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Theoretical definitions of length and charge and second-order electric fields from steady currents
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It is shown in this paper that the well-known definitions of length, the synchronous definition of length
and the covariant definition of length, and the corresponding definitions of the macrscopic charge, the
synchronous definition of charge and the covariant definition of charge, are inadequate for all physical
systems consisting of relatively moving subsystems. Therefore an alternative definition of levgth, the al-
ternative synchronous definition of length (ASDL), and of charge, the alternative synchronous definition
of charge (ASDC), are introduced, which correctly define the length, the volume, and the charge for all

physical systems. In the ASDL and ASDC the length and the charge for every (moving) subsystem are
determined separately and simultaneously in the rest frame of the observer. The charge neutrality is

consequently redefined in ASDC. The measurable consequence of ASDL and ASDC is the appearance
of the second-order electric field outside the stationary conductor with steady current. Di6'erent experi-
ments that support the ASDL and ASDC are considered.

PACS number(s): 41.20.—q, 03.30.+p

I. INTRODUCTION

In this paper different known definitions of length
(volume) are examined. The first is the usual synchro-
nous definition of length (SDL), in which the length is
determined as the spatial distance between two points on
the (moving) object as measured by simultaneity in the
rest frame of the observer (see Sec. II). The second is the
usual covariant definition of length (CDL), in which the
length is determined as the spatial distance between two
points on the (moving) body as measured by simultaneity
in the rest frame of the body (see Sec. III). It is shown in
an exact way that the usual SDL does not correctly define
the length (volume) for the physical systems consisting of
relatively moving subsystems; according to the SDL a
part of such a system contains different numbers of parti-
cles, i.e., different matter, in different inertial frames of
reference (IFRs). The CDL agrees with the SDL in the
rest frame of the body, but for the mentioned systems,
e.g., a current-carrying conductor (CCC), the rest frame
of the ions is not at the same time the rest frame of the
electrons. It means that neither CDL is appropriate for
the mentioned systems. Another definition, the alterna-
tive synchronous definition of length (ASDL), defines the
length for all systems including CCCs, i.e., the systems
consisting of relatively moving subsystems (see Sec. IV).
Instead of describing, e.g., a wire with current as one sys-
tem with its length l, I treat it as two separate systems
with their separate lengths l+ and l . The lengths of the
relatively moving subsystems are defined by the ASDL as
the spatial distances between two points on each subsys-
tem as measured by simultaneity in the rest frame of the
observer separately for each subsystem.

In order to clarify definitions of length and to examine
their experimental consequences, I employ a simple sys-
tem, a closed loop with current. It is explicitly shown,
using such a CCC, that there is a close connection be-
tween different definitions of length and volume and

theoretical definitions of charge.
One of the basic laws in electrodynamics (classical and

quantum) is the invariance of charge. There is conclusive
experimental evidence that the charges of elementary
particles and the total charges of bounded physical sys-
tems are independent of their motion. We examine here
theoretical definitions of the amount of electric charge,
the invariance of charge defined by them, and the
measurable consequences of these definitions, and pro-
pose a general definition that avoids the difhculties en-
countered in the known definitions when treating a
current-carrying conductor.

The well-known definitions of electric charge appear-
ing in the literature are the usual synchronous definition
of charge (SDC), e.g., [1], which is based on the usual
SDL (Sec. II); the usual covariant definition of charge
(CDC), e.g. , [2] and [3], which is based on the CDL (Sec.
III); and the fiux definition of charge (FDC), e.g. [4],
which is also based on the SDL. (The usual FDC and the
covariant formulation of FDC will not be considered
here, but they are discussed elsewhere. The invariance of
charge defined by the usual FDC is partially discussed,
e.g., in [5] and [6].) Recently, an alternative synchronous
definition of charge (ASDC) was introduced in [7], but
only in an IFR and for the small piece of matter. The
ASDC is based on the ASDL.

In this paper the general form of the ASDC is present-
ed (Sec. IV), which is valid for the curved space-time, too,
as well as for the total charge of an arbitrary, bounded
system. In the ASDC the charge neutrality of a CCC is
defined in accordance with the ASDL, i.e., in a substan-
tially different manner than in the usual SDL and SDC.
The measurable consequence of the ASDL and ASDC,
and of the definition here of charge neutrality of a CCC,
is the electric field outside the stationary mire with
current, whose first nonvanishing term is E(„,' ~ U Ic (U

is the average drift velocity of the electrons and c is the
velocity of light). DifFerent experiments that support
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the ASDL and the ASDC and their consequence E,'„,'WO

are discussed.

II. USUAL SYNCHRONOUS DEFINITIONS
OF LENGTH AND CHARGE

pdV, (2)

where p =p+ +p is the spatial charge density. In
another IFR S'

Q'= J p'dV' .

In a general case of curved space-time (see [1],Sec. 10.9.),
Q= j ~g~' (j /c)d x, where ~g~ is the determinant

t=a
of the metric tensor g & and j =j++j is the time
component of the four-current density, which is related
to p by j =pc( —goo)

' . The electric charge 5Q of the
small piece of matter in an IFR S is 5Q=(p++p )dV,

We start the discussion of the difFerent definitions of
length and charge with the SDL and the SDC since they
are used in every textbook on general physics and by al-
most all physicists. The SDL and the SDC always (in
every reference frame) involve the usual synchronous
description. The length is dejtned by the SDL as the spa-
tial distance between two points on the (moving) object
measured by simultaneity in the rest frame of the observer.
Thus length I, simultaneously determined in some IFR S,
between points A and B on the (moving) object is

1 =(x~ —x„')(x~;—x~;), with x~ —x„—0.
In another IFR S' 1' = (x~ —x z )(xz; —x z; ), with

xz —xz =0. [The Cartesian spatial coordinates are x'
and time t (x =ct). The n—otation is such that Latin in-
dices run from 1 to 3, Greek indices run from 0 to 3, and
repeated indices imply summation. ] The 1 is taken at
some t =a in S, and l' at t'=b in S', t and t' are not relat-
ed in any way. Particularly, length 1 in S between points
A and B on the linear (moving) object, which is along the
x axis, is I =xz —x z. In S', which moves with V relative
to S along the common x,x' axis, 1'=xz —x z,' the coor-
dinates of the end points x ~ ~, x ~ ~ are taken simultane-
ously in S, S, respectively. The particles building that
body, i.e., the particles that are on the so-defined length,
are "counted" simultaneously in the rest frame of the ob-
server. If the volume of an extended object is considered,
the boundary of the volume must be determined simul
taneously for the given observer. (In order to avoid
difFerent difhculties with "the conventionality of simul-
taneity, " i.e., with "the conventionality of synchroniza-
tion, " we assume that the "standard" or "Einstein" pro-
cedure for the clock synchronization is adopted. ) If S is
the rest frame of the object, then its length I is the rest
length, while in S' length 1' is contracted relative to 1,
1'=l(l —8 )', B=V/c.

In the SDC the total charge Q of the physical system,
which at the time t =a lies entirely inside a finite region
of volume in three-dimensional (3D) space, is given in an
IFR S with the familiar expression

while in S' 5Q'=(p'++p' )dV'. When all charges are
treated as discrete point charges, the charge Q in the
SDC is obtained from Eq. (2) by "counting" elementary
charges whose world lines cross the hypersurface perpen-
dicular to the time axis.

