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Fast beam-ion instability. I. Linear theory and simulations
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The interaction of an electron beam with residual gas ions results in mutually driven transverse
oscillations. This effect arises during the passage of a single train of bunches. An equivalent
instability mechanism is encountered in positron beams where ionization electrons oscillate within
a single bunch. In either case, the oscillations grow exponentially with an exponent proportional
to t . In this paper, the rise time of the instability is calculated analytically by a perturbation
series approach and is compared with computer simulations. Growth rates are evaluated for several
existing or proposed storage rings and linear accelerators; the effect considered could be a significant
limitation in many of the future designs.

PACS number(s): 29.27.Bd, 29.17.+w, 29.20.Dh

I. INTRODUCTION

The instability mechanism described in this paper is
caused by residual gas ions or electrons. Both the na-
ture of the instability and the analytical treatment cho-
sen resemble the beam breakup due to transverse wake
fields [1,2]. The effect discussed here may occur on dif-
ferent time and length scales, involve different species of
particles, and be a single-bunch or a multibunch eB'ect
for positron and electron beams, respectively. Charged
particle beams, traversing a beam line or circulating in a
storage ring, ionize the residual gas and generate free ions
and electrons. The ionized atomic electrons, trapped in-
side a positron bunch, are strongly focused and oscillate
at high frequency, thereby causing a transverse deforma-
tion of the beam. The wavelength of the oscillation is
typically a small fraction of the bunch length. In much
the same manner, a long train of electron bunches can in-
teract with positive ions, resulting in a mutual excitation
of the beam and the ions. Due to the mass diBerence of
electrons and ions, the wavelength of the ion oscillation
within the electron bunch train is several orders of mag-
nitude larger than that of the electrons within a single
positron bunch.

The eKect described arises during the passage of a sin-
gle electron-bunch train or a single positron bunch; ions
(or ionized electrons) created by the head of the train
(bunch) perturb the tail. The instability mechanism is
the same in linear accelerators and storage rings where we
assume that the ions are not trapped from turn to turn.
It differs &om instabilities previously studied [2—8], where
the ions, usually treated as being in equilibrium, inter-
act with a circulating electron or antiproton beam. The
two-beam instability theory developed by Koshkarev and
Zenkevich [9] and Laslett et al. [10] explains the depen-
dence of the beam-ion interaction upon the ion oscilla-
tion frequency and the betatron tunes of the storage ring.
However, it does not describe the instability we discuss
that can occur in a transport line, linear accelerator, or a
storage ring with a clearing gap to prevent ion trapping.

This paper is structured as follows. In Sec. II the dif-

ferential equations of motion are given. Section III dis-
cusses the underlying assumptions and approximations.
For a rectangular beam distribution, the equations of mo-
tion are solved by a perturbation expansion in Sec. IV,
where expressions for the instability rise time are derived.
Section V describes the computer simulations performed
for several accelerators and compares the simulation data
with the analytical results. In Sec. VI rise times are eval-
uated for several operating or proposed storage rings and
linear accelerators. Section VII is devoted to a brief dis-
cussion of possible remedies. Results are summarized and
a perspective on open questions is given in Section VIII.

II. EQUATIONS OF MOTION

The vertical motion of the beam and the ions or elec-
trons generated during the beam passage via ionization
of the residual gas is a mutually driven oscillation, which,
in linear approximation, may be described by two equa-
tions of motion. The first equation reads

d yb(s) z) + ~~yb(s, z)

z

K y;(s, s+ z) —yb(s, z) p(z') dz' . (1)

The coordinate 8 denotes the longitudinal position along
the beam line or storage ring. Equation (1) represents
the vertical motion of the beam centroid yb(s, z) at a dis-
tance z from the bunch or bunch-train center. In our
convention, positive values of z refer to trailing particles.
The motion is a combination of a betatron oscillation
due to external focusing, represented by a harmonic os-
cillator of frequency imp -- I/P„and a driving force that
is proportional to the distance between the beam and
the ion centroids and to the number of generated ions.
Thus, assuming collisional ionization, the driving force
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2~ion(pgas) re 4~i o(npga )sre

pZ„(Zy + Z ) p3o„(o- + oy)
' (2)

where p denotes the relativistic factor p = E/(mcz) for
the beam, r is the classical electron radius, and

is proportional to an integral over the beam density p
normalized such that f p(z) dz = 1. Here and in the
following the term "ions" shall be understood as "ions or
electrons" and the term "bunch train" will refer to the
"bunch train or single bunch, " depending on whether we
are discussing an electron bunch train or a single positron
bunch.

The coeFicient K is given by

while for ions and an electron bunch train we have

4Ngr„
~i =

3Lsepo'y(o'e + ov)A

; i/2
c (ions, bunch train),

(8)

where A designates the atomic mass number of the ions,
Ng the number of particles per bunch, I„& the bunch
spacing, and r~ the classical proton radius (r„= 1.5 x
10—"m).

