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One-dimensional transport-induced instabilities in an optical system with nonlocal feedback

P. L. Ramazza, P. Bigazzi, E. Pampaloni, S. Residori, and F. T. Arecchi
Istituto Xazionale dE Ottica, Largo Enrico Fermi 6, 50125 Firenze, Italy
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We present theoretical and experimental evidence of pattern forming instabilities induced by the non-
local interaction of the light signal with itself, in an optical system formed by a liquid-crystal light valve
with feedback. For a defocusing medium, the model predicts a reduced instability threshold for pattern
formation as a result of nonlocality. The conditions for the onset of drifting mode instability are analyti-
cally derived. The experimental results quantitatively confirm the predictions of the model.

PACS number(s): 03.40.Kf, 42.65.—k, 42.60.Jf, 89.90.+n

I. INTRODUCTION

In recent years the physics of pattern formation in sys-
tems far from thermodynamical equilibrium has attracted
increasing attention [1]. In this context, hydrodnamical
and chemical systems were studied first. It was later
recognized that the field of nonlinear optics also offers a
rich variety of systems giving rise to structure formation
and competition phenomena [2]. In fact, nonlinear opti-
cal systems can encompass most of the mechanisms (e.g. ,
nonlinearities, role of boundary conditions, diffusion) that
were previously recognized to be at the basis of pattern
formation in systems of other kinds. The wave nature of
the optical fields was then shown to be at the basis of an
interesting class of pattern forming instabilities [3].

In this paper we report the theoretical and experimen-
tal investigation of the instabilities that arise in a one-
dimensional system formed by a liquid-crystal light valve
(LCLV) with feedback, when a translation is introduced
in the feedback loop of the device. The translation in-
duces a nonlocal interaction of the signal with itself.
Similar kinds of interaction, introduced in the same sys-
tem either via a magnification or via a rotation of the
feedback field, have proved to be e%cient in destabilizing
the uniform state of the signal, and to force the sym-
metries of the nascent pattern [4,5]. The one-dimensional
transport term, here introduced in the material equation
by the translation, is similar to that previously introduced
to account for a tilt of the incoming wave in the case of a
Fabry-Perot resonator filled with a nonlinear medium
[6,7], or of an optically nonlinear slice with a feedback
mirror [8,9]. As in these two cases, the main effect gen-
erated by the transport term is the destabilization of the
uniform solution for the signal, in favor of traveling wave
solutions (drift instability).

Drifting patterns were previously reported as stem-
ming from primary bifurcations in Rayleigh-Benard con-
vection in a binary mixture [10], in the flow between two
cylinders with a partially filled gap [11], and in electro-
convection in nematics [12]. Drifting patterns stemming
from secondary bifurcations, i.e., from destabilization of
a stationary nonuniform solution, were observed in a
Faraday instability experiment [13] and in directional
viscous fingering [14]. For this second kind of bifurca-

tion a general model based on symmetry breaking argu-
ments has been developed [15]. Although the situations
listed above cannot be reduced to a uniform model, we
notice that in many of these experiments nonlocal in-
teraction between the dynamical variables comes into
play. This suggests that the role of non1ocality in induc-
ing drifting patterns may be rather general.

Returning to optics, the main advantages of our setup,
as compared to the previous ones, lies in the fact that the
LCLV device providing the nonlinearity works at low in-
put intensities (typically some mW/cm ) an has a
response time of the order of 100 ms. Hence it is possible
on one side to resolve the spatiotemporal dynamics of the
signal, and on the other to scan the control parameter (in-
put intensity) over a wide range from very close to
threshold to far away from it, thus displaying some
phenomenologies that are unexpected on the basis of the
linear stability analysis.

II. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 1. A beam
from an Ar laser operating at 514 nm is expanded and
collimated by means of the lenses Lp and L&, and then
sent on the front face of the LCLV. This device operates
in reAection, inducing a phase retardation on the
reAected beam that in a first approximation is a linear de-
creasing function of the light intensity illuminating the
LCLV on the rear side [16]. In these operating condi-
tions the LCLV is equivalent to a defocussing Kerr-like
medium, with the characteristic controlled by the ampli-
tude and frequency of the ac voltage applied to the de-
vice.