The first important feature of (2) is that the integral is
WO only in the region of volume in 3D space (i.e., on the
hypersurface t =a), in which p is WO. The second feature
of the SDC, which is responsible for many errors in the
literature, is that the SDC is based on the SDL and thus
involves the usual synchronous description. Consequent-
ly, in S the integral in (2) is taken over the hypersurface
t =const, while in S' it is taken over t'=const; again, t
and t' are not related in any way. Then in (2), d V' (taken
at t'=const in some improper IFR S') is the Lorentz con
traction (LC) of the proper spatial volume dV (taken at
t =const in the proper IFR S), dV'=dV(1 —8 )' (only
one dimension suffers a Lorentz contraction), but it is not
the Lorentz transformation (LT) of dV. In many well-
known textbooks on electrodynamics —e.g. , [1, Sec.
10.9], [2 Secs. 28 and 90], [8, Sec. 11.9], [9, Sec. 18-1], as
well as the Feynman lectures on physics, Vol. 2, Sec. 13-
6, etc.—this fact is not properly understood, and it is ar-
gued that 5Q=pdVin IFRs (or 5Q=pv' d x in curvi-
linear coordinates, where ~ is the determinant of the
spatial metric tensor v,. and dl =~; dx'dx ) is an
invariant, a Lorentz scalar (for IFRs). This invariance of
5Q is usually concluded from the invariance of d x
=dx dx'dx dx, d x'=d x for IFRs [2,8,9]. However,
d x' is obtained by the LT of d x, which is not the case
with dV in (2); in fact, 5Q, and Q defined by (2), do not
transform as tensor quantities on LT. It means that
nothing can be said about the invariance of 5Q =pd V (in
IFRs) from the invariance of d x, contrary to the asser-
tions in the above-mentioned literature. Therefore, all
proofs of the invariance of the total charge of bounded
systems, which are based on the "invariance" of 5Q, do
not hold.

Similarly in many textbooks, see, e.g., [2,8], the trans-
formation law for the four-current density is derived
from the "invariance" of 5Q=pdV. But, as said, 5Q is
not, in general, an invariant. The correct proofs that
(cp, j) forms a legitimate four-vector (in IFRs) are given
in [10] and in Appendix 2 of [1].

The third important characteristic of SDC is that j,
which is the sum j+ +j, is multiplied for both charged
subsystems (they can be, in general, in different states of
motion) by only one element of volume in 3D space.
Thus, in the case of a wire with current, it is, for every
observer, the simultaneously determined volume of the
"wire, " i.e., of the lattice of ions, that enters into the SDL
and thus into the SDC, too.

To illustrate these features, we consider a simple exam-
ple of a rectangular loop with current in two IFRs S and
S'. The loop is at rest in the IFR S (the laboratory
frame). The S' frame moves with velocity V relative to S
along the common x,x ' axis in the +x direction.
Without loss of generality, a wire of negligible resistance
is considered, the charge distribution arising from the
pinch efFect is neglected, and the electron accelerations at
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the corners of the loop are omitted. For conductors
without current (e.g., for the loop considered before a
current is established) and for nonconducting materials,
both charged subsystems are at rest relative to each oth-
er. Therefore, in the SDL there is only one length scale
(one volume) common to both subsystems. This holds for
every reference frame.

Suppose that in S the simultaneously determined ele-
ment of length dip (on the leg parallel to V) of the part of
a linear wire without current, between two points A and
8 marked on the wire, contains n stationary ions, labeled
1; —n,;, and n stationary electrons, 1,—n, . The total num-
ber of ions and electrons for the whole closed loop are N;
and X„respectively, and the total charge Qp is zero.
Point A is on ion 1; and point 8 on ion n;, and they
determine the ends of the length dl0 of the wire;
dip =xe(t) —x„(t)=x„(t)—xi (t), according to the SDL

t t

(1). The density of the ions in S is n+ p=n/dip, and the
same holds for the electrons n o

=n+ 0. Then the SDC,
(2), shows that in S 5Qp=(A, + p+k p)dip=0, where
1+ p=en+ p=e(n/dl p) and A, p= —e(n/dip) are the
positive and negative charge per unit of length. The ions
1;—n, and the electrons 1,—n, constitute that element of
length dlo. At any t in S, dlo contains these 1; —n; ions
and 1,—n, electrons. In Fig. 1 n world lines of ions and n

world lines of electrons cross the hypersurface t =0 in S
between points A and B.

Let us consider what will happen with that dip in IFR
S'. The method developed in [10], which uses only the

FIG. 1. The wire without current in S, the rest frame of the
wire, and in S', which is moving with V relative to S along the
common x,x' axis, considered in the SDL and SDC. Solid verti-
cal lines are worldlines of n (=6) ions, whereas dashed vertical
lines are world lines of n electrons. The length AB (in S)=dlo,
taken at t =0 in S, contains n stationary ions and n stationary
electrons. In S', at t'=0, the contracted length AB (in S')
=dl 0 =dip /I contains n moving ions and n electrons moving
with the same velocity V as the ions. Since the length measured
by different observers contains the same matter, it is a correctly
defined quantity. The charge 5QO ou that length is unchanged
by motion of the wire.

relativity of simultaneity and the invariance of an elemen-
tary charge e, will be applied. At time t =0, measured by
stationary clocks in S, electron 1, is supposed to coincide
with ion 1, (event A), and electron n, with ion n; (event
S). The coordinates of these two simultaneous events in
S are set to be%, (x =0, t =0) and % (x =dip, t =0), re-
spectively. In S' these two events are not simultaneous
and their coordinates are A (x ' =0, t ' =0) and
(x'=I'dip, t'= —I (V/c )dip), respectively, where
I =(1 B)—'~; see Fig. 1, where the distance AP =ct',
and the distance AE =x' of event %.

However, the SDL is not concerned with the same
events in di6'erent IFRs. That is, according to the SDL,
the ends of length have to be determined simultaneously
in every IFR. This means that in S' one has to find the
position of ion n; and electron n, at, e.g. , t'=0, when ion
1; and electron 1, are at x'=0. These are the points at
which the world lines of ion n; and electron n, cross the
hypersurface t ' =0 in S', i.e., point B (in S')
in Fig. 1. Since ion n,. coincides with electron
n, at t'= —I (V/c )dip at position x'=I dip, it will
be at moment t'=0 at position x„' (t'=0) =I dip
—I (V/c )dlpV=dlp/I [point B (in S') in Fig. 1]. Thus
there are n'+ p=n ions on length dip =dip/I in S', and
the density of the ions in S' is enhanced
n'+ p'=n/(dip/I')=I n+ p. In S' electrons 1, n, m—ove
together with the ions with velocity O' = —V, and the po-
sition of electron n, at t'=0 will be x„' (t'=0)=dip/I',
i.e., the same as the position of ion n;. The density of the
electrons in S' is also enhanced, n' O=n'+ o, and the
number of electrons n'

p on dl p is again equal to n.
Thus we have found that the simultaneously deter-

mined element of length dip between points A and B (in
S') on the wire, i.e., on the lattice of ions, measured by
apparatus stationary in S', dip =x„' (t') x i (t'), i—s con-

t

tracted relative to dip, dip =dip/I . It contains just the
same particles 1; —n; and 1,—n, as dlo in S contained, as
seen in Fig. 1. This shows that the length defined by the
SDL for such a wire without current (and also for noncon-
ducting materials) has a clear and unambiguous meaning.
Notice that the above derivation deals only with the
number of particles on dlo, and that number is found to
be unchanged by uniform motion of the length.