The solution to Eq. (5) for a slice of ions generated at
time t' = (s+z')/c is denoted y, (s, t~s+ z'). The centroid
of the ions y;(s, t) of Eq. (1) is obtained by averaging
y;(s, s + z') over all possible creation times, namely,

2 = 2 2 3 2
~x,y

= x,y + ion, x,y a,y (3) j' dz'p(z')y;(s, tis+ z')
y, (s, t)

A; „(m ) = 6Npg, (Torr), (4)

where N is the total number of particles in the beam, pg,
is the residual gas pressure in torr, and other quantities
are in SI units, which are used throughout the paper.
The number of ions per meter generated by the beam
per unit time at a distance z from the bunch center is

A; „(m ' s ) = cp(z)A; „
= 1.8 x 10 p(z) (m ) pg, (Torr), (5)

where c denotes the velocity of light.
The second equation

d y;(s, t) + ~o, (ct —s) y;(s, t) = (u, (z) yb(s, ct —s) (6)dt

The term o~ „denotes the horizontal and the vertical
rms beam size, respectively. Assuming that the ions are
generated at rest (i.e. , at temperature zero), the aver-

age rms size of the ion cloud is smaller by a factor ~2
due to focusing by the beam. The ions also have a non-
Gaussian transverse distribution, but the force on the
beam closely approximates that of a Gaussian bunch. As-
suming a cross section for collisional ionization of about 2
Mb (corresponding to carbon monoxide at 40 GeV) the
density A; „of ions per meter at the end of the bunch
train is

III. APPROXIMATIONS IN THE ANALYTICAL
TREATMENT

Equations (1)—(5) involve several assumptions and ap-
proximations. The following are noteworthy.

(i) The force between beam and ions is assumed to
be linear. Should the coherent oscillation grow larger
than the beam size, this approximation would no longer
be valid and the decay of the force at large distances
would have to be considered. Furthermore, we neglect
the Landau damping due to the nonlinearity of the beam-
ion force. This may reduce the instability growth rate.

(ii) We ignore any Landau damping caused by the lat-
tice, such as that due to nonlinear fields or chromaticity,
which could counteract a further growth of the oscillation
amplitude and give rise to filamentation.

(iii) The ion frequency is treated as constant along the
beam line. This is a good approximation for a FODO
lattice, but it may overestimate the efFect of the ions in
other cases.

(iv) It is supposed that inside a bunch train the ions
are not overfocused, so that a smooth approximation of
the motion in the form of Eq. (5) may be made. This
condition is written

with the appropriate initial conditions describes a trans-
verse slice of ions or electrons, at fixed position 8, oscil-
lating in time inside the beam. The variable y;(s, t) is
the vertical centroid of the transverse slice of ions. At a
certain time t, beam particles at a distance z = ct —8
from the bunch center reach the location 8. Their cen-
troid position is therefore given by yb(s, ct —s). The
oscillation frequency m;(ct —s) = w, (z) is proportional
to the square root of the beam density p. In the case of
electrons oscillating inside a single positron bunch, ui is
given by

~iL sep (2)
c

where I„~ is the distance between two bunches. Ions
are, however, strongly overfocused between two difFerent
bunch trains, so we ignore the coupling between trains.

(v) The number of neutral gas molecules is assumed
to be large compared with the number of ions during the
full passage time of the bunch train or bunch. If there is
no repopulation, this condition may also be written

4N p(z) r
3CTy (0'e + Oy)

- X/2

c (electrons, single bunch),
where N denotes the total number of electrons in the
train. This condition is barely ful6lled for the main lin-
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ear accelerator in the NLC [12], a future linear collider
being designed at the Stanford Linear Accelerator Center
(SLAC). However, saturation effects are not important
when the beam area is repopulated by thermally moving
gas molecules, as is usually the case. The second ioniza-
tion (the cross section of which is, in general, comparable
to that of the first ionization) may be important in some
situations, but is not included in the present treatment.

(vi) In the case of storage rings, ions are generated not
only by collisional ionization &om the beam, but also
by synchrotron radiation. The photoelectric cross sec-
tion for photon energies below 100 eV is about 5—10 Mb,
which is 3—5 times larger than the collisional ionization
cross section. In total, for the SLAC PEP-II High En-
ergy Ring (PEP-II HER) [11], the NLC Damping Ring
(NLC DR) [12], and the Stanford Linear Collider (SLC)
Arcs [13], there are about 2—3 times more ions generated
by synchrotron radiation than by the beam electrons.
Most of the former are far outside the beam area and are
equally distributed between the beam and the chamber
wall. Because the density of the radiation-generated ions
is low compared with the density of ions generated by
collisional ionization, in a 6rst approximation, they can
be ignored; the ions form a difFuse halo around the beam
without afFecting the dynamics, since the resulting 6eld
gradient is quite small.

(vii) The neutralization of ions by photoelectrons from
the vacuum chamber walls is ignored. The probability

of this process is extremely small. Furthermore, only
the small fraction of photoelectrons of suKciently high
energy may reach the beam orbit in the time interval
between two bunch passages. For instance, if the bunch
gap is 1.4 ns, the minimum electron energy is of the order
of 3 keV.

