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Generation and evolution of two-dimensional dark spatial solitons
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In this paper we demonstrate numerical and experimental results on the evolution characteristics of
two-dimensional even and odd dark spatial solitons. Two-dimensional even dark spatial solitons are ex-
perimentally generated and investigated.

PACS number(s): 42.70.Nq, 42.50.Rh

I. INTRODUCTION

Generally, the nonlinear evolution of a beam or pulse
should be described by the (3+1)-dimensional nonlinear
Schrodinger equation (NLSE) [1] with three transverse
dimensions: two spatial and time. The realistic modeling
of the cw-beam spatial self-action requires the (2+1)-
dimensional NLSE to be solved [2]. There are some
specific cases, where the dimensionality could be reduced
to (1+1): temporal evolution of a short pulse in single-
mode optical waveguide [3], and evolution of the trans-
verse profile of a cw elliptical beam in a planar waveguide
[4]. The relatively simplified beam-pulse evolution results
from the compensation of the optical beam diffraction by
the total internal refiection (linear process).

The optical solitons form a specific class of beam-
pulses for which the diffraction or group-velocity disper-
sion (CrVD), respectively, is compensated by the medium
nonlinearity [5,6]. The dark optical solitons could be
characterized as localized dips superimposed upon a
background beam-pulse. During the last several years,
the generation and evolution of dark spatial solitons has
been analyzed in one spatial dimension mainly. Recently,
the infiuence of the two-dimensional (2D) background of
a finite extent on the evolution of 1D even dark spatial
solitons has been studied in [7]. The first theoretical
analysis on the existence of stable 2D self-supported
beams [8] was followed by the experimental generation of
2D odd dark spatial solitons (optical vortex solitons)
[9—11]. They could be characterized as dark beams with
on-axis 2m helical phase ramps [12] imposed on high-
intensity background beams. Two publications of Kiv-
shar and Yang discuss the existence, the propagation
characteristics, and the perturbation stability of ring dark
solitons [1,13]. In a recent experiment, these formations
were generated and investigated [14]. From an interfero-
gram analysis, pairs of diametrical phase shifts across
each ring were retrieved [14].

In the following we will present additional evidence
that two-dimensional odd and even dark optical solitons
[(ODSS), (EDSS)] do exist. Odd and even initial condi-
tions of the NLSE will be considered. Extensive numeri-

cal simulations in two dimensions and comparisons with
the propagation characteristics of the 1D dark spatial
solitons (soliton stripes [15,16]) are presented, demon-
strating a well-pronounced soliton evolution of the input
dark formations. 2D even dark spatial solitons are exper-
imentally generated and investigated.

II. TWO-DIMENSIONAL ODD DARK
SPATIAL SOLITONS

Analytically, the 2D spatial evolution of an angularly
symmetrical laser beam along a nonlinear medium is de-
scribed by the (2+ 1)-dimensional NLSE [2]:

i E+p + E+kn2~E~ E=O,
Qy

2

where z is the longitudinal coordinate, x and y are the
two transverse coordinates, k=2n1'Ais a wave , number
corresponding to the pulse wavelength A, , and p=(2k)
accounts for the spatial beam diffraction in both trans-
verse dimensions. The nonlinear term in Eq. (1) involves
the intensity-dependent medium refractive-index correc-
tion nz~E~ . Depending on the sign of n2, the nonlineari-

ty can enhance (at n2 &0) or compensate (at n2 )0), at
least partially, for the beam diffraction.

Let us consider brieAy the physical picture in one
transverse spatial dimension. The bright spatial optical
solitons result from the balanced counteraction of the
one-dimensional beam diffraction and self-focusing along
a nonlinear medium. The usual 1D analysis assumes a
continuous wave (cw), or quasi-cw input beams of high el-
lipticities and the basic NLSE has the form [4,6]

8
i E+p E+kn2~E~ E=O.