The reflected beam reaches plane z; after a beam
splitter (BS) and a mirror (M) passing through lenses L,
and L2. These two lenses are placed in a confocal
configuration, so that the plane z; is an (inverted) image
of the plane containing the front face of the LCLV. In the
plane z; we put a 9.9 XO. 18-mm slit as a limiting aperture
in order to build an almost one-dimensional constraint.
In the following we call the long side of the slit the x
direction. Starting from plane z; the light beam under-
goes free propagation over a length /, until it reaches one
end of a fiber bundle. The fiber bundle coherently trans-
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FIG. 1. Experimental setup. LCLV:
Liquid crystal light valve; Lp, I.1, 1.2, and 1.3.
lenses; BS: beam spliters; PH: pinhole; A: slit-
like aperture; CCD1 and CCD2: video cam-
eras.
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ports the light from its entry to its exit face, that is opti-
cally connected to the rear face of the LCLV. A rotation
of m of the fiber bundle across its axis provides compensa-
tion for the inversion of the image due to lenses L& and
I.2. A translation of one of the ends of the fiber bundle
along the x direction introduces a nonlocal interaction of
the light beam with itself.

III. MODEL OF THE LCLV
WITH TRANSLATED FEEDBACK

A light beam impinging on the front face of the LCLV
as a plane wave of amplitude E0 acquires, after reAection,
a phase retardation y(x, t ) =2kodn(x, t), where ko is the
optical wave number, d is the thickness of the liquid-
crystal layer, and n (x, t) is the perturbation to the aver-
age index of refraction of the liquid crystals. For simpli-
city of notation, in the following we will identify the vari-
ables q&(x, t) and n (x, t). The refiected field at the exit of
the LCLV thus has the form

(z —0) E in(x t)
out 0

of the index perturbations in the liquid-crystal layer [4]:

t3n(x, t) n(x, t) t3 n(x, t)
Bt

where ~ is the local relaxation time, D the diffusion con-
stant, and I the writing intensity impinging on the rear
side of the LCLV. In the present case I is given by ex-
pression (4), in which we introduce the translation
x —+x+6.x. Substituting this expression into (5) and
specializing for the q Fourier component, it follows that

dna nq 2l

dt
Dq n +2a~E—o~ sin n e'

2k,
(6)

plus the complex conjugate equation.
We now look for solutions of (6) of the form

nq (t) = [Re(n (t) )+ i Im(n (t) ) ]e i

Substituting in (6) and separating the real and imaginary
parts of the resulting expression, we obtain

n(x, t)=n (t)e'q +nq*(t)e (2)

This same field is present at plane z,., where the slit is lo-
cated. Let us consider a generical Fourier component of
n (x, t) at spatial frequency q:

Dq +2a~Eo~ —sin cos(qb, x),
2k,

2l
A=2a~EO~ sin kosin(qbx) .

(Sa)

(Sb)

Substituting this expression in (1) and assuming n «1,
we obtain

E,„,(z =0)=Eo[1+n (t)e'q"+n (t)e '
] . (3)

Due to free propagation from plane z, to the entrance of
the fiber bundle, the qth Fourier component of the field
undergoes a phase shift q //2k0. It follows that, to first
order in n, the intensity distribution reaching the fiber
bundle is of the form

2 j'

~E(z=l)~ = ~Eo~ +2~Eo~ sin [nq(t)e'q"
0

+n*(t)e 'q ] .

Let us now consider the equation governing the evolution

Equation (8a) gives the growth rate of a perturbation in
the index of refraction at spatial frequency q. The condi-
tion A, =O gives the instability threshold for this Fourier
component. Equation (Sb) gives the temporal frequency
at which the harmonic component at spatial frequency q
oscillates. Recalling Eq. (2) for the form of n(x, t) it is
clear that the onset of an instability at a given q with
A, , QWO will result in the appearance of a roll-like pattern,
drifting with a velocity Ud=Q/q. We observe that ex-
pressions (8) are analogous to those obtained in Ref. [8].
Following Ref. [3], we find it convenient to rewrite ex-
pressions (8) in a slightly different form, by introducing
the quantities ld= i/Dr (diffusion len—gth of the liquid-
crystal excitations), 8:—q l/2ko (reduced wave number),
cr =l/ldko, Io= ~EO~, and P=2ar. Then Eq. (8) reads
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rk= —l —2—+PI sin8cos(qbx ),0
0 (9a)

rQ=PIosin8sin(qbx) . (9b)