IV. PERTURBATION EXPANSION
AND RISE TIMES

In the following we make the further approximation
that the longitudinal bunch density p(z) is a rectangular
distribution, namely,

for ~z~ ( zo
0 otherwise . (12)

In this case, the oscillation &equency u; is constant inside
the bunch or along the bunch train. This assumption
considerably si.mplifies the following calculations.

Consider a transverse slice of ions at position s in the
accelerator created by ionization at time t'. Because the
initial position of the ions must be the same as the beam
that created them, the initial conditions are y;(s, t'~t') =
ys(s, ct' —s) and dy, (s, t'~t')/dt = 0. From Eq. (5), the
vertical position at a later time t is

t

y (s tlt ) —ys(s, ct' —s) cos[~;(t —t )]+w; y(, (s, ct" —s) sin[~;(t —t")]dt"
t'

(9y(, (s, ct" —s)
yb(s ct s) — cos[(t);(t —t )] dt

Ot"

(13)

where we have performed an integration by parts. The centroid of the ions or electrons is obtained &om Eq. (8)

1
y;(s, t) = yz(s, ct —s)—

QZP Z Zo

dz' p(z') ' „cos[~;(t —t")] dt"
Z'+B ggll (15)

or
Z Z II

y;(s, s + z) = ys(s, z) —, dz' p(z') dz" ' sos(ss(z —z")]dz",
dZP Z

where in the second step we have changed the variable of integration from t to z = ct —s. According to Eq. (15), a
nonzero slope t9ys(s, z)/Oz (i.e. , a transverse displacement of at least one "slice" in z with respect to the rest of the
beam) is required in order that the instability can develop. We are now in a position to combine Eqs. (1) and (5)
into an integral equation for the beam centroids ys(s, z) alone. From Eq. (1) we find

B Z

ys(s, z) = ys(0, z) cos((ups+ Po) + ds'K p(z') dz'[y;( zs+ s') —yg(s', z)j sin[~p(s —s')]
&p Zo

B Z Z I II

yg(0, z) cos((ups + Po) — ds'K sin[sap(s —s')] dz'p(z') dz" '
cos[(u, (z —z")],

(dp p
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»(s, z) = ). yP(s z)
n=p

(19)

and the nth-order solution yP (s, z) is given by the recur-
sion relation

where the first term represents an unperturbed betatron
oscillation. This integral equation may be solved by a
perturbation series in K/~p. For that purpose we write

over time periods larger than the betatron oscillation pe-
riod and, second, bunches or bunch trains that are long
compared with the oscillation wavelength of the trapped
particles. Both conditions are easily fulfilled for the ap-
plications considered in the later sections.

Using Eqs. (21) and (20) the first-order solution reads

i I 1
y~ (s, z) = — ' dz'

4)p 2Zp

ys+'(s, z)
Zp

dz' p(z')
z

x dz" cos[w;(z —z")] cos(ur;z" +0)
zl

dz" cos[w, (z —z")]

ds' sin[up(s —s')] ctys (s', z")
Bz"

For the zeroth-order term y&(s, z) we now make the
following ansatz:

yb (s, z) = y cos((ups + P) sin((u;z + 0),

8

x ds' sin[up(s —s')] cos(ups' + P)
0

K42 1—y —(z + zp) cos((d~z + 0)
2zp Mp 4
8

x — sin((ups + P)2
(24)

More generally, the nth-order term in the expansion (19)
is given by

where y is the initial Fourier component of frequency w,.

in the longitudinal beam distribution. This initial ampli-
tude could, for instance, be due to Schottky noise (i.e. ,
the finite number of particles in which case y 3a„/~K)
or vertical dispersion, etc. The 8-dependent term of Eq.
(21) describes a pure betatron oscillation, while the z-
dependent part reQects the oscillation of the ions at a
&equency u, for each position s; this translates into a
longitudinal deformation of the beam. The terms P and
0 denote initial phases. In order to solve the perturba-
tion equation (21) it is convenient to make the further
simplifying assumptions,

y~(s, z) = y l l
S'-(s)&-(z),

&-z)"

where
8

~-( ) —= d" ( — ")".
0

8 (n —1)

X dsl ~ sinwp(s~ l —sl i)
0

x cos(ups l + p)

(25)

A@8 )) 1,
cuizp &) 1.