Since the SDC is based on the SDL, similar con-
clusions will hold for the charges on dip. Indeed, the
number of particles is unchanged, and an elementary
charge e is an invariant, which causes 5Qp=ne ne =0-
in S' or it can be written as 5Qp =(A, '+ p+A,

'
p)dip, and it

is equal to (en'+ p
en' p)dlp=5Qp—=O. Also, Qp for

the whole loop is Qp =Qp =0; the wire without current is
again locally and globally charge neutral

The problem with the SDL and the SDC arises for a
CCC; the two charged subsystems are, as a whole, in rela-
tive motion, which means that the "object" and its length
(volume) are not clearly defined. In fact there are two ob-
jects and two lengths (volumes), one for each charged
subsystem. Nevertheless the SDL and the SDC again uti-
lize only one length scale, that of the lattice of ions,
which causes the length of the wire with current to be in-
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FIG. 2. The wire with current in the ions rest frame S and in
the rest frame of the electrons S, =S', considered in the SDL
and SDC. Solid vertical lines are world-lines of n ions, and
dashed lines are world-lines of n electrons. The length AB (in Sj
=dl=dlo of the "wire, " taken at t =0 in S, contains n station-
ary ions and n electrons moving with V to the right. The charge
5Q on dl in S is equal to 5QO=0. The contracted length of the
wire dl'=dl/I, taken at t'=0 in S', again contains n ions but
not n electrons. The n electrons are on the length AE=dl' .
Since the length of a part of a wire with current contains
different matter for different observers, it is an incorrectly
defined quantity. The charge 5Q on such a length is changed by
motion of the wire.

correctly defined, and consequently 5Q for a section of a
CCC will be changed by the motion of that wire. Let us
show this.

Since a steady current can be set up in the circuit
without a net transfer of electrons to or from the system,
the total charge Q of that loop, but with a steady current,
must always be zero in every reference frame and for
every theoretical definition of the total charge, Q,
Q', . . . =Qp =0. In the SDC, (2), Q in S for the loop with
current is

Q= J (A, ++A, )dl+,

and it must be equal to zero. The dl+ will be denoted as
dl, and since the lattice is rigid and at rest, dl =dip, it
again contains n ions 1;—n; between stationary points 3
and B on the wire at any t in S, n+ =n+ o, and n+ =n
(see Fig. 2). Therefore, 5Q+ =en, or it is equal to
A+dl=5Q+ p where A+ =crt+ =e (rt/dl)=A+ p. The
global charge neutrality of the stationary loop with steady
current and the fact that the SDL and the SDC use only
one length dl for two objects, the moving electrons and the
stationary ions, imply that the number of moving electrons
on dl between points A and B is again equal to n. In gen-
eral these n electrons between A and B are not electrons
1,-n, existing between A and B in that wire without
current. However, since all the electrons are equivalent
(by quantum mechanics), and since their number
remained unchanged, one can accept that the part of the

wire between A and 8 (and the whole wire, too) is not
changed by motion of the electrons; remember that e is
an invariant. Then the density of the electrons in S is
n =n p, and the number of electrons on dl in S is
n =n (see Fig. 2). The negative charge on dl in S is
5Q = en—, or it is =A, dl =5Q p, where A,

en —= —e (n Idl) =A, p. Thus the stationary CCC is
again locally charge neutral 5Q=O, i.e., 5Q = —5Q+,
or A, = —

A, + (= —A, + p). The fact that 5Q on dl of a
part of a CCC is zero is taken as a natural assumption in
almost all textbooks and papers on electrodynamics. The
preceding analysis shows that 5Q=O is, in fact, the
consequence of a more fundamental assumption about
the existence of only one length scale for a CCC in the
SDL and SDC. Since 5Q=O (and A, =O), the external
electric field for the stationary loop with current is zero,
E,„,=O; this is known in literature as the Clausius hy-
pothesis (see [11]).

Using the method in [10],one can determine the length
and the charges for the moving loop in S'. Let us consid-
er the part of the leg (parallel to V) in which the electrons
in the S frame move with the average drift velocity v to
the right along the x axis. This part of the CCC whose
length is dl in S [from (1), dl =x„(t)—x& (t)] contains n

stationary ions and, according to the above discussion, n
moving electrons. Suppose that in S at t =0, ion 1,. (point
A on the wire) coincides with electron l„and ion n;
(point 8 on the wire) coincides with electron n, (see Fig.
2). In the same way as for the wire without current one
finds that in S' the length dl' is contracted, dl'=dl/I .
[Length dl'+ (=dl') in S' is the distance between A and 8
(in S'), taken at t'=0 in Fig. 2 and measured by ap-
paratus stationary ions in S', dl'=x„' (t') x& (t').]-

1 t

There are the same number of ions 1; —n; on dl' in S' as
there were on dt' in S, but now they are moving with —V.
Thus n+ on dl' in S' is =n+ on d/ in S, and it is equal to
n. The density of the ions in S' is enhanced
n'+ =n/dl'=1 n+ p. This result does not depend on the
chosen moment of time t' in S'.

The electrons in that leg move in S' with velocity
v'=(v —V)/(1 —v V/c ) (to the right for v & V). The po-
sition of electron n, at t'=0 is x„' (t'=0) = I dl

e

+ I ( V/c )dlv', and it is equal to dl/I'(1 —v V/c ), point
E in Fig. 2. It means that in S', n electrons, which built,
together with ions 1;—n, , the element of length dl be-
tween A and 8 in S, are not on the (simultaneously deter-
mined) contracted length of the wire dl' (i.e., of the lat-
tice of ions) between points A and 8 (in S'). In S' these n
electrons are on another length of the wire
dl' =dl/I'(1 —v V/c ) (for legs parallel to V). In Fig. 2
this is the distance between points A and E measured
simultaneously in S' (at t'=0 in Fig. 2). Hence the
density of the electrons in S' is n

' =n /dl '

=(n Idl')(1 —v.V/c ), which obviously is not equal to
n+. The lack of electrons appears on the length dl' of
the leg for which v and V are parallel, while there is an
excess of the electrons on dl' of the leg for which v and V
are in the opposite directions. Thus, the length dl con-
taining n =n moving electrons, and n+=n stationary
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ions in S, becomes dl'=dl/I in S', which contains n'

electrons and n+ ions, where

n' =n
' dl' = ( n /dl '

)dl '

=n(1 —v.V/c ), and n'+=n .

The fact that n' is not equal to n can be also inferred
from Fig. 2 by "counting" the number of world lines of
the electrons and ions that cross the hypersurfaces t =0
in S between points A and 8, and the hypersurface t'=0
in S' between points A and 8 {in S'). We see that the ele-
ment of length of a ivire with current, between two points
on the wire, does not contain the same number ofparticles,
i e , t.he. same matter, when measured by diferent ob
servers, and consequently it is not the same object The. re-
fore in the SDL the length of a part of a wire with
current is an incorrectly defined quantity. This is a fun-
damental result that wi11 have many consequences in al-
most all branches of physics.

Nonetheless, however, the total length L' of a moving
closed loop with current will contain the same total num-
ber of electrons X, as L in S contained, i.e., as Lo in the
same stationary loop without current contained. When
going along the moving closed loop with current (at some
t' in S'), the usually defined lengths (SDL) of some parts
of a closed CCC will contain an excess of electrons, while
the lack of electrons will appear at the other parts. The
sum of such "lengths" of all parts indicates that X,' and
X,' for the whole length L' of the moving wire are un-
changed by the motion of the loop, 2V =N,. and N,

' =X,.
Hence one could say that the total length of a closed loop
with current has a definite physical sense. But it is not
true, since the "correctness" of L results from the sum-
mation of the incorrectly defined quantities. Further-
more, in many cases one is interested not in the whole
length but only in the length of a part of a CCC, and such
a length has no definite physical interpretation. This con-
sideration explicitly shows that the usual SDL is mean-
ingless not only for a CCC but also for all physical sys-
tems consisting of relatively moving subsystems. That is,
the result obtained in Eq. (3) depends on the existence of
a relative motion of subsystems in a given IFR and not on
the particular nature of these subsystems.