Bz
(2)

The diffraction tends always to spread out the beam in
space (i.e., the diffraction coefficient p is always a positive
one). Therefore, bright spatial solitons (in one dimension)
could exist in self-focusing (nz) 0) media only [4,6].
Dark spatial solitons could be formed in self-defocusing
(nz &0) media [15,16]. The fundamental black spatial
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soliton is described by an antisymmetric function of space
(hyperbolic tangent), which causes an abrupt phase shift
(phase step) of ~ at its center. This soliton is denoted as
an odd dark spatial soliton, in contrast to the even dark
(spatial) solitons, which do not have an initial phase shift.
As a consequence, independent from the background in-
tensities, the last ones split at least into two odd dark soli-
tons with a reduced contrast ("gray" solitons), each one
with its own phase shift (less than m ) [17,18]. It has been
recently shown that for a certain phase shift larger than
m, two soliton solutions with different contrast do exist in
the 1D case [19].

Let us concentrate our attention on the 2D odd input
dark formations. In the first experiments they are gen-
erated utilizing the modulational instability of soliton
stripes against long-period modulation [9,10]. In order to
ensure adequate and controllable initial conditions for the
formation of a 2D ODSS, a 2D spatial phase distribution,
shown on Fig. 1, should be imposed on a plane wav
f ~ ~

wave
ront. Characteristic of this phase distribution [12] is a m.

phase shift (localized at the soliton center) in each radial
direction. Practically, it could be achieved with an exper-
imental scheme, similar to those depicted on Fi . 2(a).
Th 1e aser source provides an initial beam, serving later as

n ig. a .

a background beam for the 2D ODSS. The 2D phase dis-
tribution required (Fig. 1) can be achieved after a proper-
ly constructed phase mask (PM). Further, the phase
modulated background beam should be amplitude modu-
lated by passing through a mask (AM). For the forma-
tion of a 2D ODSS, this mask should be circularly sym-
metric, on-axially aligned with respect to the background
phase distribution, and its transmission profile should ap-
proach as close as possible the 2D ODSS shape. A
charge-coupled device (CCD) camera and a personal
computer (PC) combined with filter sets (F1, F2) should
form the data acquisition and recording equipment.

The construction of the PM is a specific problem. In
Fi . 2tb&ig. t &, one possible experimental configuration is

P( r, y ) =m qr, y & (0,2m )

and a background profile

(4)

LASER F1 NLM F2, CCD

PC

a)

sketched. A flat topped control beam should be intensity
modulated passing through an AM with a 2D transmis-
sion distribution shown on the right-hand side of Fig.
2(b). Within a thin nonlinear medium (NLM) f
tiall

o a spa-
tia y localized response, the amplitude modulation of the
control beam should yield the desired phase modulation
of the background beam. Thereafter, the control beam
should be removed [the dashed box on Fig. 2(b)]. The ex-
act radial m jump could be achieved by adjusting the in-
tensity of the control beam. As a first step a circular gra-
dient neutral density disk could play the role of an AM
[in Fig. 2(b)].

As mentioned, the aim of the present work is to pro-
vide additional evidences that two-dimensional dark opti-
cal solitons do exist. In the absence of exact analytical
and approximate numerical results, we assumed a 2D
dark beam of the form (written in cylindrical coordinates)

E( r tp z =0)= A pB ( r )tailll( p'/rp )exp[if( r tp ) ]

(x 2+@2)1/2

with a phase distribution

Phase mask (PM)

NLM

rBACKGROUND
BEAM

I

I

~~AM
I

IN OUT

:::.is

CONTROL BEAM

FIG. 1. N umerically generated phase distribution for obtain-
ing a m-phase jump in an arbitrary radial direction.

