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Fast beam-ion instability II. EfFect of ion decoherence
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The ionization of residual gas by an electron beam in an accelerator generates ions that can
resonantly couple to the beam through a wave propagating in the beam-ion system. A beam-ion
instability is studied for a multibunch train, taking into account the decoherence of ien oscillations
due to the ion frequency spread. It is shown that while the decoherence does not completely suppress
the instability, it makes the growth rate smaller. A comparison of analytical and numerical results
indicates good agreement with direct macroparticle simulation of the instability.

PACS number(s): 29.27.Fh

I. INTRODUCTION

A fast beam-ion instability, which is caused by the in-
teraction of a single-electron-bunch train with the resid-
ual gas ions, has been studied recently in Ref. [1]. The
instability mechanism is the same in both linear accel-
erators and storage rings assuming that the ions are not
trapped from turn to turn. The ions generated by the
head of the bunch train oscillate in the transverse di-
rection and resonantly interact with the betatron oscil-
lations of the subsequent bunches, causing the growth
of the initial perturbation of the beam. The model em-
ployed in Ref. [1] treated all ions as oscillating with the
same frequency equal to the frequency of small-amplitude
oscillations of the ion centroid in the potential well of the
beam. In reality, there are several sources that cause a
frequency spread within the ion population. It is known
that inclusion of the &equency spread and the decoher-
ence associated with it in an instability problem usually
results in the Landau damping efFect and in some situa-
tions can suppress the instability.

A study of this effect for the fast ion instability is pre-
sented in this paper. To find the solution of the equations
describing the instability with ion decoherence, we devel-
oped an approach that differs from that of Ref. [1] and
is based on the averaging over the fast ion and electron
oscillations. We show that although the ion &equency
spread does not fully suppress the instability, it decreases
the growth rate, making it in a typical situation two or
three times smaller than that predicted in Ref. [1]. For
the sake of simplicity, we focus on the interaction of an
electron beam with ions, although similar effects apply
to a positron beam trapping &ee electrons.

The variation of the ion &equency u; included in this
paper is caused by two sources. One of them is due to
the horizontal beam density pro61e in a fm.at beam, which
causes the local ion &equency to depend on the hori-
zontal position. Another source of spread in ~, is the
nonlinearity of the ion oscillations inside the beam.

For analytical study we adopt a model that treats the
bunch train as a continuous beam. This model is applica-
ble if the distance between the bunches lb is smaller than
the betatron wavelength ls (( c/up and the ion oscilla-

tion wavelength ls « c/u;. This condition is well sat-
isfied for multibunch machines such as the PEP-II High
Energy Ring (HER) [2] or the Damping Ring of a SLAC
design for a future linear collider (NLC) [3]. As in Ref.
[1], we assume a one-dimensional model that treats only
vertical linear oscillation of the centroids of the beam and
the ions.

The paper is structured as follows. In Sec. II, the
differential equations of motion are derived. Sec. III dis-
cusses averaging of the equations based on different time
scales associated with oscillations and growth of the in-
stability. The ion &equency spread and resulting deco-
herence of ion oscillations are analyzed in Sec. IV. An-
alytical and numerical solutions of the equations for the
NLC Damping Ring and PEP-II High Energy Ring are
presented in Secs. V and VI, respectively. They are com-
pared with direct computer simulation of the instability
in Sec. VII and the results are summarized in Sec. VIII.

II. EQUATIONS OF MOTION

We will assume a rigid vertical motion of the beam
and define the offset of the centroid at time t and lon-
gitudinal position s as ys (s, t). The distance s is mea-
sured &om the injection point at t = 0. The equation for
the beam centroid, including the interaction with the ion
background, is

610 Bl' (dp
l

——+ —
I

y~ (s, t) +, y~ (s, t)
qc Bt Bs) c2

= ~ (ct —s) [y; (s, t) —yg (s, t)] . (1)