Since the SDC is based on the SDL, one expects similar
ambiguities for the amounts of macroscopic charges and
also for the charge neutrality of a CCC. As shown above,
there are n ions on dl' in S'. Hence 5Q'+ =ne, or it is
equal to A'+dl'=5Q+, where A, '+ =en'+ =e(n/dl')
=I A.+. The positive charge on dl is thus unchanged by
motion, but it is not a Lorentz scalar. Obviously, the to-
tal positive charge for the whole current loop will also be
unchanged by uniform motion of that loop,

Q'+ =f k'+dl'=Q+ =Q+ 0 .t'=b

However, as proved above, in S' n electrons in the legs
parallel to V are not on the contracted length dl' of the
wire but on the length dl' =dl/I (1—v V/c ). Hence

en' = —e(n—/dl' ) or, written explicitly, A,
'

= I 1, —I A, v V/c . This procedure represents an
unusual but exact method of deriving the transformation

=5Q +5Q„and 5Q'+ =5Q+, (3')

where 5Q, = —eI'(V. j/c )(dl/I ) is the change in 5Q
caused by the existence of the conduction current in the
proper frame for the ions (see [7], [10], and Sec. 7.5 in
[1]). Thus 5Q is changed by motion of the loop. Equa-
tion (3') once again reveals that in the SDL and SDC the
electrons and ions are not treated in a symmetrical way.

We now turn our attention to the charge neutrality of a
CCC. In the SDC the local charge neutrality in the rest
frame of the wire is defined by the requirement that the
sum of positive and negative charges on the length dl be
zero, 5Q =(I,++A, )dl =0. But dl is not correctly
defined for a CCC. Therefore, one expects that this usual
definition of charge neutrality in the SDC is incorrect as
well. In fact, in S' the length of that part of the wire is
dl' according to the SDL. From (3') one sees that the to-
tal charge 5Q' on dl' is diferent from zero,
5Q'=5Q'+ +5Q' =5Q, . In a simple case of a rectangu-
lar loop with current 5Q, of difFerent signs will appear in
the opposite legs which are parallel to V. This is in
agreement with previously discussed features of the
length, defined by the SDL, of a part of a CCC. Since
5Q'%0, the moving wire with current is locally charged
and E,'„,' appears Qbviou. sly this result for the depen-
dence of the charge 5Q of a part of a CCC on the ob-
server is the direct consequence of Eq. (3), i.e., of the
inadequacy of the SDL for physical systems consisting of
relatively moving subsystems.

However, one concludes from (3'), and from the discus-
sion of the length of the whole closed loop with current,
that the integration of 5Q' over any closed loop shows
that the total negative charge Q' will be unchanged,

Q =f i, dl=Q = Q+ot'=b

As a consequence, the total charge of any closed loop is
also unchanged, Q'=Q'+ +Q' = Qo =0. This is an ex-
plicit proof that Q in the SDC does not change by uni-
form motion of the loop. At the same time, this pro-
cedure reveals that neither 5Q, the charge on the length
dl of the wire with current, nor Q, the total charge on the
length L of the closed loop with current, is a properly
defined quantity. This follows from the fact that length
dl and L of the wire are incorrectly determined for a
CCC.

III. THE USUAL COVARIANT DEFINITIONS
OF LENGTH AND CHARGE

Next we discuss the usual covariant definition of length
and charge. Both the length and the charge of a macro-
scopic body are nonlocal physical quantities connected
with an extended body. The manifestly covariant formu-
lation of any physical quantity (a) requires that the con

law for the time component of the four-current density,
which is already shown in Eq. (7) in [10]. Then according
to Eq. (3) and the third property of SDC, the negative
and positive charges on dl' of the wire are

5Q' =1,' dl'+ = —e(n/dl' )dl'+
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=I =(xs —x~)(xs, —x~, ), (4)

with x& —xz =0 in the rest frame of the object. For a
linear object along the common x,x ' axis,
I' =(xe —xz ) c(ts tz —), and —it is equal to
I =(xs —xz ) . In general, the position four-vectors
xz"s and the coinponents of I'" in some improper IFR S'
are obtained by the LT from the components in the rest
frame of the body S, I'"=(I l, l, l„(I V/c)l ), where
I„=xs—x&. The time component of I'" is %0, which
means that the space distance between spatial points 3
and 8 is taken in S' for a pair of nonsimultaneous events.
Hence the length I' in S' is I'=(I I„+I +I, —I I, V /
c2)'~z, and it is equal to the rest length 1 of the body,
l=(l +I~+I, )'~. Comparing with Eq. (1), one con-
cludes that the CDL agrees with the SDL only in the rest
frame of the object Thus, the. length of the (moving) body
as a nonlocal physical quantity is defined in the CDL as
the spatial distance between two points on the (moving)
body, as measured by simultaneity in the rest frame of the
body; the same holds for the volume within the spatial
boundaries (see, e.g. , [12]). All this is illustrated in Fig. 3.
The "end" events A and S are taken simultaneously in S,
the rest frame of the wire with current, and their coordi-
nates are A (x =0, t =0) and X (x =dl, t =0). The

sidered quantity transforms as a tensor quantity. In order
that a nonlocal physical quantity connected with an ex-
tended body transforms as a tensor, the same set of events
in space tim-e (or at least the same set of boundary events)
must be considered in every reference frame. But the
question is, which reference frame, with the set of
(boundary) events in that frame, has to be taken as the
relevant one? The answer is (b) the rest frame of the body,
and the boundary events have to be taken simultaneously
in that frame. The reason will be explained below. Ac
cordingly, the covariant definition of a nonlocal physical
quantity involves the usual description by simultaneity
only in the rest frame of the object Th.e relativity of
simultaneity causes the events that are simultaneous in
the rest frame of the object [as required by (b)], not to be
simultaneous in any other reference frame, and the
description is necessarily asynchronous in all other IFRs.
(These general features of the covariant definitions of
nonloeal physical quantities are partially exposed only for
the CDL, e.g. , [12],but not for the CDC. )

Let us now express the CDL in mathematical terms
(we restrict ourselves to IFRs). The distance four-vector
in some IFR S' l'" between two spatial points A and 8
on the (moving) object is the difference between two posi-
tion four-vectors xz"s, I'"=xg' —xz". Then, by virtue of
(a), the invariant length (the Lorentz scalar) of the dis-
tance four-vector is constructed in the form
I ' = ( I '"I '

)
' . This I' is equal to its rest length

I =I I'I;),measured by simultaneity in S, the rest frame
of the object (the time component of the distance four-
vector is zero in S, xs —xz =I =0). Thus according to
the CDL the length between two spatial points A and B
on the (moving) object is

I' =(xt'I' xz" )(xs„—x—z„)

~o

a) I

/ ~~/ /
/ /

FICx. 3. The wire with current in S and S'. In the covariant
formulation the same end events A, and % are considered by all
observers. The length of that part of the wire is an invariant in
the CDL, and it is equal to the length dl between the spatial end
points taken simultaneously in S, the rest frame of the ions,
d1'=dl. In S' the events A and S are not simultaneous and the
length dl' is determined asynchronously. The charge 5Q,
defined by the CDC, on that length of the wire is also an invari-
ant, and it is always equal to the charge determined simultane-
ously in S, the rest frame of the ions. In S' the charge is collect-
ed asynchronously.

length of that part of the wire in S is dl =xz —x„. The
observers in the other reference frames look at the same
events A, and X. The coordinates of these events in S'
are A (x ' =0, t ' =0) and S [x ' =I dl, t ' = —I ( V/c )dl].
The time component of S in S' is difFerent from zero,
t'%0. The asynchronously determined length of that
part of the wire in S' is dl'= I dl(1 —V /c )'~, and it is
equal to dl'.