IV. NUMERICAL RESULTS

In the present section we consider the quantities p, Io,
0., and I as parameters, and study the behavior of the
quantities rAand , rQ in the space of the variables (8, bx )

(we notice that q can be obtained from 8 if 1 is known).
The right-hand side of Eq. (9a), giving the growth rate of

a perturbation of index of refraction with the reduced
wave number 0, is a superposition of a plane of negative
slope 2/o. along 8, plus a term that has a harmonic
dependence both along 0 and Ax. The first term
represents the contribution of local relaxation and
diffusion to the decay of perturbations. The larger the
diffusion length, the smaller cr is, and this contributes to
lower the growth rate for the modes at high 0. The
second term comes from the Kerr nonlinearity of the
LCLV, and its magnitude and sign are modulated by
terms that originate in diffractive propagation and in
nonlocal interaction of the field with itself.
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FIG. 2. Level lines of the quantity ~A, )0 in the (0,Ax ) plane.
P=O. 8 cm2/mW, ID =5 mW/cm, and I =23 cm (focusing case).
(a) o =3. (b) o.= 10. (c) o =30.

FIG. 3. Level lines of the quantity ~X & 0 in the (0, b,x ) plane.
P= —0.8 cm /mW, Io =5 mW/cm, and 1 =23 cm (defocusing
case). (a) o =3. (b) o =10. (c) o.=30.
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FIG. 4. Level lines of the quantity v.Q&0 in the (O, hx)
plane. P=0.8 cm2/mW, Io =5 mW/em~, and 1 =23 cm (focus-
ing case).

For fixed values of P, Io, o, and 1, in plane (8, b,x ) we
plot the level lines corresponding to ~A, &0. The result is
shown in Fig. 2 for P) 0 (focusing medium} and in Fig. 3
for P & 0 (defocusing medium) for three difFerent values of
o.. Each island in these plots corresponds to an instabili-
ty region. As can be expected, for increasing diffusion
length (i.e., for decreasing o ) a suppression of the modes
with high 0 is observed both for the focusing and de-
focusing cases. Along line b.x =0 the results of Ref. [3j
are found; i.e., the first unstable mode corresponds to
8 =m /2 for P)0 and to 8= 3~ f—or P & 0.

In Figs. 4 and 5 we plot the level lines corresponding to
rO) 0 in the plane (O, b,x ). Since the quantity rQ is an
odd function of hx, it is clear that for any positive peak
in Figs. 4 and 5 there is a corresponding negative peak at
the symmetrical position with respect to the Ax ——0 axis.
The negative part of the plot is not shown here f'or clari-
ty. Along line hx =0 it is found that here Q-=O, this
meaning that in the absence of the transport term only
stationary patterns can bifurcate [3].

Moving along the bx direction, the plots shown in
Figs. 2 and 3 predict two fundamentally different kinds of
behavior for the system. First, it is possible that the sys-
tem suddenly jumps from one island of instability to
another one centered at a different value of 6I. Second,
when the system is on a well defined island, a variation in
hx can result in a slow, continuous variation of 0. As for
the time behavior of the patterns, it is clear from Figs. 4
and 5 that a frequency QWO appears, resulting in the bi-
furcation of a drifting roll pattern, as soon as the system
moves away from the very center of an island (the point
of that island corresponding to the maximum value of
rA, ). It is worth noting that, while in the case of a focus-
ing medium there is always a region of maximum insta-
bility for Ax =0, in the case of a defocusing medium this
is no longer true. In other words, the instability thresh-
old for a defocusing medium is lower for b,x&0 than for
Ax =0. For this reason it seems appropriate to us to talk
of transport-induced instability in this last case.
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FIG. 5. Level lines of the quantity ~Q&0 in the (O, hx)
plane. P= —0.8 cm /mW, ID=5 mW/cm, and I =23 cm {de-
focusing case).