(22)

(23)
1 8

—,—Re(i" exp(i((ups+ @)}] (26)

In other words, we consider, first, the beam evolution and

1 ~ 1Z„(.) = d.~'l' dz~'l f(., z~'!) . .
2Zp z(1)

z (n —1)

zo

(n —1)
1dz! l dz~ ~ f (z z~ l) sin(cd z! + 0)

2Zp z(n)

cd~ z+ zp 1
Im [i"exp(i(~;z + 0)}]

Szo n!

where If we introduce the dimensionless function

f (z, zl i) = cos w, (z —z! i)
BZ

The approximate expressions for S and Z were found,
assuming that the growth is small over an oscillation ~p
or u;. Strictly, this imposes an upper limit on s and z, but
these limits are outside the regions of physical interest.

g(s, z)
K(d~(z + zo) s

Mp 16zp

the solution (25) may be rewritten
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y ).rI(s, z)"
2 - n!'

n=o

x [(—1) sin(cu;z + 0+ cups + P)
+ sin(cu, z+ 0 —cups —P)] . (30)

z /4 (z /4)2 (z2/4)3

Since the series expansion of the zeroth-order Bessel func-
tion Jo is

trons, cup (= 1/P„) is the vertical betatron frequency, r,
and rp are the classical electron and proton radii, and all
quantities are in SI units. Finally, notice that the func-
tion q(s, z) increases linearly with time t (or with distance
8) and with vacuum pressure ps, and is inversely pro-
portional to the beam energy. It scales as the 3/2 power
of the number of particles per bunch and as the square
of the bunch train length.

Defining a growth rate v, for the asymptotic limit
as the time at which the exponent in Eq. (36) is equal to
one, we Gnd

Eq. (30) can be written in a more compact form as

-1
yb(s, z) = y — Jo 2/q(s, z) sin(cu, z + cups + P + 0)

2

+dc 2zgg(s, z) sic(scz —s'ps —P+ 0)) .

(32)

Now the asymptotic form of the Bessel function for large
arguments

(m ') Kcui z + zo
(asymptotic limit) .

4cup zp

Note that w sy~ is not an e-folding time, but that
asymptotically the oscillation grows as

exp gs/(cw, ~ ) . For comparison, from the first-order

solution Eq. (24) the small-amplitude growth rate is es-
timated to be

is

2/q(s, z) » 1 (33)
~1 m

Kcu;(z + zo)2

16(dp Zo
(first-order solution),

Jc(2~@) = sc '~'q '~ ccs (2~q ——

Jo(2i~g) = (4vr~q) ~ exp(2~q) .

In this large time limit, we find

(34)

(35)

(39)

which is smaller by a factor 4. For the multibunch case,
the asymptotic growth rate Eq. (38) at z = zo can be
expressed in terms of more basic parameters as

1 1
yb(s, z) = y exp(2~g)

x sin(cu;z —cups + 0 —P) .

(s ) = 5p (Torr)
3/2 2 1/2 i/2

Ãb ng ~~ ~p I sep c

pcTy~' (cr + o„)'~' A'~'cup

(4O)

Only the term with phase (cu;z —cups) is exponentially
growing, while the other, of phase (cu;z+cups), is damped.
In the first case, the two slopes Oyb/Os and Oyb/0( z)—
have equal sign. For a train of electron bunches, the
dimensionless function g(s, z), Eq. (29), is

Nb r, rp (z + zo) 83/2 Z/2 3
'0 8)Z

~2poy~ (c +o'y) ~ cupzo A ~ I, p

(Torr), (37)

where Ng denotes the number of particles per bunch, I, ~
is the bunch spacing, o~ „is the horizontal and the verti-
cal beam size, A is the atomic mass number of the ions,
p = E,/(m, c ) is the relativistic factor of the beam elec-

where np is the number. of bunches and c is the velocity of
light. The growth rate strongly depends on the number
of bunches, the number of particles per bunch, and the
beam size. In the case of a single positron bunch inter-
acting with the atomic electrons, the asymptotic growth
rate at z = zo can also be written

3/2 3/2 1/2

~ (s ') = 7p (Torr)
'Y&w (cr*+ c7~) ~ cup

(41)
where 0, is the rms bunch length.

Finally, the asymptotic form of the ion oscillation is
obtained by inserting the asymptotic beam oscillation
Eq. (36) into Eq. (16). Retaining only the largest terms,
we find

ycui(z + zo)
yi(s, 8 + z) ~ yb(8, z) + [xJi (2x~g) cos(cu z —cupss + 0 —Q) —Ji(2~@)cos(cus + cups + 0 + p)]S~q

ycu, (z + zo) 1
yb(8) Z) 8~~ ~'~4 exp(2~q) cos(cu;z —cups + 0 —P)

(42)

7r
+sin 2~@ —— cos(cu, z+ cups+ 0+ P) (43)
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g Ldq(Z + Zp)
exp(2~q) sin(w;z —wp8 + 0 —p)—

4~sr g'~4 4~1/2
cos(ct)iz —Lips + 0 —P) (44)

The difference between the ion and beam amplitudes is
proportional to the factor w,.(z + zp)/(4~q) and disap-
pears in. the limit g ~ oo, for which y, (8, 8+z) = ys(8, z).
The same is true for the phase shift between the two. os-
cillations Eqs. (36) and (43). The linear approximation of
the coupling force between the beam and the ions in Eq.
(1) is no longer valid when the separation of the two cen-
troids becomes of the order of the beam size o„. Since
the ions and bunches oscillate with similar amplitudes,
the linear approximation breaks down at about

yg(8, z) ~ cry (45)