FICx. 2. &a& I. ( ) Experimental scheme, corresponding to the nu-
merical simulations. (F1, F2 are the filter sets; NLM is the

is e amp itu e maskse f-defocusing nonlinear medium' AM is th l'

for obtaining a 2D dip on the background; CCD denotes the
camera and PC is the personal computer. ) The PM should gen-
erate the desired radial m jump. (b) Possible scheme for achiev-
ing the appropriate background phase distribution. NLM
denotes the thin nonlinear medium; the amplitude mask (AM)
transmission (gray-scale coded) is plotted too.
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8(r)=exp[ —(rl[15ro])' ] (5) tion R (r) was found in the form

at the entrance face of the self-defocusing (nz &0) non-
linear medium. In Eqs. (3)—(5), r and y are radial and az-
imuthal coordinates, and m is an odd number. This dis-
tribution, predicted rather intuitively by adding a rota-
tional symmetry to the transverse phase distribution of a
1D odd dark soliton [20], was proven numerically to be
adequate in two spatial dimensions. %'e analyzed numer-
ically the cw evolution of an initial (at z =0) intensity dip
described by Eqs. (3) and (4) by solving Eq. (1). The nu-
merical procedure used is a 2D generalization of the
beam propagation method, based on split-step Fourier
method [21].

Figure 3 shows a radial cross section of the input
(z =0) 2D dark odd formation (curve a). The solid curve
(b) represents the dark-beam shape at Z=SL„i,where
L i=(«21 Aol ) is the background nonlinear length
[21]. This distribution, formed approximately at
Z=l. 5L,„&, remains stable in the absence of a dip-to-
background interaction (up to Z =10L„iin our simula-
tions). For comparison curve (c) shows the correspond-
ing profile (at Z=SL„i)of an initial 1D odd dark beam
(odd dark soliton stripe). It should be pointed out, that
the shape of the resulting 2D dark formation closely
reproduces the initial profile, given by Eq. (3). The
smoother wings indicate that the input 2D hyperbolic
tangent profile (assumed in 2D) slightly divers from the
exact one for the 1D case. In order to explain qualita-
tively this behavior, we analyzed the NLSE [Eq. (1)],
written in cylindrical coordinates, and searched for a par-
tial solution of the form

R(r)-r tanh(A or /~2) W(r), (6b)

5:gpjfjp~gi~j/'fg, p-

where W(r) accounts for the singularities of the NLSE at
r =0 and at infinity. The function W(r) was found to
tend to 1/r at r ~ 0- with lower values. Therefore, the in-
tensity in the 2D ODSS wings should approach slower
the background intensity, as compared to the
hyperbolic-tangent profile assumed. Nevertheless, the
hyperbolic-tangent seems a reasonable approximation for
a 2D ODSS. It is interesting to note that the background
intensity required for obtaining a 2D ODSS is V'2 times
higher than the respective value in the 1D case if equal

E(r, p, z) = AOR(r)exp(ip)exp(ipz), (6a)

where exp(ip) corresponds to the phase distribution pro-
posed [Fig. 1 and Eq. (4)]. The radial intensity distribu-
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FIG. 3. Radial cross section of the input 2D dark odd forma-
tion (a) and fundamental 2D ODSS at Z =5L„&(b). Curve (c) is
a profile of an initial 1D odd dark beam at the same Z and back-
ground intensity.

FIG. 4. Gray-scale image of the output 2D odd dark forma-
tion with Ao =2. 1 at Z = 10L„&(a) and the corresponding radial
intensity and phase distributions (b).
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dark-beam diameters are assumed. This was mentioned
for the first time in [9] [comment after Eq. (2)]. Physical-
ly, this numerical result could be attributed to the higher
diffraction in two spatial dimensions as compared to the
dilfraction in one dimension. As seen from curve (c) on
Fig. 3, the excessive "lack of energy" of the 1D input
dark formation leads to the formation of a fundamental
1D ODSS and a diverging pair of 1D "gray" solitons.
This behavior is consistent with the results of other au-
thors in the one-dimensional case. Exceeding the back-
ground intensity for the fundamental 2D ODSS results in
an evolution of the input single odd dark formation into
an on-axis fundamental 2D ODSS and a diverging (along
the nonlinear medium) "gray" ring. It corresponds to a
dark soliton pair in the 1D case. The output 2D intensity
distribution is demonstrated in Fig. 4(a) at Z = 10L„,.
The phase portrait [Fig. 4(b)] shows the undistorted m.