The left-hand side of this equation accounts for the
free betatron oscillation of a moving beam (we assume
vb, --c). On the right-han. d side, we included the
force acting on the beam &om the ions whose centroid is
offset by y; (s, t) In the linear .theory, this force is pro-
portional to both the relative displacement between the
beam and ions centroids and the ion density. Assuming
a continuous electron beam with a uniforxn density per
unit length, the ion density increases due to collisional
ionization as ct —s (it is equal to zero before the beam
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head arrives at the point 8 at time t = s/c). After sepa-
rating the factor ct —8 on the right-hand side of Eq. (1),
the coefficient K is (see Ref. [1] for details in which the
factor K is related to our K through the relation K = Kl,
where I is the length of the bunch train)

I
B c

I
it i

~
i l

I
7 i I

t
dt' d~; ~i yi s, t t', ~i . 8

t —8/C

Equations (1) and (6)—(8) constitute a full set of equa-
tions governing the development of the instability in the
beam-ion interaction.

4A;.„~,
3+co')I ((T~ + 0'y)

(2)

where p denotes the relativistic factor for the beam, r, is
the classical electron radius, o „denotes the horizontal
and the vertical rms beam size, respectively, and A; „ is
the number of ions per meter generated by the beam per
unit time. Assuming a cross section for collisional ioniza-
tion of about 2 Mb (corresponding to carbon monoxide
at 40 GeV), we have

A; „(m s ) = 1.8 x 10 n, (m )ps, (Torr), (3)

where n is the number of electrons in the beam per meter
and pz, the residual gas pressure in torr.

To find the equation for ions, we will assume that they
perform linear oscillations inside the beam with a fre-
quency u, . Furthermore, we will allow a continuous spec-
trum of ~; given by a distribution function f (~;) normal-
ized so that

f (~ ) eke, = 1 .is i ~~ I (4)

The spread in (4); at a given position 8 (and for a given ion
species) is caused by several sources; they are discussed in
more detail in Sec. IV. The distribution f (w, ) is peaked
around the frequency u; = bio corresponding to small
vertical oscillations on the axis

24nerpc
3Ao.y (o + o.„)

- X/2

(5)

where A designates the atomic mass number of the ions,
n the number of electrons in the beam per unit length,
and rz the classical proton radius (rz 1.5 x 10 cm).
Typically, the frequency spread Lu, is not large; we as-
sume Awi (( w, o.

We also have to distinguish between the ions generated
at different times t' because they will have an initial offset
equal to the beam coordinate yb (8, t'). Let us denote by
y; (8, tlt, cu, ) the displacement, at time t and position 8,
of the ions generated at t' (t' & t ) and oscillating with
the frequency w;. We have an oscillator equation for y,

2

y; (s, tlt' w') + 0) [y (8 tlt' w') yb (8 t)] = o (6)at
with the initial condition

III. AVERAGING OF THE EQUATIONS

Equation (6) can be easily integrated with the initial
conditions (7) yielding

y; (s, t lt', (d, ) = yb (8, t)— Oyb (S, t )

x cos (4I, (t —t ) 01t

Now using Eq. (8), Eq. (1) reduces to an integro-
differential equation

(1 0 (91 ~)9
I

——+ —
l yb(8 t) +, yb(8 t)(c Ot Bsp c

K(ct—' —s),' D (t —t') dt', (10)
Oyb (s, t')

Bt'

where D (t —t') denotes a decoherence function deffned
as

I) (t —t') = f dss sos ss (t —t')f (sS)

This function represents the oscillation of the centroid of
an ensemble of ions with a given frequency distribution
f ((d;) having an initial unit offset.

Instead of t and s, it is convenient to transform to
independent variables z and s, where z = ct —s. The
variable z measures the distance &om the head of the
beam train and for a fixed z the variable s plays a role
of time. Denoting

'g (8, Z):—'gb (S, 8 + Z)

Eq. (10) takes the form

02 2

y(s, z) + y(s, z)
Os C

D(z —z)dz . (13)
Io)y(8)z ) I I

0 z

y; (s, t'lt', ko, ) = yb (s, t'), yi =0. (7)

If D (z) = cos(d, z (no frequency spread), Eq. (13) reduces
to the equation derived in Ref. [1].

