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Analytic criterion for soliton instability in a nonlinear fiber array
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The stability problem for the so-called continuous-discrete solitons in a nonlinear fiber array
is examined. We prove that the ground states are unstable if the first derivative of the "energy"
integral P = P f ~4

~

dt with respect to the soliton parameter A is negative.

PACS number(s): 42.81.Dp, 03.40.Kf

Nonlinear systems with coexisting stable and unsta-
ble solitons have been investigated in di8'erent physical
problems (see, e.g. , [1—4] and references therein). Non-
linear optical media with such properties are of interest
for future photonic switching devices. The soliton dy-
namics in materials with large nonlinear coefBcients is
determined by a combined action of dispersion (diffrac-
tion) and higher-order nonlinear effects. A generic model
is the nonlinear Schrodinger (NLS) equation with a sat-
urating nonlinearity. It is well-known that a satura-
tion of the nonlinearity plays a crucial role in preventing
a blow-up of field distributions (self-focusing). Recent
studies of discrete models have shown many interesting
new features caused by discreteness [5—9]. Discreteness
contributes to the dispersion of a system but it may si-
multaneously play a role as a saturation mechanism for
nonlinearity. In this paper we demonstrate for the case
of a two-dimensional NLS equation how the discreteness
changes stability of solitons. We study here stability
of solitons in a continuous-discrete nonlinear system de-
scribing optical pulse evolution in a nonlinear fiber array
(NFA). Nonlinear fiber arrays exhibit rich propagation
phenomena that can be of interest for all-optical data
processing [10—13]. We present an analytical criterion of
the instability for the continuous-discrete solitons. The
basic equation describing short optical pulse evolution in
a system of coupled nonlinear fibers reads [12]

i0,4„+4„+,—2@„+4„,+ 0,'4 „+2~4„~'4„=0,

Equation (1) can be written in the Hamiltonian form

.B4„
Z

t9z

with the Hamiltonian

H = ) ~C „—@„ i ~'dt

+) iB,@„i'dt —) ie„i'dt

—= I, + I& —I3.

An additional conserved quantity is P = g f ~4
~

dt.
The continuum limit of Eq. (1) can be used to describe

the evolution of broad field distributions involving many
modes. Introducing a coordinate x in the "n direction"
we have in the continuum approximation of Eq. (1),

i U, + U + Utt + 2~U~ U = 0. (4)

This equation is a well-known two-dimensional NLS
equation that has been studied in a number of appli-
cations. The integrals of motion mentioned above have
obvious continuous analogs: P = f ~U~ dxdt and H =
f (~U

~
+ ~Ut~ )dxdt —f ~U~4dxdt, respectively.

For Eq. (4) the so-called virial theorem has been proved
[15]:

n = 0, +1, . . . . (1) (x'+ t2) ~U~'dxdt = SH.

We study solutions localized in t and periodic or local-
ized in n. Two types of the boundary conditions in n
correspond to the two diferent variants of the NFA fab-
rication. For the fibers organized in a circle, the bound-
ary conditions are periodic 4' ~ ——O' N, where 2W is the
number of fibers in the array, and for the aligned array
we require that ]4~iv~ = 0 in the case of a finite array
or ]4

~

~ 0 as ~n~
—+ oo in the case of the infinite array.

The main result of our paper, the instability theorem,
is applied to any of these three types of the boundary
conditions.

Because 0 is a conserved quantity this equation can be
integrated: (B ) = f (x + t ) ~U~ dxdt = 4Hz +Az+B,

d(R )where A = (&
l

~, o and B = (R ) i, o. It can be easily
shown that if the integral H is negative for some initial
Beld distribution, then U(z, x, t) develops a singularity
at a finite distance. Two-dimensional soliton solutions
of Eq. (1) have H = 0. Thus, in the continuous sys-
tem (5) the stability of solitons will be determined by
small perturbations of the marginal case. It is very in-
teresting to find out now in which direction discreteness
effects, inherent in Eq. (1) [in comparison to Eq. (4)],
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will shift the stability boundary. It is important to no-
tice that in contrast to the continuous limit (with an
unbounded Hamiltonian), in the discrete case the Hamil-
tonian H is bounded from below for fixed integral P, as
was shown in [12]. Thus, if this minimum is attained on
some steady-state solution it is stable. In the continuous-
discrete system collapse is prevented by the discreteness.
Explosive concentration of the energy leads to the forma-
tion of narrow states. The process of self-localization of
energy, initially being dispersed in nonlinear discrete sys-
tems, through a collapse mechanism, has been intensively
investigated recently [8,9,14].