In contrast to the SDC, the CDC is based on the co-
variant definition of length, or the volume of the (moving)
object. The usual covariant definition of charge (see, e.g.,
[2, Secs. 28 and 29], and [3]), is

Q sit(1/c) f d crt",
(written for IFRs). QsH is the charge within a boundary
5H of an arbitrary hypersurface H, and it denotes the
sum of all elementary charges whose world lines cross the
hypersurface H over which the integration is performed.
In another IFR S'

QsH=(1/c) f doj
The hypersurface H can be deformed, and thereby in S'
another hypersurface H' can be chosen, but the boundary
5H must always be kept fixed; it is the same for every
reference frame. The same number of world lines of ele-
mentary charges crosses the hypersurface H' in S' and
the hypersurface H in S if 5H is the same, i.e., if the
boundary events are always the same. (This feature of
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the CDC is not properly understood in my paper [5].)
Figure 3 nicely illustrates that for the same boundary
events M and % the same number of world lines of ions
and electrons crosses the hypersurface t =0 in S and the
hypersurface H' in S'. H' can be taken as the line from
A to S along the x axis, or, e.g. , the line from A to P
along the ct' axis, and then from P to S along the line
parallel to the x' axis. This demonstrates that the charge
defined by the CDC is then an invariant charge, a
Lorentz scalar, QsJt=QsH. It has to be noted that in
many textbooks and papers the usual CDC and the usual
SDC are not clearly distinguished, and the properties of
the CDC are not explicitly exposed.

From the general properties (a} and (b) of the covariant
definition of nonlocal physical quantity one concludes
that it would be more appropriate to write the CDC, Eq.
(5), in a form that explicitly takes into account feature (b}.
Suppose that the rest frame of the object is S, while S' is
an improper frame. Then

QsH =(1/c) f dog'~=QsH =(1/c) f j d'x, (5')I' t =const

where 5II is the spatial boundary of the body taken
simultaneously in S and j'" and do' in (5') are contra-
variant and covariant four-vectors, respectively, in S';
they are obtained as Lorentz transformations of the cor-
responding four-vectors (j,O) and (doo=d x,O), from S,
the rest frame of the object Thu.s the total charge of a
collection of elementary particles building a macroscopic
(moving) body is deftned in the CDC as the charge within
the spatial boundaries of that body measured simultane
ously in the rest frame of the body It shoul. d be noted
that the simple choice of a hypersurface perpendicular to
the time axis in S [in the last term in (5')], does not equal-
ize the charge defined by the CDC with the charge
defined by the SDC. In the SDC the charges are deter-
mined simultaneously in the rest frame of the observer.
In (2), dV does not transform as a tensor quantity, and
d V' is not the LT of d V, while in the CDC the charges
are determined simultaneously only in the rest frame of
the body, and d o „' are the LT of d o „ in S. This is an
essential difference that is often misunderstood in the
literature. It automatically refutes all the "proofs" of the
invariance of charge that utilize the invariance of the
continuity equation, and then the CDC, but at the end
conclude that the charge defined by (2) (where dV is the
LC of the proper spatial volume) is an invariant, e.g.,
[1,2,9].

Thus we see that the length defined by the CDL and
the charge defined by the CDC are invariants, the
Lorentz scalars in IFRs. The length is always equal to
the rest length of the body, dl'=dl, and the charge is al-
ways equal to the charge in the rest frame of the object,
5Q'=5Q. It is explicitly shown in [3] that the charge on
a section of the wire with current between two simultane-
ously determined points A and B in the rest frame of the
wire is unchanged by the motion of the wire (in contrast
to 5Q in the SDC). The mentioned boundary points A
and B on the wire are not simultaneous in other IFRs.
Hence, in an improper frame S', the parts of the length
between points A and B are gathered at different mo-

ments of time. The charges on that length are also asyn-
chronously collected in S'. According to the above dis-
cussion, the main features of the CDL and the CDC are
that they are, in contrast to the SDL and the SDC, asyn-
chronous definitions, and the rest frame of the object is a
privileged frame because the CDL and CDC involve the
usual description by simultaneity only in that frame.

Let me explain why in covariant definitions of nonlocal
physical quantities the rest frame of the object must be
chosen as the relevant one. Suppose that observer 0' in
some improper frame S' for the loop with current per-
forms his or her own measurement of the lengths of the
legs and of the charges on the legs of the moving loop.
Then, in principle, 0' can obtain any value for the
lengths of the legs and for the charges on them by making
the appropriate choice of the moments of his or her time,
which are associated with boundary spatial points of the
legs. The observers in other reference frames can take
their data as reference data considering the same bound-
ary events in space-time. Again, the considered quanti-
ties, the lengths and the charges, will be invariants, but
too much arbitrariness is associated with such a pro-
cedure: the choice of the frame S' and the choice of the
boundary events in S'. Furthermore, there is no connec-
tion with the common, synchronous definitions of the
length and charge of the (moving) object. To avoid the
mentioned arbitrariness, one is forced to choose the rest
frame of the body as the relevant frame, in which the
physical quantities are synchronously determined.

If one deals with a nonconducting material or a con-
ductor without current, then the rest frame of the object
is unambiguously defined. However, when the physical
system consists of two subsystems, which are in relative
motion in a given reference frame, then it is not quite
clear what has to be chosen as the object, with its associ-
ated rest frame in which the nonlocal physical quantities
have to be defined in a synchronous way. In the case of a
wire with current, the usual choice for the rest frame of
the object is the rest frame of the wire, i.e., of the lattice
of ions, which means that in the usual CDL and CDC,
again as in the SDL and SDC, the ions and the electrons
are not symmetrically treated. Thus for our loop with
current n stationary ions 1, n, , which—are on the rest
length of the wire dl in S, will be counted in every other
IFR, as also seen in Fig. 3. But for the moving electrons,
which are contained in dl, the S frame is not the rest
frame. Therefore, in principle, one could assume that the
length dl between A and B contains r electrons 1,—r„
with rAn The charge. on dl will be, in that case,
5Q=ne re%0. The asynchron—ously determined length
(by the CDL) and the charge (by the CDC) in any other
frame will again be equal to those in S since both require-
ments (a) and (b) for the covariant definition of a nonlocal
quantity are fulfilled. But, as said, in the usual CDL and
CDC the agreement with the values obtained in the SDL
and SDC in the rest frame of the wire is required, whence
r =n is adopted (see Fig. 3). As a consequence, in the
CDC the electric geld outside the stationary wire with
current is zero E,„t=0, as in the SDC. However, one can
pose the following question: Why in the CDL and CDC
is it assumed that the rest frame of the body for a CCC is
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the rest frame of the ions and not the rest frame of the
electrons~ Neither ions nor electrons can independently
exist as coherent dynamical systems, which means that
the choice of the lattice of ions for the "body" has no ad-
vantage; the masses of the particles of the charged sub-
systems cannot play the decisive role in this choice. All
this shows that the usual CDL and CDC are also inap-
propriate for physical systems consisting of relatively
moving subsystems. Moreover, from the experimental
point of view, it is not clear how to measure the asynchro-
nously determined nonlocal physical quantities

IV. ALTERNATIVE SYNCHRONOUS DEFINITIONS
OF LENGTH AND CHARGE

1+ =(xg+ xg+ )(xs+; xg+; )

l = (xo —xc )(xo;—xc;),
(6)

with x~+ —x~ + =+~ —xc =0. In S' the same equa-
tion holds, with primed quantities replacing the
unprimed ones (the points A, B, C, and D remain un-
changed). If a linear object along the common x,x'
axis is considered, then the two lengths become l+
=x~+(t) x„+(t) and i—=xo (t) xc (t). The-
lengths I+ and l and also the volume elements dV+
and dV (in IFRs or z' d x+ in curved space-time)
are again, as in the SDL, synchronously determined, but
now they depend on the states of motion of charged sub-
systems in a given reference frame. They are not equal
for physical systems such as a CCC, while for noncon-

The preceding consideration reveals that it would be
important to formulate the theoretical definition of
length and of charge with the following properties: (a) it
contains the common description by simultaneity in the
rest frame of the observer, as in the SDL and SDC; (b) it
always defines the length of an object in such a way that
it contains the same matter, and the charge is to be in-
dependent of its motion, i.e., independent of the system of
coordinates; (c) it treats symmetrically the ions and the
electrons.