We will assume that the interaction between the beam
and the ions is small

Finally, averaging displacement of the ions produced at
different times t' and having different frequencies wi gives
the ion centroid y; (8, t)

c ml (( w;o, u&,2 2 2 (14)

where l denotes the length of the bunch train, so that the
instability develops on a time scale that is much larger



52 FAST BEAM-ION INSTABILITY. II. EFFECT OF ION. . . 5501

than both the betatron period and the period of ion os-
cillations. Typically this inequality is easily satisGed. In
such a situation, the most unstable solution of Eq. (13)
can be represented as a wave propagating in the beam
with a slowly varying amplitude and phase

motion on the time scale of the decoherence. In this
model, the ion distribution in x is the same as the elec-
tron distribution (because the rate of ionization is pro
portional to n, )

y (s, z) = ReA (s, z) e ' t" '+' *" ' f'(&) = exp (—2."/2o') (20)

where the complex amplitude A (s, z) is a "slow" function
of its variables

Oln A ~p
08 C

Oln A ~,0
Bz

For a fixed z, the s dependence of Eq. (15) describes a
pure betatron oscillation, while, for a fixed s (that is,
in the ion frame of rest), the z-dependent part implies
oscillations with the &equency w;0. Hence the wave res-
onantly couples the ions and the electrons. Substituting
Eq. (15) into Eq. (13) and averaging it over the rapid
oscillations with the &equencies ~,0 and ~p, one finds

where the function D (z) is

D (z) = J dw; f (w;) s'i

One of the advantages of the above approach is that it
allows a simple scaling of the instability with the vacuum
pressure. Indeed, the only place where the pressure p en-
ters Eq. (17) is the parameter fc, which is proportional
to p [see Eqs. (2) and (3)]. By introducing a variable sK
instead of 8, we can eliminate v. &om the equation. This
means that increasing the pressure n times is equivalent
to the shrinking the 8 axis by the same factor. Thus, hav-
ing solved Eq. (17) for one particular value of pressure,
we can use the result for various p by simply rescaling
the s variable 8 cx p

and Eq. (18) takes the form

D(t) =f dxft(x) sxp( iw;ot(t ——sxp( —x fdo )]).

(21)

D (t) = const [ dzf; (x) n, (z)

2 2
x exp[ —ice;pt(1 —e ~ .)], (22)

where the constant in Eq. (22) must be chosen such that
D (0) = 1. This gives

Note that in this model we overestimate the efFect of the
decoherence. For flat beams, a typical ratio of the hor-
izontal and vertical oscillation frequencies is roughly 3.
Thus the horizontal motion of the ions modulates the
vertical oscillation frequency pf; between pf, p and pf; (x),
making the average u; smaller than u, (x). To fully
account for this efFect, one has to deal with the two-
dimensional ion motion, which would make the consider-
ation much more involved.

At this point, we note that Eq. (21) has been defined as
the average o8'set of the ions at a given 8. However, the
quantity relevant to the electron-ion coupling is the av-
erage force that acts on the electron beam. The force
differs &om the average displacement because the ion
density decreases with x and thus the ion electric Geld
at the beam edges is suppressed relative to that at the
bunch center. To account for this effect, we correct D (t)
by including the electron density n in the integrand of
Eq. (21)

IV. ION DECOHERENCE

The &equency spread of the ions at a given longitudinal
coordinate 8 stems &om several sources. One of them
is a variation of the electron density in the beam along
the horizontal axis. Since the ion &equency scales as the
square root of the electron density w; oc ~n„ ions located
at different coordinates x in a flat beam will have different

For a Gaussian distribution of electrons in x, n cx

exp (—x /2o ) and we obtain (D, (2:) oc exp (—x /4o ).
Hence

(ddt' (x) —(tftp = (tft'p [exP (
—x /40~) —1

where u;0 is the &equency at x = 0.
To Gnd the decoherence function D, we will utilize a

simple one-dimensional model that assumes that the ion
&equency of horizontal oscillations is much smaller than
the vertical &equency u; and neglects the horizontal ion