jump of the fundamental 2D ODSS and the smoother and
of reduced amplitudes phase shifts across the gray ring.
This behavior, known for the 1D odd dark solitons [20]
strongly supports the statement, that the central dark
beam is a 2D ODSS with a modulation depth of unity.
However, the transverse spreading of the dark ring along
the medium is accompanied with a 2D energy redistribu-
tion and with a decrease of the contrast. Consequently,
the gray two-dimensional soliton ring is not a soliton for-
mation itself, but it has a solitonlike evolution [1,13,14]
and should be denoted as a ring dark soliton generated
from a 2D odd dark soliton. In our opinion, these results
confirm the statement, that 2D ODSS (optical vortex soli-
tons) in bulk self-defocusing nonlinear media exist as
"black" odd solitons only.

III. TWO-DIMENSIONAL EVEN DARK
SPATIAL SOLITONS

As a second step we modeled numerically and observed
experimentally the evolution of 2D even dark formations

generated from even initial conditions (i.e., with an initial
amplitude modulation only). The initial conditions in our
numerical simulations are described by Eq. (3) with
@=const. The experiment performed was based on an
arrangement, similar to those on Fig. 2(a). A 2D AM
was illuminated with a laser beam prior to the NLM (eth-
anol slightly dyed in red). No PM was used in this case.
Two filter sets (Fl and F2) were involved to control the
background intensity and to prevent the CCD-camera
saturation, respectively. A lens was used to image the
AM on the entrance of the nonlinear medium. For the
purpose of a comparative experimental analysis, the
masks consisted of metal film dots and stripes (produced
photolitographically) of equal diameters/widths ranging
from 50 to 250 pm. A copper-vapor laser source (P =4
W) was used to produce the background beam, required
for a background self-defocusing in a thermal nonlinear
medium. This technique has been used for generating 1D
dark spatial solitons [15,16,22]. The output dark forma-
tions were detected and recorded by a CCD camera and a
frame grabber.

Increasing the intensity, four characteristic pictures
(Fig. 5) were obtained from the calculations 5(a) —5(d) and
during the experiment 5(e)—5(h). A Poisson spot is clear-
ly seen on Fig. 5(a) as a result of a free-space propagation
of the initial 2D even dark formation at one diffraction
length. At higher intensity the medium nonlinearity
compensates for the initial diff'raction [Fig. 5(b)]. The
background intensity enhancement yields a formation of
a dark soliton ring [Fig. S(c)], which is a 2D analog of the
diverging 1D dark soliton pair. Qualitatively similar to
the ID case, the radial phase distribution exhibits two
phase shifts (in opposite directions). The intensity within
the ring was found to be higher than the background one,
in contrast to the 1D case, where they are approximately
equal. Figure 5(d) shows an initial stage of a second dark
ring formation at a higher intensity.

Qualitatively, the same dark-beam evolution stages are

. V--

e)