V. EXPERIMENTAL RESULTS
AND COMPARISON W'ITH THE MODEL

All experimental observations were performed for fixed
values of the parameters i=23 cm (free propagation
length in the feedback loop), Vo =7.5-V rms and fo

= 15
kHz (amplitude and frequency of the sinusoidal voltage
applied to the LCLV}. The slit located in plane z; mea-
sures 9.9X0.18 mm . Since for the values of optical
wavelength A, and free propagation 1 used we expect that
the scale of the unstable modes be of the order of hun-
dreds of pm, this slit should be adequate in order to
render the system nearly one dimensional. As control pa-
rameters we used the intensity Io of the light beam imp-
inging on the front side of the LCLV (a fraction =0.45 of
this light is fed back to the rear side of the LCLV) and
the translation Ax introduced in the feedback loop.

We indeed observed that the structures formed inside
the active window delimited by the slit are strongly
dependent on the value of Ax. Due to the one-
dimensional nature of the setup, the patterns are always,
at least approximately, rolls oriented orthogonally with
respect to the long side of the slit. By varying the value
of Ax, we observed variations in the amplitude of these
rolls. In particular, it is possible to pass from values of
hx for which the amplitude of the rolls is zero (uniform
regime), to others for which the intensity modulation of
the roll pattern can be of the order of unity.

Furthermore the value of Ax determines the wave-
length A (and hence the wave number q =2m/A) of the
observed structure. In some regions the variations of A
vs hx appear to be smooth, while in others it is possible
to notice the existence of discontinuous jumps of the
value of A from one band to another. The rolls can be ei-
ther stationary or traveling at a constant speed along the
x direction. Since these structures are periodic in space, a
time frequency Q, whose value depends on hx, is associ-
ated with their uniform drift motion. All these observa-
tions are in qualitative agreement with the prediction of
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We measured the spatial frequency q and the temporal
drift frequency 0 of the roll patterns vs the displacement
Ax of the feedback fields for three different values of the
input intensity Io, namely, Io=3, 6, and 9.4 mW/cm .
The values of the spatial frequency q were deduced from
measurements performed in the far field of the signal,
corresponding to the Fourier spectrum of the signal itself.
Typical examples of the near field of the signal and of the
corresponding far field are shown in Fig. 6. In order to
measure q we isolated the central line of the far field, and
acquired for each value of Ax a set of 200 samples of this
line. We then calculated the average line in order to
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FIG. 6 Near field [(a),(c), and (e)] and corresponding far field

[(b), (d), and (f)] images of the signal. Io =9.4 mW/cm~.
Ax =30 pm [(a) and (b)], 110 pm [(c) and (d)], and 150stsm [(e)
and (f)]. Note the presence of a strong second harmonic com-
ponent in (e) and (f).

the model discussed in Sec. II.
The linear stability analysis predicts also a linear

dependence of the drift frequency 0 vs the input intensity
Io. In order to check the validity of this prediction, we
performed a series of experimental observations of the
dependence of Q vs Io, for fixed values of Ax. We verified
that 0 indeed depends on Io, but not in a linear way over
all the range of Io we investigated. Indeed, it is to be ex-
pected that there are some discrepancies between predic-
tions based on the linear stability analysis and the results
of experiments for those values of the parameters driving
the system far above threshold. This is just what happens
when increasing the value of Io too much. In this regime,
we also observed some phenomena that are qualitatively
different from the simple ones predicted by the linearized
model. In particular, it is possible to observe irregular
time fluctuations of the spatial phase of the roll pattern,
and also the coexistence of structures belonging to
different q bands.
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near field signal. Io =6 mW/cm; Ax = 150 pm.
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reduce the signal to noise ratio, and finally evaluated the
values of q from this average line.

The temporal drift frequency of the rolls was measured
starting from the acquisition of 200 samples of the central
line in the near field for each value of hx. The samples
are separated in time by 0.08. The succession of the 200
lines forms an image representing the space time evolu-
tion of the central line of the near field signal. A typical
example of one of these images is shown in Fig. 7. The
temporal drift frequency of the rolls is derived from these
space time plots by counting the number of maxima
crossing a fixed coordinate in the unit of time. The re-

25
po- 0 (sec ')
15-
10-
5-
0

suits of the measurements of q and Q vs Ax are shown in
Figs. 8 and 9.