1 2 4 2

D(t) = dx exp[ —i(tf;pt(1 —e f )~sr(T

—z' o']. (23)

The plots of the real and imaginary parts of this function
are shown in Fig. 1. Asymptotically, for large values of
u;ot,

D (t) = (1 + inn;pt) (24)

where the numerical factor n = 1/4.
Another source of ion decoherence is the nonlinearity of

the electron potential. It results in a dependence of ~; on
the amplitude of the oscillation and causes an additional
spread in the oscillation &equencies ~;. We have numer-
ically computed the decoherence function due to nonlin-
earity in a manner similar to the approach of Ref. [4]; it
is also plotted in Fig. l. One can show that the deco-
herence due to nonlinearity has the same asymptotes as
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FIG. 1. Real (curve 1) and imaginary (curve 2) parts of
the function D (t) given by Eq. (23) and the asymptotes of
Eq. (24) (dashed lines). Curves 3 and 4 shows real and imag-
inary parts, respectively, of the decoherence function due to
nonlinearity of the ion motion.

x exp
I

z /cu;ps/2m~
~

(28)

cl2A (s, z) 1 t9A (s, z)
t9st9z 2c~l2 '

i9s
(29)

which indicates an instability with a characteristic time
2&up/ru;pl2c, where I is the length of the bunch

train. Note that since A(e, z) cc exp(z/lt/s/cr), the

characteristic time w does not represent an e-folding time
and the instability develops much slower than it would
in the case of normal exponential growth oc exp (s/cw).

Equation (17) can be also solved analytically using the
decoherence function given by Eq. (25). In this case,
differentiating Eq. (17) with respect to z yields

where p =- Lsl'p/2Q, c. A solution to this equation with
the initial condition A (0, z) = 1 is

Eq. (24) with a somewhat smaller ch. In what follows,

we will use the simple form given by Eq. (24) for D (t)
in which we set a = 3/8 to account for the additional
decoherence due to the nonlinearity.

Finally, concluding this section, we mention a simple
model of decoherence that assumes an exponential be-
havior of D (t)

z
dz'Io

0

x exp [
—p (z —z')]

(z s
A (s, z) = exp (—pz) Ip cr)

8 Z2 —ZI2

c7-l2

(t) &i tt/s2Oqi (25) Using the asymptotic form for the Bessel function, one
can show that for large s

where Q; is the quality factor of ion oscillations. Choos-
ing Q; so that Eq. (25) fits the ID (t)~ given by Eq. (23)
for 0 ( tu;pt ( 50, we find Q, 16. This model strongly
overestimates damping for large t,, but it allows an ana-
lytical solution for the instability, as we will show in the
next section.

z s) (z
A(s, z) =

~

2vr — —
~

exp ~—
t cr) ql

1/2
(m.zip c~ lx 1+/

2 s p

——pz
/c7

V. ANALY'SIS

t92A (s, z) K(u; p

08|9Z 441p
(26)

Let us for a moment ignore the ion decoherence in
Eq. (17) and set D (z) = 1. In this case, the equation
can easily be solved analytically. Differentiation with re-
spect to z reduces Eq. (17) to the differential equation

(1, c~)
x exp

~

—ztp s)
Equation (31) indicates that while the strong exponen-
tial damping due to decoherence does not suppress the
instability, it makes the effect much weaker at the tail
of a long bunch train. For very large times s, Eq. (31)
approaches Eq. (28), except for an s-independent ampli-
tude reduction by exp( —pz). In this model, the ultimate
growth is unchanged by the decoherence, but this is only
valid after exceedingly long times and is not interesting
for practical cases.

