with the effects of the characteristic velocity Apso scaled out us-
ing the average exponent a=1.41 from Fig. 8. Crosses, trian-
gles, squares, and diamonds correspond to Ap =0.5, 1.12, 1.84,
and 2.12 mm, respectively.

FIG. 13. Granular temperature Ep as a function of nb/N
with Ep measured from exponential Boltzmann distributions
fitted to the tails of the packing fraction profiles. Crosses, trian-
gles, squares, and diamonds correspond to Ap=0. 5, 1.12, 1.84
and 2.12 mm, respectively. Power law fits to the diamond and
triangle data give exponents of P=0.75 and 0.85, respectively.

of the array at rest calculated using Eq. (4). The initial
configuration of spheres is only partially visible within
the camera's field of view. Excluding a boundary next to
the walls and driving base from the field of view prevents
problems with the particle tracking. The datum level of
the camera base was set to be 5 mm from the base of the
cell at rest; this means that h, o can be negative with
respect to this datum in some cases. h, is found by in-
tegrating the packing fraction profile data according to
Eq. (25) of this paper. The packing fraction data were ex-
trapolated to account for the fact that strip 1 excludes
the base of the cell. Figures 14 and 15 show the Aoco and
nb/N scaling, respectively, for h, —h, o. From Fig.
14 the data scales consistently apart from the case with
N =90 and the average exponent for the lower three cases
is 1.3+0.04, which is lower than the expected value of

1.5 in [12]. In Fig. 15 the scaling is crude and gives an
average exponent of 0.27+0. 11.

There are a number of reasons why the above three
methods give different values for the scaling exponents.
The main reason is that they would be expected to give
the same answer for a nondissipative isothermal atmo-
sphere, but since this situation does not prevail
differences are not surprising. There are, however, per-
turbations on the system due to the mechanics of the ex-
periment. The two-dimensional nature of the experimen-
tal setup results in additional forces above those encoun-
tered in particle-particle collisions. The main concern is
particle-wall friction at the glass walls generated through
particle-wall collisions. Electrostatic forces are negligible
(the particle material and size ensure this) and we have
not considered the effect of air drag which is not expected

0.001 0.1

8
0
8

8
0.01—

10
0.1

A w (I/s)
0.1 A w (m/s)

FIG. 12. Granular temperature Ep as a function of Apso with

Ep measured from exponential Boltzmann distributions fitted to
the tails of the packing fraction profiles. Crosses, triangles,
squares, and diamonds correspond to N=27, 40, 60, and 90, re-
spectively. No power law fitting was attempted for these data.

FIG. 14. h, —h, p as a function of Apso. Crosses, trian-
gles, squares, and diamonds correspond to N=27, 40, 60, and
90, respectively. Power law fits of the form ( Apso) are shown
in the figure and the exponents were a=1.24, 1.31, 1.33 and
1.02, respectively.



5592 WARR, HUNTLEY, AND JACQUES

0.1—

8
0
8

8
V

0.01—

FIG. 15. h, —h, 0 as a function of nb/N. Crosses, trian-
gles, squares, and diamonds correspond to 20=0.5, 1.12, 1.84,
and 2.12 mm, respectively. Power law fits of the form (nb /N)~
are shown in the figure and the exponents were P=0. 14, 0.17,
0.40 and 0.35, respectively.

to significantly affect the results. In order to estimate the
energy loss through particle-wall collisions we apply the
analysis of Drake [18]. The energy dissipated per particle
per unit time by particle-wall collisions is given by

2 2
1 1+8 ln(y(1 —E)+ 1)
3 o y 1n(1/s)

. pmsUT,

where c is the restitution coefficient, o. is the particle di-
ameter, p is the coefficient of friction between the parti-
cles and glass, m is the particle mass, s=t —o. is the
difference between the glass spacing and the particle size,
2T is the mean of the squared particle speed, and U is a
mean speed if bulk How occurs. The dimensionless pa-
rameter y is given by

LUDED

s(2T)o' ' (6)

where mp is a typical average speed of a particle normal
to the sidewalls, immediately following a particle-particle
collision, and g is the mean free path between particle-
particle collisions. Equation (6) can be interpreted as a
ratio of particle-wall collision rate to particle-particle col-
lision rate. Equation (5) assumes that over a mean free
path the particle collides between the two glass walls at a
certain rate. The maximum magnitude of the frictional
forces arising from particle-wall collisions and the energy
expended working against them can be estimated if one
assumes that the particles slide against the walls during
the collision. The energy dissipated per particle per unit
time can then be used to calculate the average energy dis-
sipated over a typical particle trajectory.