FIG. 5. Characteristic evolution stages of a 2D EDSS [(a)—(d) are numerically simulated; (e)—(h) are experimentally obtained]:
Poisson spot at dark-beam center (a); diff'raction compensated by the nonlinearity (b) and (e); first dark soliton ring (c) and (f); initial
stage of the second dark soliton ring formation (d) and (g); two dark soliton rings (h).
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observed experimentally (Figs. 5(e)—5(h)). The 2D dark
formation from Fig. 5(e) is a result of a diff'raction com-
pensation by the nonlinearity. A dark (gray} ring with a
central intensity higher than the background level [Fig.
5(f)] was observed too. Unfortunately, it was difficult to
distinguish a small-scale interference dislocation (origi-
nating from the phase shift) across the dark soliton ring
in this experiment. A pair of opposite phase shifts across
the ring was measured in a separate experiment by using
the four-frame technique for interferogram analysis [14].
Figure 5(g) corresponds qualitatively to the numerically
generated Fig. 5(d). The loss of contrast is a result of the
2D redistribution of the "lack of energy" within the
diverging (along the nonlinear medium and thereafter)
dark ring. In order to avoid the CCD camera saturation,
Fig. 5(h) was recorded with a neutral density filter, placed
directly in front of the CCD array. This figure indicates
the formation of two dark soliton rings. The interference
lines in Fig. 5(e}—5(h) resulted from the NLM quvette in-
put and output faces and were dificult to avoid. Never-
theless the figures are indicative for the modulation sta-
bility of the evolution of 2D EDSS.

Our comparative numerical simulations in one and two
spatial dimensions show that the initial diffraction com-
pensation and the subsequent spatial splitting take place
earlier (i.e., at shorter distances in the nonlinear medium)
for the 2D even input dark formations as compared to
the 1D dark ones.

The intensity dependencies demonstrated above do not
guarantee that the 2D dark formations observed are 2D
EDSS. Strong evidence of the soliton nature is the trans-
verse velocity A.„ofthe dark spatial soliton pairs. In our
experiment as well as in the works of other authors in the
one-dimensional case, a lens images the amplitude masks
on the entrance of the nonlinear medium. Therefore, an
initial diffraction wave-front perturbation is present. Un-
der the same initial conditions, we modeled the evolution
along the nonlinear medium of 1D and 2D dark forma-
tions with (over one difFraction length) and without initial
diffraction. The results indicated that there is no strong
dependence of the transverse velocity on the initial
diffraction. As shown in [1], the radial velocity of the
ring dark soliton is a function of its radius.

The EDSS transverse velocity A,
„

is defined in connec-
tion with the divergence angle 8 between the two gray
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odd solitons of the same pair generated from an even
dark initial condition [17]

A,„=O.5 tan(8), (7a)

and in connection with the normalized width a of the in-
put 1D formation

A,„=cos(2A,„a) . (7b)

2D

FIG. 7. Comparison between the 1D theory of Zakharov and
Shabat (ZS, solid line) [17] and numerically obtained data in 1D
(triangles) and 2D (squares).

- - ': ': -':- ''::.&'"::::-'::i.

:;:ij:,'.i~, ';:. ',",.:.:,'.":,

w.:.:::: .;:,...,....::.:.:::.:: '::::::;g:"::.:,:.:~".;:.':,:::,:.::.:?j::.::

lD

a)

FIG. 6. Evolution of the transverse intensity distribution (as
a sequence of radial slices) along the nonlinear medium. (a) 1D
case; (b) 2D case.

FIG. 8. Numerically generated (a) and experimentally ob-
tained (b) intensity distributions of even 1D and 2D input dark
beams, formed by two masks (dot and stripe) with equal trans-
verse dimensions.
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FICx. 9. Dependence of the transverse velocity of the 2D dark
soliton ring on the background intensity (a); the first six points
are extracted from the experimental pictures shown in (b).

In the 2D case, we used the definition of Eq. (7a) with 8
being the nonlinear divergence angle of the dark ring.

Figure 6 represents the evolution (obtained from our
numerical simulations) of the transverse intensity distri-
bution (as a sequence of radial slices) along the nonlinear
medium. A dark beam narrowing prior to the beam split-
ting is clearly expressed in both the 1D [Fig. 6(a)] and
2D [Fig. 6(b)], as well as the earlier (at shorter nonlinear
propagation distance) splitting in the 2D case. Moreover,
in the 2D case the transverse velocity A,„(thedivergence
angle 8) was found to be higher as compared to the 1D
case (82D) 8,D).