For the initial condition A (0, z) = 1, the solution is VI. NUMERICAL RESULTS

Kldt pA(s, z) = Ip
i

z ' s
i

where Io is the zeroth-order Bessel function of imaginary
argument. This solution was found in Ref. [1] using a
different method. For large values of the argument the
asymptotic expansion of the Bessel function yields

To study the effect of the decoheren-":-j. more realistic
cases, we wrote a computer code that numerically inte-

grates Eq. (17) with D (t) given by Eq. (24). The two
input parameters for the code are the characteristic time
w = 2up/rm; pl c and the train length w,.pl/c.

Simulations have been performed for the NLC Damp-



52 FAST BEAM-ION INSTABILITY. II. EFFECT OF ION. . . 5503

ing Ring and the PEP-II HER. In the NI C Damping
Ring (see relevant parameters in Ref. [1]), we assumed
a residual gas with a vacuum pressure of p = 10 Torr
and an atomic number of A=28. This corresponds to
a characteristic time of 7 = 45 ns and a bunch length
of u;ol/c = 150. The results are depicted in Fig. 2 for
the initial condition A (0, z) = 1; for comparison, in Fig.
3, we plot the solution of Eq. (27) for the same pa-
rameters but without the decoherence. The plots show
the growth of the beam centroid at ten positions evenly
spaced along the bunch train. Comparing Figs. 2 and 3
shows the decoherence slowing down the instability. To
characterize the growth rate of the instability, we de-
fined 7g th as an e-folding time for the last bunch in
the train. Since the instability is not exponential, 7g
varies with time. For the time interval 1 ps & t ( 2 ps,
we find that 7g th 0.5 ps without decoherence and
'Tg th 1 ps with ion decoherence; the decoherence de-
creases the growth rate by a factor 2.

Figures 2 and 3 illustrate the growth of the instabil-
ity from an initial condition Eq. (15), which is the most
unstable perturbation. In reality, the initial noise in the
beam will contain difFerent harmonics of which only one
or two, having a spatial period 2mc/u, o, are very unsta-
ble. Assuming that the number of bunches in the train
equals Nb and their displacements are uncorrelated with
the rms value of b, a simple statistical argument shows
that the amplitude of harmonics in the bunch will be of
the order of b/+Nb To illu.strate the effect of random
initial positions, we integrated Eq. (17) including the ef-
fect of the ion decoherence with the initial condition cor-
responding to uncorrelated displacement with b = 1 for
90 bunches in the NI C Damping Ring. The result is
shown in Fig. 4 for p = 10 and p = 10 s (as noted
in Sec. III, variation of the pressure simply rescales the
horizontal axis in the plot). The figure shows that the
development of the instability is somewhat delayed un-
til the amplitude of the unstable mode with an initial
value b/~90 = 0.1 reaches a value comparable to 1; for

p = 10, this occurs after roughly 5 ps. After this point,
the growth proceeds at about the same rate as in Fig. 2.

For the PEP-II High Energy Ring, we assumed a vac-
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FIG. 3. Growth of an initial unit offset in the NLC Damp-
ing Ring at ten different points in the train (the line corre-
sponding to the first point is superimposed on the abscissa)
without decoherence.

uum pressure of p = 10 Torr and A=28. This corre-
sponds to a characteristic time 7. = 5.5 ps and a bunch
length u, ol/c = 220. The bunch offsets at ten positions
in the train are shown in Fig. 5 as a function of s for the
initial condition A (0, z) = 1. From this figure, we esti-
mate that the e-folding growth time, on the time interval
200 ps ( t ( 400 ps, is roughly 7g, &h = 150 ps. As
noted before, this growth time depends on the interval
considered.