Consider the steady-state solutions 4(t, z)
(t, z), n = 0, +1, . . .) of Eq. (1) of the form

4„(t,z) = F„(t)exp(iA z), where the shape of F(t) =
(F (t), n = 0, +1, . . .) is determined by

F'„+, + F„,+ 0,'F„—(2 + A')F„+ 2~F„~'F„=0. (6)

These equations can be viewed as a nonlinear eigenvalue
problem for A and F . We analyze in this paper solu-
tions of Eq. (6) being localized in t and n Solito.ns arise
from a balance between nonlinearity, dispersion, and dis-
creteness. Ground solutions of Eq. (6) have been studied
first in [12]. Recently, a very detailed classification of the
difFerent types of the stationary solutions of Eq. (6),
with a finite number of modes and the periodic bound-
ary conditions in n, has been presented in [16]. Typical
numerical solutions of Eq. (6), with the boundary con-
ditions ~E„(t)~ +0 as ~t~-+oo and -F~iv = 0, are plotted
in Fig. 1 for different values of the parameter A

To investigate the stability of the ground solution, we
linearize Eq. (6) with respect to the soliton solution @
(F + f„+ig„) exp(iA2z). By decomposing into real and
imaginary parts, we obtain equations for the evolution of
the real functions f and g„:

obeying Eq. (9) we can prove (f, H+ f) ) A exp(2pz)
with constant A and

(10)

In the proof of this theorem, we follow a procedure de-
veloped by Laedke and Spatschek [2] for continuous sys-
tems. A sketch of the proof for the continuous-discrete
systems is as follows. Using the above mentioned prop-
erties of the operator H+, Eq. (9) can be rewritten [for
distributions f(t) satisfying (f, F) = 0] in the form

02(H+' f)„ = —H f „.
Multiplying Eq. (11) by 8,f, summarizing over n,

and integrating over t, we obtain an integral of motion
for the evolution equation (11)

(0,f, H+ 0,f) + (f, H f) = C = const. (12)

(fo, H fo)—
(fo, H+ 'fo)

It is easy to check that for such a solution C = 0.
Multiplying Eq. (11) by f and taking into account Eq.
(12), after straightforward algebra we obtain

02
, (f, H+ 'f) = 4 (0,f, H+ '8, f)

Equation (11) represents second order ordinary difFer-
ential equations for f (t). Using assumption (2) we can
consider solutions with C = 0. Let at z = 0, the dis-
tribution f satisfy (fp H fp) & 0 under the additional
cons«»nt (fo, F) = 0 and fI =p = fp ~ fI =o = ufo,
where p ) 0 is defined by

d" —— f„+i —f„—i —f„ii+ (2+ A )f„6Ff„—
GZ —= (H f)„, 4(~.f H+'f)' [g'. (» H+'f)]'

(f H+'f) (f H+'f)

go+1 gn —1 gott + (2 + ~ )gn 2+~gn
8Z —= (H+ g)„. (8)

" = [H+(H f)]„

We will use the notation (f, g)—:g jf g dt Next, .
an instability criterion will be derived, making use of the
following properties of the operators H+ and H (see
below).

(i) (f, H+f) ) 0, and(f, H+f) = Oonlyif f =0or
f —F

(ii) There exists some f for which (f, H f) & 0 under
the constraint (f, F) = 0.

Now, for a perturbation f = (f (t, z), n = 0, +1, . . .j

The stability of a stationary ground state solution F is
determined by the properties of the self-adjoint operators
H+ and H . Equations (7) and (8) can be rewritten in
the form

Integration of this inequality yields

g'. (»H+'f) ) 2
g', (f, H+'f)

(f H+'f) (f H~'f)

Thus, (f, H+ f) ) (fp, H+ fp) exp(2pz), and the per-
turbation of the ground state F (t) grows with z. The
maximum of the increment p is given by the p defined
above.

The instability is determined by the existence of a neg-
ative eigenvalue of the operator H under the additional
constraint (f, F) = 0. Now we prove that the operators
H and H+ defined above can satisfy all requirements of
the theorem, and thus instability of a ground state takes
place when &» (F, F) = &»P & 0.

Note that H+E = 0 and H &p = —E . It is easy
to see that the operator H+ is non-negative. Indeed, H+
can be presented in a form
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Thus,

demon strate that there eere exists some f s

where o. =

ere e satisfyin
, we consider 8 =

„,1 (F,F . T11
t'fidb o t

E = — we obtain
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FIG. 2. Integral P versus A. It was found numerically that
the solitons satisfying condition z&~ ) 0 are stable and so-

lutions with &z, & 0 are unstable. It is shown also how the
curve changes by increasing the number of the fibers in array.
Solid line is for 2N = 16, dashed line corresponds to 2N = 32,
and long-dashed line to 2N = 64.