V. COMPUTER SIMULATIONS

To study this instability, we have written a computer
simulation. The simulation treats the beam, the ions,
and the ionized electrons as collections of macropar-
ticles whose distributions are allowed to evolve self-
consistently. Specifically, each bunch in the beam is di-
vided into slices in z. Each slice is then represented by
macroparticles with coordinates in (x, 2:„,y, y„, bE/E).
The number of particles per slice is chosen to reflect a
Gaussian distribution between + 3o and the initial par-
ticle coordinates are random with Gaussian distributions.
Typically, when studying the effect of trapped ions gen-
erated by an electron bunch train, each bunch is divided
into five slices, while the bunch is divided into as many
as 300 slices when studying the effect of the trapped elec-
trons within a positron bunch. Finally, it is important
to note that the longitudinal position z of the particles
is fixed; the code was written to study linear accelerators
and does not include synchrotron motion.

The slices of macroparticles are tracked through a mag-
net lattice. To date, we have only considered FODO lat-
tices with or without acceleration sections between the
quadrupoles. When tracking storage rings, horizontal
dispersion is included and sextupole magnets can be in-
cluded. The generation and motion of ions and ionized
electrons and their effects on the beam are calculated at
four locations in each FODO cell: at the center of each
quadrupole and at the center of each drift or acceleration
section.

At each lattice point, the calculations are performed
using a grid in x and y centered at the bunch train cen-
troid and extending between +5a „.As each beam slice
passes, macroparticles are created at the grid points rep-
resenting the ions and ionized electrons generated by col-
lisional and tunneling ionization. The charge density of
each ion or electron macroparticle is determined by the
ionization cross sections, the beam charge in the slice,
and the local gas density. The local gas is depleted by
the ionization process, but can partially repopulate be-
tween bunches since it is assumed to be at 300 K. The ion

and ionized electron macroparticles are created with zero
initial velocity. After creation, each macroparticle is free
to move in transverse phase space; longitudinal motion
is ignored. The number of ion or electron macroparticles
accumulates with the passage of each beam slice until the
end of the bunch train. At this point, they are discarded
and the calculation proceeds to the next lattice point.

As each beam slice passes, the beam fields are calcu-
lated, using the rms width of the beam macroparticle
distribution and the Bassetti-Erskine formula [14], and
are mapped onto the grid. The charge density of the ion
and atomic electron macroparticles is also mapped onto
the grid and the corresponding electric field is calculated
at the grid points using the two-dimensional Coulomb
law. A linear two-dimensional interpolation is used to
evaluate the fields at the macroparticle positions and de-
flections are calculated assuming the fields are constant
over one-quarter of the FODO cell. Finally, the motion
of the ionized electrons is calculated between the bunch
slices and the bunches, while the motion of the ions is
calculated between bunches; in both cases, the motion is
assumed to be nonrelativistic.

The simulation was written to study effects where the
ions are strongly focused by the beam, so a number of
simplifications were made. The primary omissions are as
follows.

(i) The integration step is one-quarter of a FODO cell.
This should not be a limitation since the beam distribu-
tion does not change much over this distance.

(ii) The fields are mapped onto a grid (typically 25 x 25)
and the ion or electron macroparticles are created on this
grid. Again, this is not an important limitation —we have
verified that doubling the number of grid points does not
significantly change the results.

(iii) The beam is assumed to be Gaussian when calcu-
lating the beam forces. This is valid provided the beam
distribution is not strongly distorted.

(iv) Synchrotron motion of the beam particles and lon-
gitudinal motion of the ions are ignored. The longitudi-
nal ion motion is insignificant over the passage of a single
bunch train and the synchrotron motion can be neglected
provided the growth rates are fast compared to the syn-
chrotron frequency.

(v) Nonrelativistic motion is assumed for ions and
atomic electrons. This is a reasonable assumption for the
ions, whose typical velocity is of the order 3000—30000
m/s. Strictly, in the case of electron bunches, the atomic
electrons acquire velocities close to the speed of light, but
they are lost so rapidly that they do not have any effect
on the beam. In the case of positron bunches, where the
atomic electrons are trapped inside a bunch, the nonrel-
ativistic approximation is usually fulfilled. For instance,
in the case of the SI C Positron Arc, the rms velocity of
atomic electrons is about 4%%up c.

(vi) Eons and atomic electrons are generated at temper-
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ature zero, i.e., with zero initial velocity. This is usually
a good approximation for ions whose thermal velocity is
about 300 m/s (and thus only 1—10% of the velocity they
have gained after the first bunch has passed), but it may
not be a good approximation for the atomic electrons.

(vii) The simulation is based on a linear accelerator
model. Accordingly, trapping of ions through the gap
in a ring is not considered. For the high-current factory
rings, this is a very good approximation. As an example,
in the case of PEP-II, the residual CO ion density after
the gap is only about 1% of the ion density before the
gap.