Two examples are considered: first, 1V =27, Ap =2. 12
mm at the middle camera position, and second, %=90,
A p

=2. 12 mm at the bottom camera position. In case I,
we find five particles per frame on average and measure a
mean trajectory length of 0.016 m, a mean of the squared
speed of 0.941 m s, and a mean time for a trajectory of
0.017 s. Taking m =5.04 X 10 kg, c=0.92,

p=0. 22+0.03, s=5.0X10 m, o =5.0X10 m, and
U=T ', Eq. (5) gives b,E =4.3X10 J s '. With an
average trajectory lasting 0.017 s, this gives the average
energy dissipated at the walls over a typical trace of
7.3X10 J. To estimate the energy loss in a particle-
particle collision, we approximate the relative velocity of
the particles by &2u where u is the mean speed and the
average energy lost in a single collision is then [18]

hE, = —mv (1—E )=—mu (1—E )=amu1 2 2=1 -2 2= -2
4 2

where the mean of the square relative velocity of collid-
ing particles v is approximated as above. In case I, Eq.
(7) gives b,E, =3.6X10 J which is approximately 10%%uo

of the granular temperature. The energy loss at the walls
for a typical trajectory is therefore estimated to be 2%%uo of
the energy lost in an average collision.

Case II is a denser system with an average of 42 parti-
cles per frame and mean trajectory length of 0.0054 m, a
mean squared speed of 0.73 m s, and mean time for a
trajectory of 0.0063 s. Using the above parameters in Eq.
(5) gives b,E„=5.3 X 10 J s ' and an average energy
dissipated at the walls over a typical trace of 3.3 X 10 J.
The energy lost in an average collision is
AE, =2.8X10 J which then gives an estimate of the
energy lost at the walls as 1.2%%uo of the energy lost in a
collision.

The energy losses calculated above are only approxi-
mate, but are nevertheless sufficiently low to indicate that
wall friction will only be a minor perturbation for the ex-
periments described here. The calculations show that
greater particle-wall frictional damping occurs as Apl'
increases and this would be expected to reduce the granu-
lar temperature over the expected value. Particle-wall
friction may therefore be responsible for the scaling ex-
ponent of Apso being less than the value of 1.5 found in
computer simulation studies.

IV. THKORKTICAL DERIVATION
GF SCALING LAWS

We next consider a simple kinetic theory treatment of
the fluidized regime which attempts to derive the scaling
relationships demonstrated in the previous sections. We
consider a two-dimensional cell of unit width, 8'=1,
with the vertical axis denoted by y. The cell contains X
spheres which are vertically vibrated by a driving base at
angular velocity m and amplitude Ap. We assume that
the N spheres are in a fluidized state which, to an initial
approximation, can be characterized as an isothermal at-
mosphere. If n (y) is the number of spheres per unit area
at height y then the total number of particles between y
and y+dy is given by Wn (y)dy. In an isothermal atmo-
sphere, the number density is given by the Boltzmann
distribution

n(y) n(0)e ™sv/kT

By equating the integral of Wn(y)dy over the range



52 FLUIDIZATION OF A TWO-DIMENSIONAL GRANULAR. . . 5593

[0, Oo ) to the number of spheres N we obtain

n(y)= e
m X
kTW (9)

EBC

2
(10)

Here, because we assume an isothermal atmosphere, we
denote the granular temperature by kT rather than Eo.
In two dimensions, the granular temperature, here re-
ferred to by kT rather than Eo, is related to the mean of
the square of the speed through the equipartition
theorem giving

the frequency of the base is so high that the particle com-
ing down sees the base moving at a velocity which is un-
correlated with the value on previous collisions.