The solid curve in Fig. 7 represents the result from the
1D theory of Zakharov and Shabat (ZS) [17) [see Eq.
7(b)]. The triangles denote our numerical results in the
1D case. The slight deviation from the theory at small
widths is a result of the computer limited discretization
and has no physical meaning. We evaluate the agreement
of the numerical results with the theory as more than sa-
tisfactory. With squares we plot our results in the 2D
case. As seen, the transverse splitting velocity is always
higher in the 2D case and, qualitatively, has the same
behavior as a function of the normalized width.

Figure 8 presents numerical (the two curves) and ex-
perimental (gray-scale image) results demonstrating a
formed 2D dark ring without an evident 1D stripe split-

ting. The 60-pm-sized dot and stripe were positioned on
one and the same amplitude mask as close as possible to
ensure an equal background intensity, but far enough to
prevent a possible interaction.

Figure 9(a) plots the intensity dependence of the trans-
verse velocity A,„ata fixed value of the 2D dark-beam di-
ameter. The dots present the experimental values. The
first six of them are extracted from the recorded gray-
scale images shown on Fig. 9(b). The solid line corre-
sponds to a power approximation A,„-I. An analo-
gous numerical experiment yields A,„-I . Within the
experimental inaccuracy of 20% and the numerical inac-
curacy due to the limited 2D discretization, the results
agree qualitatively well.

In view of the above, we believe we obtained strong
evidence for the existence of 2D EDSS (ring dark soli-
tons). Their dynamics and propagation characteristics
agree qualitatively with those of the 1D EDSS. The lon-
gitudinal (along the nonlinear medium) reduction of the
dark ring contrast, however, is a serious difference in
comparison to the 1D dark soliton pair.

IV. CONCLUSION

In this paper we demonstrate numerical and experi-
mental results supporting the existence of 2D even and
odd dark spatial solitons. The data obtained are funda-
rnentally important since no analytical solutions of the
2D NLSE are known. From a practical point of view,
2D ODSS could be used to form 2D gradient single-mode
optical waveguides with nonlinear claddings [8]. Instead
from total internal reAection, the spatial guiding effect on
the information pulse should result from the induced-
phase modulation originating from the 2D ODSS. The
experimental results in [9,22] indicate that by using
computer-generated holograms, multiple 2D ODSS could
be nested in a single background beam. Pure rotational
motion of the solitons with respect to the background
beam axis could be obtained by changing either the beam
intensity or the medium nonlinearity [11]. This experi-
ment is a step toward the realization of an optical rotary
switch. The generation of a ring dark soliton from an
odd dark soliton described in Sec. II paves the way to
redirect radially part of the light guided by the 2D
ODSS. The process could be controlled by the back-
ground intensity.

Two-dimensional EDSS may appear also to be useful
for all-optical manipulation of light. Ring dark solitons
could be generated in a controllable way by using
computer-generated hologram s. The dark ring could
guide parallel multiple signal (information) pulses nested
in the ring. Initially, they should be separated at suitable
axial angles. If the signal (information) beams are of
moderate ellipticities, their spatial intensity distribution
could be stabilized (i.e., their cross talk could be avoided).
The physical mechanisms behind such a signal evolution
is the spatial self-phase modulation of elliptical beams as-
sisted by a radial (along the shorter axis of the ellipses)
induced-phase modulation. Radial redirection of the in-
formation could be achieved by controlling the back-
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ground intensity and, therefore, the transverse velocity of
the ring. In another possible scheme, an optically in-
duced nonlinear dispersive element [23] could defiect the
ring soliton and the signal beams being guided parallely,
preserving their mutual ordering. Our results on this
problem will be published separately.

The intensity-controllable evolution of both types of
2D dark formations discussed may allow real time

reconfiguration [24,25] of nonlinear devices to be
achieved.
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