(viii) In the simulations, the cross section for colli-
sional ionization is held constant at a value of 2 Mb (cor-
responding to carbon monoxide and a beam energy of
about 40 GeV). As in the analytical treatment, a second
ionization and photoionization are not included.

(ix) Each simulation study includes a single species of
ions (one particular value of the ion mass). If more than
one species is present with a comparable abundance, the

b
lightest molecule that is still stably trapped insid th

unch train will asymptotically determine the evolution
of the instability since the corresponding rise time is the
smallest. In such a case, the partial pressure for this par-
ticular molecule has to be used in the analytical estimate
of the rise time Eq. (40).

The simulations described above have been performed
for the PEP-II HER, the SLC Positron Arc, and the NLC
Damping Ring. In the simulations of the SLC Positron
Arc, the total number of macroparticles was 160000 dis-
tributed over 80 slices in z, while in the case of PEP-II
and the NLC Damping Ring, 20 000 macroparticles dis-
tributed over 6ve slices were used per bunch. In the
simulations, the transverse density of the generated ions
becomes sharply peaked at the beam center. After the
passage of a few electron bunches, the transverse density
is quite difFerent from a Gaussian distribution [15].

Figure 1 shows the vertical bunch centroid positions
as a function of bunch number after a distance of 0 750)

10'
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1125, 1500, and 1875 m, respectively, for a train of 100
bunches and a pressure of 10 Torr in the arcs of the
PEP-II HER. Clearly visible is the instability at the tail
of the train and the exponential growth of the vertical
amplitude as a function of z (the bunch number). The
amplitude growth slows down, or saturates, at about lo„
(100 pm) due to the nonlinearity of the beam-ion force
and the detuning of u; at large amplitudes.

In Fig. 2 the action of the bunch centroid

(1+~') (~)'+ 2~(~)(~') + &(~')'

is depicted as a function of the distance in meters for
every 20th bunch in the train. The initial amplitudes are
due to the 6nite number of macroparticles and on average

(J„) = e„/X~««. Notice that the initial growth from
noise is not uniform, that it depends instead on the initial
distribution of macroparticles, which will subsequently
be discussed further. The growth rate of the trailing
bunches for the real PEP-II HER extrapolated kom this

FIG. 2. Action of the vertical centroid as a function of
distance for every 20th bunch of a train of 100 bunches in the
PEP-II HER with a pressure of 10 Torr.
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FIG. 1. Vertical beam centroid as a function of bunch num-
ber after a distance of 0 m (solid curve), 750 m (dashed
curve), 1125 m (dotted curve), 1500 m (dash-dotted curve)
and 1875 m (solid curve), respectively, for a train of 100
bunches, with an atomic mass of 28 (carbonmonoxide) and
a pressure of 10 Torr in the arcs of the PEP-II HER.
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FIG. 3. Growth of the action of the vertical centroid for
e~ery 20th (plus last) of 90 bunches in the NLC DR for
10 Torrorr, an atomic mass of 28 (carbon monoxide), and
1.5x10' particles per bunch over a distance of 800 m.
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FIG. 4. Growth of the action of the vertical centroid for
every 20th of 90 bunches in the NLC DR for 3x10 Torr, an
atomic mass of 28 (carbon monoxide), and 1.5x10 particles
per bunch over a distance of 800 m.

FIG. 6. Growth of the action of the vertical centroid for
every 20th of 90 bunches in the NLC DR for the same con-
ditions as Fig. 5 but using a difFerent random seed for the
macroparticle distribution.

scaled version is about 5 ps; this is close to the estimate
of 6 ps obtained from Eq. (40).

In Figs. 3—5 the action of every 20th bunch in the NLC
Damping Ring is depicted for three difFerent pressure val-
ues over a distance of 800 m. For bunch number 90,
the action increases by a factor 9 after 800 m, 260 m,
and 70 m at a pressure of 10 Torr, 3x10 Torr, and
10 Torr, respectively. This is in agreement with the
expected scaling s oc 1/p.

Figure 6 shows results obtained under the same con-
ditions as the previous case (see Fig. 5), but using a dif-
ferent random seed for the initial beam macroparticle
distribution. In this simulation, the rise time of bunch
number 90 is roughly 9.8 ns, while in the previous case
(Fig. 5), the rise time is 23 ns. The initial growth &om
noise is sensitive to the distributions of macroparticles
and, because the growth saturates at roughly ~„, we do
not observe the full asymptotic behavior. We thus see
large fluctuations in the simulation results. Typically,

the simulated growth times vary by less than an order of
magnitude and, within this uncertainty, they agree with
the analytic calculations. For example, the growth times
in both Figs. 5 and 6 should be compared with the ana-
lytical estimate of 5 ns.