To achieve this goal, we first redefine the SDL for
physical systems consisting of relatively moving (as a
whole) subsystems in a given reference frame; it will be
called the alternative synchronous definition of length,
ASDL. It is shown in earlier sections that there is no
physical sense in the assertion that the length, defined by
either the usual S13L or the usual CDL, of a part of a
wire with current is 2 crn. For such systems (e.g., a CCC
or a charge neutral plasma with a current channel) there
are actually two objects, not one. Instead of speaking
about one system —a wire with current with its length I,
or volume, and the charges 5Q+, 5Q, and 5Q on that
l —we treat it as two systems with their lengths I+ andi, and with the charges on these lengths b, Q+ and
hQ, respectively. The lengths (volumes) of these ob

jects, i e , the re. la. tively moving subsystems, are defined by
the ASDL as the spatial distances between two points on
each subsystem measured by simultaneity in the rest frame
of the observer separately for each object. Thus in an IFR
S the two lengths can be written as

C't liQQ p (Ss/) ///// / '/

/
/

/
FIG. 4. The wire with current in S and in the electrons' rest

frame S, considered in the ASDL and ASDC. The simultane-
ously determined (t =0) length AB (in S) =dip of the stationary
ion subsystem in S contains n stationary ions. The simultane-
ously determined (t, =0), contracted length AB (in S,) =dip/p
of the moving ion subsystem in S, again contains n ions. The
simultaneously determined (t, =0) length CD (in S,) =dip of the
stationary electron subsystem in S, contains n stationary elec-
trons. The simultaneously determined (t =0), contracted length
AD (in S) =dip/y of the moving electron subsystem in S again
contains n electrons. The charges on the length AB for the ions
and CD for the electrons are unchanged by motion of these sub-
systems. Particularly on the length AB (in S) =dip in S there
are n stationary ions and r =yn moving electrons.

ducting materials and for conductors without current
l+ =l =1, dV+ =dV =dV, and the ASDL, Eq. (6),
agrees with the SDL, Eq. (l).

If one knows the coordinate transformations between
the proper reference frames for positive (negative)
charges and an arbitrary reference frame S' in which the
positive (negative) charges perform an ordered motion
(but not generally the same motion for + and
charges), then d V'+ (d V' ) (for IFRs) will be Lorentz con-
tracted volumes relative to the rest volumes. They con-
tain the same number of + (—) charges as their proper
volumes contained in their rest frames; this will be explic-
itly shown below, and it also can be seen for a part of the
wire with current from Fig. 4. This fact, that the lengths
(volumes) defined by the ASDL always contain the same
matter, in contrast to the usual SDL, ensures the validity
of the ASDL.

The general alternative synchronous definition of
charge ASDC, which satisfies the above-mentioned re-
quirements (a)—(c), and which is based on the ASDL, is

Q=Q~+Q, Q+ =f p+ dV+ (7)

or, in the curved space-time,

Q+, = f lg I '"(J+, «)d'x+,

For a piece of matter the charges EQ+ and EQ con-
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tained in dV+ and dV, and already introduced in [7],
are b,g+ =p+ dV+ . (It is asserted in my paper [7]
that the charges Eg+ are Lorentz scalars, but it is not
so, as can be inferred from the discussion in this paper.
However, since the ASDC is based on the ASDL, these
charges are actually independent of their motion; this will
also be shown below. But the ASDL is a synchronous
definition, and thus not a covariant one, which means
that the charges b,g+ are not Lorentz scalars. ) Ap-
parently the ASDC, Eq. (7), agrees with the SDC, Eq. (2),
for nonconducting materials and for conductors without
current since for them d V+ =d V =d V, but the two
definitions are essentially different for the CCCs. The glo-
bal charge neutrality in the ASDC means that the charge
dined by Eq. (7) for a bounded system is zero, Q =0; the
local charge neutrality means that b,g in dV is equal
to —b,g+ in d V+, and thus that the sum of so
determined charges Eg =kg+ +kg =0. In the case of
a CCC, such a definition of charge neutrality is substan-
tially different from that in the SDC.

Let us show that the ASDL and ASDC have the re-
quired properties (a) —(c) when considering a closed loop
with current. First, we consider the lengths of the lattice
of ions in different IFRs. For the positive charges of the
whole loop, the S frame, in which the wire is at rest, is
the proper frame. The ASDL requires that in S, dl+ is
equal to dlQ for the same stationary wire without current,
and of course dl+ contains the same n ions 1; to n; as dlQ

contained, n+ =n, and the density of the positive charges
is n+ =n Idlv. This length dlQ [the distance AB (in S) in
Fig. 4, in which S'=S, and I =y is adopted], containing
n ions in S, becomes dl'+ =dl'=dlQ/I [the distance AB
(in S,) in Fig. 4,] when measured simultaneously in S
(see Sec. II). It again contains n ions. The density of the
ions in S' is enhanced n+ =I n+.

Instead of dlQ one can choose any other length of the
lattice of ions in S. Then by the same kind of reasoning
as in Sec. II we see that, e.g., the length dli =I dlQ in S,
with r=n+ (I dlQ)=I n ions, becomes contracted in S'
dli =(I dlQ)/I =dlQ. The contracted length dli con-
tains the same number of r moving ions in S',
r =n '+dlQ =I n, as the corresponding rest length dl i con-
tained in S.

From (7) and n+, one finds that the positive charge on
dl+ is Eg+ =A, +dl+ =e(n/diQ)dlQ=bg+ Q, and also

Q+ of the whole loop is Q+ =Q+ Q. Similarly, in S'
Eg'+ =b Q+, and also Q'+ =Q+. The charges Eg+ and

Q+, defined by the ASDC, are the same as 5Q+ and Q+,
defined by the SDC, which is expected, since the SDL
and SDC preferred the ions' subsystem. We see that in
the ASDL the length of the ion subsystem always con-
tains the same number of ions. The positive charge of the
ion subsystem, which is on that length, is unchanged by
the motion of the lattice of ions.

Next we examine the lengths of the electron subsystem
of the current loop in different IFRs. In the stationary
wire without current there are also n stationary electrons
on dlQ. According to requirement (c) one has to treat the
electrons in their proper frame S, (notice that different S,
frames are associated with difFerent parts of the loop) in

the same way as the ions are treated in their proper frame
S. It is natural then to suppose that for the same wire with
current the simultaneously determined element of length
dl, in S„in which the electrons on dl, are at rest, is
equal to dlQ, dl, =dlQ, and also that dl, contains the
same number n of the electrons as dlQ. Thus n, =n, and
the density of the electrons in S, is n, =n IdlQ. There
is no physical argument against such an assumption.
Therefore, A, , = —e(n/dlQ) = —1,+ Q, as in
the stationary wire without current. The negative
charge Ag, on dl, in S, is from Eq. (7), b,g

,dl, =Eg Q.