From this it is clear that a su%.cient criterion of the in-
stability can be formulated as &&, (F, E) = &&, P ( 0.

Thus, we proved that the instability of the stationary
solutions of Eq. (1) depends on the sign of &&, . In Fig.
2 the energy P is shown as a function of A2 for the case
N = 8 (15 fibers in the array). Stationary solutions that
correspond to the negative slope on this curve are un-
stable. An important feature caused by the discreteness

is a coexistence of the stable and unstable solitons. It
is interesting to discuss solutions corresponding to the
left wing of the curve shown in Fig. 2. These broad
solitons plotted in Fig. 1(c) are a discrete analog of the
two-dimensional continuum soliton known in the theory
of self-focusing as Town's mode. The 2D soliton of the
corresponding continuum problem is known to be weakly
(not exponentially) unstable in the continuum NLS equa-
tion. The discreteness can stabilize the instability of the
broad ground state in the case of a finite number of fibers
in array. It is important to mention that the left part of
the curve presented in Fig. 2 degenerates into the point
in the case of infinite array. P(A ) in this case consists
of two branches only. Contrary to the case of a finite ar-
ray, an unstable branch for the infinite array starts from
A = 0, but not from a finite value of A, as in Fig. 2 for
2N = 16. This tendency is illustrated in Fig. 2 where
evolution of the curve is shown with an increase in the
number of fibers in array. First, this effect was men-
tioned in [18] in the context of another physical problem.
It should be pointed out that the solutions in the form of
the broad solitons corresponding to this left part of the
curve are not artifacts of the numerical simulations, be-
cause any real array obviously consists of a finite number
of fibers.

In Fig. 3 the dependence H(P) is plotted for numeri-
cally calculated soliton solutions. Our criterion for insta-
bility coincides with the predictions by the "catastrophe
theory. " The occurrence of a Whitney gather (Whitney
surface) corresponds to the existence of unstable solitons.
The latter realize saddle points of the Hamiltonian for
fixed P. The cuspidal edge corresponds to a degenerate
critical point (see, e.g. , the review [17]).

Results of numerical simulations presented in Fig. 4
confirm that the stability depends on the sign of &&, .
Solitons with a positive sign of &&, from the right wing of
the curve plotted in Fig. 2 show rather stable behavior

Harniltonian vs Energy
I I I I

H(P)

FIG. 3. Hamiltonian H as a function of
the energy P. The occurrence of a Whitney
gather (Whitney surface) corresponds to the
existence of unstable solitons.

-15
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(a)
z = 0.8

O,g

z= 1.6
z = 2.4

FIG. 4. Nonstationary evolution of the solitons from unstable branch &z~ ( 0 (A = 0.6). (a)—(d) show a development of the

instability.

(17)

Here all integrals are calculated based on the stationary
solution of Eq. (6). Substituting now Is ——(E, I" ) =

in numerical simulations. Contrary to that, stationary
states with a negative sign of this derivative are unstable,
as is shown in Fig. 4. Nonlinear development of the
instability of the discrete soliton from an unstable branch
leads to the formation of the breatherlike solution.

In fact, it is clear from Eq. (16) that we can obtain
an even more sharp criterion of the instability. We can
rewrite this criterion in terms of the conserved quantities
P and H. Indeed, stationary solutions satisfying Eq.
(6) realize extremum of the Hamiltoniam H for the fixed
value of the integral P: 8(H+A P) = 0. Therefore, using
it as a trial function in the later variational equation
g (t) = (1 + a)E (t) yields a condition

& (H + A P) [

After a trivial calculation we get

Ig+ I2 —2I3+ A P —0.

H + A2P into the final part of Eq. (16) we obtain a
more sharp criterion of the instability, namely (s, H s)
is negative if &&, P —(H + A2P) &&, lnP ( 0.

We restrict the consideration in this paper to the proof
of the instability criterion. A comprehensive analysis of
the stability of the ground states and a proof of the sta-
bility criterion will be presented elsewhere.

In conclusion, we examined the stability of the
continuous-discrete solitons in a NFA. An exact criterion
of the instability is obtained. Symmetrical ground states,
which are functions of a spectral parameter A, are unsta-
ble if the first derivative of the integral P = P I [i' [

Ct

with respect to a A is negative.
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