Let us concentrate first on the plot of q vs hx. It is
seen here that, for low values of input intensity (IO=3
mW/cm ) the system is on the uniform solution for
Ax =0, while it displays a transport-induced instability
leading to the roll solution for b,x&0. For higher values
of Io (IO=6, and 9.4 mW/cm ) the roll solution is al-
ready above threshold for Ax =0. For increasing Ax it is
possible to observe either a continuous variation of the q
value, or a series of sudden jumps of q from one band to
another. The number of the bands inAuenced by the in-
stability increases for increasing Io, and in some cases the
coexistence of two bands can be observed.

Consider now the plots of 0 vs Ax. For Io = 3
mW/cm The roll structure results to be always station-
ary. At higher value of Io, the rolls can drift with a fre-
quency whose magnitude and sign (corresponding to the
direction of the motion along x) depends on hx. For very
high values of Io and Ax, finally, we have observed some
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FIG. 9. Temporal frequency 0 of the unstable mode(s) vs b,x.
Io =3 (a), 6 (b), and 9.4 (c) mW/cm'-. Filled dots: experimental
points. Shadowed regions: simulations from Eq. (9a) with
r=250 ms, P= —0.8 cm2/mW, and cr=3. The empty squares
indicate phase fluctuation regimes.

(b)

FIG. 10. Space (horizontal)-time (vertical) evolution of the
near field signal in the phase fluctuation regime. Io =9.4
mW/cm. hx =235 pm (a) and 300 pm (b).
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FIG. 11. Temporal frequency 0 of the unstable mode(s) vs

Io. Empty dots: b,x =30 pm. Full dots: hx =150 pm. The
empty squares indicates phase fluctuation regimes for hx = 150
pm.

response time r, the nonlinearity parameter P, and the ra-
tio o. of diffusive to diffractive square lengths. We find
the best agreement between theory and experimental data
for the following values of the parameters: ~=250 ms;
P= —0.8 cm /mW; and o.=3, corresponding to ld-—80
pm. These values are in fair agreement with the typical
characteristic parameters of the LCLV [16]. The results
derived from the numerical simulations of the model are
represented as shadowed regions in Figs. 8 and 9. It is
seen here that results from theory and experiments fit
well for values of Ip and Ax that are not too high. Since
theoretical predictions come from a linear stability
analysis, some discrepancies are to be expected for those
values of Ip which drive the system far above threshold.
Furthermore, for high values of Ax it is possible that the
limited longitudinal size of the system introduces some
deviations from the ideal, infinite size model.

qualitatively different phenomena from those predicted
by the linear stability analysis of the model. In fact, there
are situations in which the rolls are neither stationary nor
drifting, but rather display phase Auctuations that can be
either regular or irregular in time. Space time plots rela-
tive to two of these situations are shown in Fig. 10.

Another series of measurements has been devoted to
the investigation of the dependence of the roll drift fre-
quency 0 vs the input intensity Ip. These measurements
were done for two different values of Ax, namely hx =30
and 150 pm, corresponding, respectively, to situations in
which 0 is negative and positive. The experimental re-
sults reported in Fig. 11 show that the theoretical predic-
tion of a linear dependence of Q vs Ip is approximately
verified only for values of Ip that are not too high.

For the measurements of q vs hx an Q vs Ax discussed
above we have performed a quantitative comparison be-
tween the experimental results and the predictions of the
model. This was done by using Eqs. (9a) and (9b) of Sec.
III. For fixed l, the free parameters are the LCLV

VI. CONCLUSIONS

We have theoretically analyzed and experimentally
demonstrated the onset of a pattern forming drifting in-
stability in an optical system in which nonlocality is in-
troduced in the feedback loop by means of a translation.
The main prediction derived from the model, namely the
existence of a reduced threshold for pattern formation in
defocusing media when nonlocality is introduced, is ex-
perimentally confirmed.

When the system is driven far above threshold, phe-
nomena of phases fluctuations and of locking at zero tem-
poral frequency of the patterns are observed. These phe-
nomena, that we hypothesize as due to the onset of secon-
dary bifurcations, are the subject of a present investiga-
tion.
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