We now apply the method from [10] to find the lengths
defined by the ASDL, and the charges defined by the
ASDC, for the negatively charged subsystem of the legs
in S, the rest frame of the ions. It is an improper frame
for the electrons since in S they are moving along the
loop. First, the leg parallel to the x axis, in which the
electrons in S are moving with v in the +x direction, will
be considered. Suppose that at t, =0, measured in S„the
stationary electron 1, (point C in Fig. 4) coincides with
the ion 1; (moving with —u in S,), and the stationary
electron n, [point D (in S,) in Fig. 4] coincides with the
moving ion r;. The coordinates of these two simultane-
ous events in S, are (x, =O, t, =O) and (x, =dlQ, t, =O),
respectively. In S, the ions' rest frame, these events are
not simultaneous and their coordinates are (x =0, t =0)
and (x =ydlQ, t =y(vlc )dlQ), respectively. [At mo-
ment t =0 in S, the ion r; will be at the position
x„(t =0)=ydlQ since the ions are at rest in S. It shows

once again that there are r ions on the simultaneously
determined element of length ydlo of the ion subsystem.
Since the density of the ions in their rest frame S is
n+ =n/dlQ, we conclude that r must be equal to yn,
r =yn, as already obtained above. ] Further, at t =0 in S,
the moving electron n, will be at the position
x„(t=0)=ydlQ —y(v/c )dlvu =dlQ/y [point D (in S) in

Fig. 4], and thus there are n moving electrons on the con-
tracted length dl =dlQ/y in S. This result reveals that
the rest length of the electrons dl, =dlQ, which con-
tains n electrons in S„becomes contracted when mea-
sured simultaneously in S, the improper frame for the
electrons. The contracted length dl =dlQ/y contains
the same number n of the electrons in S as the rest length
dl, contained in S, . Hence the density of the electrons
in S is enhanced,

n =n/(dlQ/y)=y(n/dlQ)=yn =yn+ (8)

By the same kind of reasoning, one can show that an
arbitrary rest length of the electrons, e.g. , the length
dl, , =ydlQ in S, (the distance AE in Fig. 4), with
r=n, (ydlQ)=yn electrons, becomes contracted in S,
dl i =(ydlQ)/y=dlQ [the distance AB (in S) in Fig. 4].
The contracted length dl

&
contains r moving electrons

in S, r =n dlQ=yn, as the corresponding rest length
dl &, contained in S,. All these conclusions are indepen-
dent of the chosen moments of time t in S, or t, in S,.
From Eq. (8) it follows that the negative charge dens-
ity A, for moving electrons in S is enhanced A,
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= —en = —yA, G. Then (7) and (8) show that the nega-
tive charge on the contracted length of the moving elec-
tron subsystem dl in S is b,Q =A, dl = —e (n /
dl )dl =b,Q 0. Thus the negative charge of the elec-
tron subsystem on the length defined by the ASDL for
the electrons is unchanged by the motion of that subsys-
tem. This proves that the length of the electron subsys-
tem (taken separately from that for the ion subsystem)
measured by simultaneity in the rest frame of the ob-
server is a correctly defined quantity as well. Then ac-
cording to (7), EQ=A, +dl+ +A, dl =0, and the sta-
tionary wire with current is locally charge neutral (in the
b, Q sense).

By the similar procedure applied to the other legs of
the loop, one sees that the whole length L of the electron
subsystem in that stationary loop is contracted relative to
its rest length L,=LD (i.e., relative to the length of the
stationary ions in S), L =LD/y. The total negative
charge of the moving electrons Q is situated on the con-
tracted length L =LD/y in S, but with enhanced charge
density A, , and it is Q =Q o. Hence the total charge
Q, from (7), is Q =Qo =0.

The above consideration implies an important result,
which is already obtained in [7]. Namely, we find that
there are n stationary ions and r =yn moving electrons on
the simultaneously determined length dl0 between station
ary points A and B on the wire when dl0 is measured by
the apparatus stationary in S. It means that the total
charge 5Q on the simultaneously determined length dl0
of the "wire" is 5Q=e(n++n )dl0=e(1 —y)n, or
5Q =(1—y)A, + vdl0, which is Eq. (4) in [7]. If one deals
with an infinite wire with current, then this charge 5Q in-
duces the external electric field

E,„,= [(1—y)A, /2ne0r ]r, (9)

where r is the unit vector in the r direction. This is Eq.
(5) in [7].

For a wire of finite cross section in the form of a ring
with current, which is stationary in S, the moving elec-
tron subsystem will shrink to the parts of the ring with
smaller radius. Such unsymmetrical distribution of
charges in the ring can be modeled by an outer ring with
length Lp and with the positive charge of the stationary
ions Q+ 0, and by an inner ring of length L0/y and
with the negative charge of the moving electrons Q= —Q+ 0, as in [13]. Although the total charge Q is
zero, such configuration of charges induces E,'„,', in con-
trast to the Clausius hypothesis. The potential of X,
moving electrons on the inner ring is evaluated in [13] as
being stationary. This is allowed, since according to Bak-
er [14] (see also [8, prob. 14.13), and [15]),no radiation is
emitted by a system of N; stationary ions and of X,
equally spaced electrons moving with constant speed U in
an arbitrary closed path; their electric and magnetic fields
are time independent; i.e., they are the usual static values.
The appearance of E,'„,' is an essential, measurable
difFerence relative to the SDC and CDC. Apparently the
definition of charge neutrality in the ASDC gives clear
and unambiguous meaning to the assertion that a

nonzero electric field appears outside the charge neutral
(EQ sense} wire with current or in a charge neutral (EQ
sense) plasina with current channel. Actually there is no
need to emphasize that a CCC is charge neutral in the
b, Q sense since other definitions of charge neutrality, the
SDC and CDC, are inappropriate for a CCC.

In [16] it is simply assumed that in S, A, , = —A, + 0, as
in the ASDC. However, [16] deals with the usual SDC
and, hence, with the usual definition of the charge neu-
trality. Then it can be easily shown that with such an as-
sumption a CCC cannot be charge neutral in the usual
sense, i.e., in the SDC, in any frame of reference. Only
the introduction of the ASDL and ASDC and the conse-
quent redefinition of charge neutrality (EQ sense) resolves
this problem and correctly describes the appearance of an
electric field in a charge-neutral plasma with current.

U. EXPERIMENTS

It is interesting that the second-order term in expres-
sion (9) is obtained in the old action-at-a-distance
Weber's theory (see [17]). Notice that the recent investi-
gations (see [17]and references therein), consider Weber's
law for the force between two interacting charges as only
an approximation valid up to the second order in r'/c.
The old theories of Weber and Riemann predict the ex-
istence of E,'„,' not only for an infinite wire with current
but also for any stationary closed CCC. Edwards,
Kenyon, and Lemon in [11]tried to check experimentally
the existence of E,'„,' for current-carrying superconducting
coils. In the theoretical part of [11]the authors expanded
the usual retarded potentials P(r, t ) and A(r, t ) in the
Taylor series to order 1/c and showed that all second-
order terms cancel exactly when the integration around
the closed path is performed (they are perfect
differentials), and only the Coulomb term remained.
Then, they supposed, as is usual, both in [11] and [18],
that in a charge-neutral circuit p=O, which led them to
the conclusion that E,'„,'=0. Thereby it is argued in [11]
that Maxwell's theory predicts that E,'„,'=0 for constant
conduction currents in closed circuits. When their
derivation is carefully analyzed, one concludes that it is
not Maxwell's theory that predicts E,'„,'=0 for a closed
CCC, but it is the usual definition of charge neutrality of
a CCC, i.e., the use of the SDC. In fact, in the SDC, as
explained before, 5Q =0, whence p =0 follows.
Maxwell's equations describe the evolution of the elec-
tromagnetic field if the charge-current distribution is
given; for the chosen sources of the fields the equations
give the electromagnetic field tensor. Then from p=O,
Maxwell's equations give E=O. (See [19],where it is also
shown that the objections to the theory with the ASDC,
which are raised in [20], are groundless. ) Of course, if in
stead of the SDC one adopts the ASDC, then Maxwell's
equations will give E,'„,'%0, as in [13].