In Fig. 7 the conditions were the same as in Fig. 5
except for a smaller bunch charge, namely, 7x10 . The
corresponding growth rate is smaller by about a factor
5, which is expected kom the analytical result. Figure 8
shows results for an ion atomic mass of 44 (carbon diox-
ide), for which the rise time is about 25% larger than for
carbon monoxide (see Fig. 5). This is again consistent
with the analytical dependence. Finally, Figs. 9 and 10
show the position of the vertical beam and ion centroids
along the bunch train after 0, 200, 400, and 600 m in the
NLC Damping Ring when the pressure is 10 Torr; the
data are &om the same simulation as that in Fig. 5.

We have also performed simulations of the ion instabil-
ity in the NLC prelinear accelerator and the NLC main
linear accelerator and simulations of trapped electrons
in the SLC Positron Arc, which transports positrons.
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FIG. 5. Growth of the action of the vertical centroid for
every 20th of 90 bunches in the NLC DR for 10 Torr, an
atomic mass of 28 (carbon monoxide), and 1.5x 10 particles
per bunch over a distance of 800 m.
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FIG. 7. Growth of the action of the vertical centroid in the
NLC DR for 7x10 particles per bunch, an atomic mass of
28, and a pressure of 10 " Torr.
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FIG. 10. Vertical ion centroid along ththe bunch train after
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10 Torr (compare with Fig. 9).

VI. RISE TIMES FOR EXISTINC AND
PLANNED ACCELERATORS

Table I shows basic accelerator parameameters and the
es E . (40) and (41) for several ac-

celerators proposed or under construction at

0
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alon the bunch train afterFIG. 9. Vertical beam centroid along
so id curve, 200 m (dashed curve), 400 m (dotted curve~,

10 Torr; from the same simu alation as Fig. 5.

ll as for those described above, weIn these cases, as we as or
h thAnd that the simulation results areare consistent wit e

analytical calculation. The growth rates found in the
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h hich for example, is necessarysures and growth rates, w ic

in the PEP-II HER or NLC Damping Rings.

KEK, namely, for t eh NLC Damping Rings and linear
e PEP-II HER, and the KEK Accelera-accelerators, the

in L16&. Due to itsTest Facility (ATF) Damping Ring . uetor es a
e smallest rise time ish h h r vacuum pressure, t e sm

is lanned toex ected for the ATF Damping Ring, which is p a
996. The owth times listed are thoseop o gr

z = z . Values or efor the trailing bunches z-
s stems vary between 40 ns an p, .and 1 s. Note again a
&asym is not an e-fo ing ime,iu t but refers to an asymptotic

amplitude growth of the form y oc p ~sy~ex t ~, . If
urel due to Schottky noise,the initial perturbation is pure y

of ~ be-s about 200 times the quoted value of v'~py~ e-it takes a ou i
'

ude corn arable tofore the bunches oscillate at an amplitu e comp
th the additional factor 200, thethe beam size. Even wi

owth times are still very short.
arison Table II presents a similar set of num-

bers for existing accelerators, suc as t e osi r
Arc, the Advanced Light Source (ALS) at Lawrence
Berkeley Laboratory tLBL) the European Synchrotron

'1't &ESRF) the HERA electron rmg aRadiation Faci ity
n Rin . For theDESY and the SLC Positron Damping Ring. or e)

the ex ected rise time isSLC Positron Damping Ring, the p
h l er than the synchrotron period (10 ps), in

and the pre-which case the instability cannot deve op an
sented theory does not app y.l.

SR h d tedIn Cornell Electron Storage Ring (CESR) the pre tc e
rise time is not sma comp
in time (several milliseconds), while in t e case o e
HERA electron ring, the rise time '

h the damping time of the transverse multi-
h feedback. In both cases, the ion-coup e inbunc ee ac

amon the existingbil ty might not be observed. Thus, among
the two li ht sources, ALS andmachines considered, only e

ESRF, could show a significant ion» oupou led insta i i y.
The growth time in the AL is p

'
2S is redicted to be about 2

ansverse instabi itiess. Experience so far is unc ear.
he ALS but these are not necessarilyare observed in t e, u

~ ~ ~. For the ESRF, the expected nse time iscaused by ions. or e
the ra-50ps. T isisa ou an b t a factor 150 smaller than e



5496 T. O. RAUBENHEIMER AND F. ZIMMERMANN

TABLE I. Parameters and oscillation growth rates for some future accelerators.

e DR
3x10 '
3x10

90
1.5x10"

0.5,5
2

62
4

19 m
2

10-'
e
184

Accelerator
(m)

1V

AQ

Ng

~-,, (-)
P. (m)
cr (pm)
~. (Vm)
zo o~
E (GeV)
p (Torr)
particle species
~; „i2z (MHz)
single or
multibunch multibunch
7asym (z ~~zp) 465 ns

e+ DR
3x10
3x10

90
1.5 x 10'

0.5,5
2

62
4

4 mm
2

10-'
e+

3.2x10'

single
122 ps

NLC
Pre-linac
3x10
3x10 '

90
1.5 x 10

6
6

68
7

19 m
2

10

104

multibunch
88 ns

Main linac
3x10
3x10

90
1.5 x 10'