VII. COMPUTER SIMULATIONS

We also performed direct macroparticle simulations of
the instability using a computer code described in Ref.
[1]. In the simulations, each of the bunches is represented
by 10 000 macroparticles and they interact with the ions,
which are represented by roughly 50000 macroparticles.
In this manner, the beam and ion distributions evolve
self-consistently as the beam is tracked through the mag-
net lattice.
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FIG. 2. Growth of an initial unit offset in the NLC Damp-
ing Ring at ten difFerent points in the train (the line corre-
sponding to the first point is superimposed on the abscissa)
with ion decoherence.
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FIG. 4. Instability in the NLC Damping Ring with random
initial condition and with ion decoherence.
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FIG. 5. Growth of an initial unit offset in the PEP-II High

Energy Ring.
FIG. 6. Macroparticle simulation of the instability in the

NLC Damping Ring with a vacuum pressure of 10 Torr and
A=28; the position of every tenth bunch is plotted.

The results of a simulation for the NLC Damping Ring
with a vacuum pressure of p = 10 Torr are shown in
Fig. 6, where we have plotted the oscillation amplitude,
normalized by gN „/o„; this allows for a direct corn-

parison with Fig. 4. Comparing Fig. 6 with Fig. 4
shows good agreement for the growth rate of the insta-
bility during the initial stage (t ( 6 ps ). At later times,
the macroparticle simulation exhibits saturation, which
is presumably due to the nonlinearity of the beam-ion
force as the amplitude of the oscillations become compa-
rable to the rms beam size 0.„; this occurs at a value of
100 in the normalized units of the plot.

VIII. DISCUSSION

In this paper we have studied the effect of the ion &e-

quency spread on the development of the beam-ion insta-
bility. We have considered variations of the ion &equency
due to the nonlinearity of the beam-ion force in both x
and y planes. In general, the dependence of u, on the hor-
izontal motion is the more important effect and should
strictly be described with a two-dimensional treatment of
the ion motion. There are other sources of ion &equency
spread that we have not considered, although they can
be included in our formalism in a straightforward man-
ner. In particular, the ion &equency will change as the

P functions and beam sizes in the optical lattice vary
through a cell. This is not a very important effect in a
FODO lattice, but it could prove to be much more signif-
icant in other lattices such as the triple bend achromat
or Chasman-Green structures used in many synchrotron
light sources.

In all cases, the variation of the ion &equency causes
Landau damping and slows the instability growth rate.
In the two examples that we studied, the growth rate was
reduced by roughly a factor 2. For longer bunch trains,

where the factor ~;ol/c becomes larger, the reduction of
the growth rate should be more pronounced. We should
also note that we have characterized the instability with
an approximate e-folding time 7g gh. While this dif-
fers &om the characteristic time 7. that more accurately
describes the instability, which grows as exp(gt/w), it
provides a more intuitive estimate of the impact of the
instability. For example, in the PEP-II HER, 7g
is roughly 150 ps while v = 6 ps. This growth rate
could be decreased further by adding additional clear-
ing gaps in the bunch train [I]. For example, a sec-
ond gap will increase the instability rise time to roughly
7 g &h 0 6 ms which is inside the bandwidth of the
feedback system.

Finally, our analytical model is con6rmed by compari-
son with a macroparticle computer simulation and shows
good agreement. An important effect that is not included
in the model but will also suppress the instability is the
tune spread in the electron beam. The tune spread can
arise &om the beam energy spread and the chromaticity
of the optical lattice, the nonlinearity of the lattice, the
space charge force due to the ions or the electrons them-
selves, or the beam-beam collision in a colliding beam
storage ring. For example, in the PEP-II High Energy
Ring with a beam-beam collision parameter ( = 0.03, the
estimated decoherence time for the betatron oscillations
is 200 ps and is comparable with the growth rate of the
instability.

ACKNOWLEDGMENTS

We would like to thank S. Heifets for useful discussions.
This work was supported by Department of Energy Con-
tract No. DE-AC03-76SF00515.

[1] T. O. Raubenheimer and F. Zimmerrnann, preceding pa-
per, Phys. Rev. E 52, 5487 (1995).

[2] PEP-II Report No. SLAC-418, 1993 (unpublished).
[3] Parameters for the NLC Damping Ring can be found in

Report No. SLAG-436 (1994) (unpublished).
[4) R. E. Meller et al. , Report No. SSC-N-360 (1987) (unpub-

lished).