From the point of view of the present paper, where the
close connection between the definition of charge neutral-
ity of a CCC and the definition of length for such systems
is revealed, it is concluded that experiments [11]and [18]
test, in fact, which of the definitions of length and
charge —the SDL, and hence the SDC, or the ASDL and



THEORETICAL DEFINITIONS OF LENGTH AND CHARGE AND. . . 5515

the ASDC —are valid. There is also another interpreta-
tion of [11]and [18] as the tests of the dependence of an
electron's charge on its velocity. However, numerous ex-
periments confirm the invariance of an elementary charge
e (see [21]). Then, taking the invariance of e for granted,
we can indeed interpret [11,18] as the tests of the SDL
and SDC. As explained in Sec. II, the global charge neu-
trality of a stationary CCC and the use of only one length
scale in the SDC show that 5Q on dl is 5Q =0, and conse-
quently E,'„,'=0. Since the CDC agrees with the SDC in
the rest frame of the wire, the same holds for the CDC.
In the ASDC there are two length scales, and E,'„,'%0 is
predicted even for a stationary closed loop with current.
For all definitions, the total charge of a current loop is
zero and, consequently, all three definitions predict that
there is no signal (potential) in a Faraday-cage
configuration, which is in agreement with experiments
[18].

The whole analysis and the comparison of the experi-
ments with the expression for the potential P (expression
(3) in [18]), which is performed in [11,18] and which in-
volves the parameter a (representing "the deviation from
conventional electromagnetic theory, " i.e., from
Maxwell's theory), is irrelevant for our interpretation of
the experiments [11,18]. Simply, for the SDC (and CDC),
the potential P for the stationary closed current loop
must always be zero (Sec. II), while for the ASDC P has
to be %0 for non-Faraday-cage configurations (Sec. IV).
The results of the experiments [11,18] were very surpris-
ing for supporters of the SDC. Potentials mere observed
in all individual runs for non Faraday c-age config-urations
when type II supercond-uctors NbTi and Nb were used but
not for type-I superconductor Pb. The functional depen-
dence of the observed potentials was P ~ LI, where L is
the length of the wire, and I is the current in the coil.
The observed potentials showed large magnitude
differences and even sign changes. The authors of [18]
offered the following explanation for the observed poten-
tials: ".. . stray charges on Te6on insulators induced a
potential difFerence when conductors moved slightly as
the result of magnetic forces on the conductors which
changed when the coil current was changed. " Accord-
ingly, the I dependence of P is explained as being caused
by the I dependence of the magnetic force between near-
by wire sections. Further it is also supposed that the to-
tal effect of adding and canceling magnetic forces is pro-
portional to the wire length. The differences in magni-
tude of P and its sign changes are explained by the depen-
dence of the induced electrostatic potential change upon
the magnitude (and sign) of the charge isolated on nearby
insulators. Although it is asserted in [18] that this mech-
anism accounts for aB of the observed features of the po-
tential, there is no explanation as to why such a mecha-
nism is not effective for a type-I superconductor. Prob-
ably, it is supposed that the allowed currents in Pb are
too small to give the required magnetic fields, which can
produce a force capable of distorting the coil sufBciently
to induce the observed signals.

In my opinion the mentioned mechanism [18] with
stray charges accounts for the magnitude differences in
the observed potentials and their sign changes but does

not account for the functional dependence 4 ~ LI . I ar-
gue that from the proportionality of the magnetic force
between adjacent wires with I, it does not follow that
@~I . In fact, suppose that the force between nearby
sections of the wire is proportional to I . Any loop in the
coil, except the terminal ones, is surrounded by the two
neighboring loops. In these loops the directions of the
currents are opposite to the one between them. (The wire
is wound in bifilar turns with two current-opposing loops
per turn. ) It means that any loop will be repelled by its
neighbors. (Note that the final conclusion is not depen-
dent on the manner in which the wire is wound. ) In or-
der that 4 be ~I, the change in the positioning of all
loops of the coil relative to fixed positions (in a run) of
stray charges would need to be proportional to the force be
tween any two adjacent loops (note that the stray charges
have accidental positions and accidental magnitudes and
signs). Obviously, such a requirement for the propor-
tionality cannot hold for quantities that are not actually
directly connected.

Let us proceed further, taking for the moment that
such proportionality exists, so that the change in the po-
sitioning of all loops is ~I . Then the next step for
4 ~ I2 would be that the change in the distribution of the
charges induced on loops by the electric fields of stray
charges must be proportional to the change in the position
ing of all loops relative to accidentally situated stray
charges (which also have accidental magnitudes and
signs). It is indeed very unlikely that any of these steps
would be fulfilled. Of course, the same steps would need
to occur for 4 ~ L. Hence, by the same sort of arguments
one can show that, contrary to the assertion in [18], it is
quite unreasonable that the total effect of adding and can-
celing the forces between adjacent wires can be ~L.
Thus, this consideration clearly brings out the untenabili-
ty of the explanation given in [18] for the functional
dependence of 4.

However, the functional dependence of @ observed in
experiments [11,18] immediately comes about when the
ASDL and ASDC are adopted. In [13] it is shown how
this works for the ring with current; the sum of the po-
tentials @=4++4 is obtained as the product of two
terms, one of which is (po/4mpA )I L, while the other
term contains the r and 8 dependence. In Eq. (6) in [13]
there is a misprint; X(k) has to be in the numerator.
Further, the average value of ( N+ +4 } over the
sphere is zero, which is in agreement with the null result
for Faraday-cage configurations in [18]. Thus the mecha-
nism from [18] can only be responsible for the magnitude
differences and sign changes in the observed potentials,
since that mechanism with stray charges can be seen as
superposed on the more fundamental one predicted in [7].
It only remains to explain the negative result for the Pb
wire from the point of view of the theory concerning the
ASDC. One reason could be the smaller values of the al-
lowed currents for a type-I superconductor, and also that
the Pb wires were much shorter than Nb and NbTi wires.
Since the currents used in Pb wires are not specified, one
cannot make any quantitative comparison. Therefore, we
can only speculate that the magnitudes of the induced po-
tentials in Pb wires (by our rnechanisrn and by the stray
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charges) were too small to be detectable in experiments
[18]. Obviously, there is a need for more reliable experi-
ments with type-II and type-I superconductors in which
one could better estimate the effect of the "stray"
charges.

Experiments that also support the validity of the
ASDC are some "unexplained electromagnetic experi-
ments, " particularly the exploding-wire phenomenon.
This is investigated in [22] and discussed in [19] and [20]
and will not be repeated here. In addition, let me men-
tion that the experimental consequences of the appear-
ance of E,'„,' (but obtained in a different way than in the
ASDC) are also discussed, e.g. , in the anomalous
diffusion in plasmas [17] and in the problems of stability
of e.m. currents in arcs and plasmas [23].

VI. CONCLUSIONS

The discussion in this paper shows in an exact way that
the usual definitions of length and charge are not ap-
propriate for such physical systems as a CCC, a current
channel in a plasma, etc. In the SDL the length of a part
of a CCC contains a different number of particles for
different observers, which means that it is not properly

defined. As a consequence, the charge 5Q of that part of
a CCC changes with its motion. In the CDL the length
of the object is, in fact, its rest length, but for a CCC the
rest frame of the stationary ions is not, at the same time,
the rest frame of the moving electrons. Since the CDL
agrees with the SDL in the rest frame of the wire, it
again, in the same way as the SDL, does not treat in a
symmetrical way the ions and the electrons in a CCC. In
the ASDL the lengths of relatively moving charged sub-
systems in a CCC are determined separately, and they al-
ways contain the same number of particles. Therefore,
the charges defined by the ASDC, which is based on the
ASDL, are independent of their motion. The charge neu-
trality of a CCC is redefined in the ASDC. In contrast to
the SDC, the ASDC predicts the second-order electric
fields already outside steady currents for stationary
CCCs. The analysis of the existing experiments shows
that they can be explained by the ASDL and ASDC.

In the end I emphasize that the description of physical
systems consisting of relatively moving subsystems (not
necessarily charged) always require the use of the ASDL
and not the usual SDL. This will induce the changes in
physics for all such systems with relatively moving sub-
systems.
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