In the laboratory reference frame, we denote the
precollisional velocity of a particle by v and the base ve-
locity by V. The definition of the restitution coefFicient
then leads to the postcollisional velocity for the particle,
in the y direction, as being ( I+a) V—ev with the x veloc-
ity unchanged. There are two cases to consider. First,
when the base moves upwards with a velocity V we have,
for the particle velocity, taking c= 1 and upwards as posi-
tive

From simple kinetic theory, the mean free path A, and
collision frequency Z for a single sphere, in two dimen-
sions, are given, respectively, by

1

2nd

U before

V after v +2V

v &0,

and

cZ =—=2cnd, (12)

The change in kinetic energy of the particle is then

b, (KE)= (4V +4vy V)~0 .
2

(17)

where d is the sphere diameter.
We assume that the average energy lost per collision is

given by amc where a is a dissipation coefficient given
in Eq. (7). The average energy dissipated per unit time E
for a single particle at height y is given by the average en-
ergy lost per collision multiplied by the collision frequen-
cy. This gives

U after v —2V

and the change in kinetic energy is then

The second case to consider is the base moving down-
wards with velocity V where the particle velocity now be-
comes

E=2amc cnd (13) b(KE)= (4V —4vy V) +0 .
2

and substituting Eqs. (9) and (10) into Eq. (13) gives

~ 4acdmg&
8' (14)

The rate of energy dissipation E between heights y and
y+dy is then the total energy dissipated per unit time for
a single particle multiplied by the number of particles be-
tween y and y +dy; therefore using Eqs. (14) and (9) gives

E z 2acdmgN
8 (16)

We now consider the rate at which energy is put into
the system. To simplify the analysis, we make a number
of assumptions. First, we assume that energy dissipation
through partic1e-particle collisions is more important
than that through particle-base collisions and therefore
we consider the case that the restitution coefficient for
particle-base collisions is a=1. We also approximate the
sinusoidal oscillating base by a sawtooth with amplitude
sufBciently small that the velocity of a particle coming
down will not change appreciably due to the e6'ect of
gravity over a distance equal to the amplitude. Further,

4acdmgN —mgylkT mgN —mgy/kTd
kTS'

Integrating Eq. (15) over the interval [0, ~ ) leads to the
total rate of energy dissipation E given by

1 (v ~V)
P)= . 1 V

2
(vy ~ V)

(19)

P2=
0 (v ~V)

1 V1—
2

(v ~ V) .

In practice, co=50X2m rad s ' and the maximum value
of Ao is 2.12 mm so that V~» =0.67 m s '. A compar-
ison with the Gaussian distributions in Fig. 4 suggests
that about half the particles have ~v ~

~0.67 m s ', and

Eq. (19) shows that, of the remainder, the majority will

also be governed by case I. With the aim of achieving a
simple solution, we make the approximation of treating

The change in kinetic energy has to be less than zero in
this case because we must have v ~ V for the particle to
catch the base. A net gain of energy therefore results on
average from these equations. If v V then case one al-

ways occurs resulting in an increase in kinetic energy.
We further argue that case one is more likely than case
two, which requires v V for any energy change. This
can be seen by considering the probabilities of cases I and
II, denoted by P, and P2, respectively, which are given
by
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all the collisions as case I and also neglect the term 4v V.
We therefore approximate the increase in kinetic energy
to be a constant, given by

[6(KE)]""=2mV (21)

The rate of energy input into the system E is then
given by the number of collisions with the base per unit
time (1/4)nocW multiplied by the net increase in energy
per collision, on average. We thus have

noc
E = O'Vm.

2
(22)

Balancing the energy input and the energy dissipated,
through equating Eqs. (22) and (16), then leads to the re-
lation

mV 8'
2adX

(23)

Approximating the dissipation coefficient cx by
a=(1—c, ) which is approximately 2(l —E) for E= 1 then
gives

mV 8
4N(1 —c)d

This gives a relationship for how kT scales with 1V, the
characteristic base velocity V, the particle diameter d,
and the restitution coefficient c.. These scaling predic-
tions also apply to the center of mass of the N particles;
using Eq. (8) for n(y), the center-of-mass height h,
given by

(24)

gives

yn (y)dy

f n (y)dy
(25)

h,
mg

(26)

This model therefore predicts the 1/N and 1/(1 —E) scal-
ing observed by Luding, Herrmann, and Blumen [12] but
not the V dependence. We also find that kT/m scales
as 1/d, a point not noted by Luding, Herrmann, and Blu-
men [12].

There are several possible reasons why we do not get

the expected V scaling predicted by Luding,
Herrmann, and Blumen or the V' to V' scaling ob-
served in our experiments. The assumption of an iso-
thermal atmosphere and a uniform temperature right
down to the shaker base are not strictly valid. In particu-
lar, the packing density deviates from the exponential
form near the base, and the deviation becomes more im-
portant as V is reduced. The granular temperature is not
constant, but shows significant decay with increasing
height. Finally, the packing density is sufficiently high
that the finite size of the grains should strictly be taken
into account, for example, as in the van der Waals treat-
ment of imperfect gases. Nevertheless, the model pre-
dicts the expected scaling behavior with X and c, and is
likely to prove a useful starting point for an improved
theoretical understanding of vibroAuidized granular ma-
terials.

V. CONCLUSIONS

In this paper we have studied, both experimentally and
theoretically, the behavior of a two-dimensional system
of steel spheres undergoing vertical vibration. For a fixed
frequency of 50 Hz, the efFects of system size and vibra-
tion amplitude on packing fraction, speed and velocity
distribution functions have been explored. By splitting
the field of view into strips and cells, profile data for
packing fraction and velocity distribution functions have
been measured. The velocity distribution functions have
been used to extract the granular temperature as a func-
tion of height in the cell. Three-dimensional surfaces
show that the packing fraction profiles are fairly uniform
across the cell with the degree of fluctuation increasing as
the system size is decreased. Horizontal strip profiles
show that a Boltzmann exponential distribution can be
fitted to the packing fraction data when the bottom few
strips are excluded. The Boltzmann distribution provides
a good fit even though particle-particle collisions are in-
elastic. Inelastic collisions also mean that the energy in-
put from the vibrating base will be gradually dissipated
leading to a drop in granular temperature with height.
Although the granular temperature profiles exhibit quite
large fluctuations, due to small system sizes and short
times of filming, a approximately linear gradient in

TABLE I. Summary of scaling exponents found in the experimental section. Comparison is also
made with computer simulation results from Ref. [12] and with the simple theoretica:. model derived in
Sec. IV. The text should be consulted for further details.

Method

Bulk speed
distribution function

Boltzmann distribution
tail fitted

~c.~. —~c.m. ,o
Simulation data from

Ref. [12]
Theoretical model

Exponent a in (Aoco)

1.41+0.03

Poor scaling results were obtained here, but the
P exponent was closer to 1.0

1.3+0.04
1.5+0.01

2.0

Exponent P in (nb/N)~

0.6+0.03

0.27+0. 11
1.0

1.0
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granular temperature was observed.
Following recently published work [12] we considered

the scaling behavior of the system granular temperature
and height of the center of mass with vibration amplitude
and system size. Experimentally, two approaches were
used to measure the scaling exponents in Eq. (3) and the
results are summarized in Table I. The three methods of
estimating granular temperature are essentially
equivalent in the ideal case of an isothermal atmosphere
with Boltzmann density profile. However, as noted
above, significant deviations from such a model are ob-
served in practice due to inelasticity of the collisions and
particle-wall friction, and it is therefore not surprising
that different methods of estimating granular tempera-
ture result in slightly different scaling exponents. We
also find that our exponents are lower than those found in
computer simulation studies [12].

A simple theoretical analysis, based on elementary
kinetic theory, leads to an expression for kT as a function
of N, V, d, and s. This model predicted kT to vary as
1/N; as V; as (1—e) ' for large e, in agreement with the

simulation results; and as 1/d. This last dependency has
not yet been checked, either by simulation or experiment,
to the best of our knowledge. An improved model would
need to take account of the significant deviations from
the isothermal atmosphere.
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