8
8
35
3.5

19 m
10

10
e
201

PEP-II
HER

5x10
2 ~ 5x10

1658
3x10"

15
15

1,060
169

1000 m
9

10-'
e
4

multibunch multibunch
46 ns 6 p,s

ATF
DR

3x10
3x10

60
10"
0.5,5
2.5
22
7

25 m
1.54

6x10
e
85

multibunch
29 ns

diation damping time and thus the beam-ion instability
might also be observable here. However, there has been
no evidence for ion-related effects or multibunch instabil-
ities at the ESRF [17]. One possible explanation for the
observed stability pertains to the distinct focusing optics:
The ESRF uses a Chasman-Green lattice, in which the
product of the horizontal and vertical P functions varies
by more than a factor 100 around the ring. This causes a
corresponding variation of the ion frequency by an order
of magnitude. The decoherence of the ion motion due to
this large &equency variation could effectively suppress
the instability. Note that, by contrast, in a standard
FODO lattice the product of the transverse beam sizes is
nearly constant and thus this source of decoherence does
not exist.

Because of the potential impact on B factory and NLC
designs an experimental confirmation of analytical theory
and computer simulations is highly desirable. An exper-
iment to monitor and compare the emittance of electron

and positron beams as a function of the increased vac-
uum pressure in the SLC Arcs is therefore being pro-
posed. At the current pressure of 10 Torr, the initial
Fourier component at the ion &equency is enhanced by a
modest 20% at the end of the arc. This effect is too small
to be measurable. The "threshold" pressure for observ-
able positron emittance growth is 3x10 to 10 Torr.
Above the threshold, the positron emittance increases ex-
ponentially with an exponent proportional to p i, while
the electron emittance continues to increase quadratically
due to an interplay of ions and dispersion as discussed in
Ref. [18].

VII. POSSIBLE CURES

There are several possible ways to alleviate the de-
scribed detrimental effect of ions or electrons. Ef the os-

TABLE II. Parameters and oscillation growth rates for some existing accelerators.

Accelerator SLC arc

(m) 5 x10
e," (m) 5x10
AQ 1
Ng 3.5 x 10'
P-, y (m) 4

Pw (m) 4
~- (~m) 50
~. (Vm) 15
zp (n, ) 1 XIlm

E (GeV) 46
p (Torr) 10
particle species e+
~; „/2vr (MHz) 4 x 10
Single or
multibunch single
7asym (z ~ zp) 1.1 /Ls

SLC e+ DR
3x10 '
3x10

1
4 x10

13
3

114
62

5.9 mm
1.2

10
e+

5x10

single
490 ps

ALS

1.2x 10
2x10

328
7x10'
2.5,4

4
101
17

100 m
1.5

10-'
e
25

HERA e

2x10
1.1x 10

210
3.7x 10

25

25
1000
230

3024 m
26

10-'

0.8

multibunch multibunch
2.4 ps 211 ps

CESR
2.7x 10
1.2 x 10

7
4.6x 10

14,13
13

2000
400

335 m
5

5x10
e
0.6

ESRF
7.5 x 10
7.5 x10

330
5x10

8,8
8

224
70

140 m
6

2x10 '
e
8.3

multibunch multibunch
3.9 ms 50 p,s
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cillation amplitude of the trailing bunches or positrons,
respectively, saturates at about 1o„due to the nonlinear
character of the coupling force (not included in the ana-
lytical treatment), a reduction of the vertical emittance
by a factor 2 results in approximately the desired pro-
jected final emittance after filamentation [19]. It is not
yet known if the beam will continue to blow up, although
with a decreasing growth rate, after partial Glamenta-
tion. A second possibility is to use an optical lattice in
which the product of the horizontal and vertical P func-
tions changes substantially as a function of position 8
so that u; varies signiGcantly with time and no coherent
oscillation can therefore develop. A third remedy con-
sists in introducing additional gaps in the bunch train,
large enough so that the ions are overfocused between
the shorter trains [20]. As an example, additional ten
bunch gaps in PEP-II increase the instability rise time
&om 5 ps to 0.5 ms, which is inside the bandwidth of
the feedback system. Finally, in linear accelerators, the
trailing bunches might be realigned by use of fast kickers
and feedforward.

VIII. SUMMARY AND OUTLOOK

The interaction of an electron bunch train or a single
positron bunch with ions or ionization electrons causes a
transverse instability. The signature of this instability is
an exponential growth of the vertical amplitude, the ex-
ponent being directly proportional to the position along
the bunch or bunch train and to the square root of time
and inversely proportional to the 3/4 power of the beam
sizes.

The expected rise time w~sy~ of the instability is ex-
ceedingly short; it varies between 40 and 800 ns for the
various NLC rings and linear accelerators, while it is
estimated at 5 ps for the PEP-II HER. This rise time
is not an e-folding time, but the oscillation amplitude

grows as exp t w~sy~ As far as existing machines

are concerned, the effect should be present in the ALS
and possibly CESR, but observations so far are inconclu-

sive, partly due to technical problems and partly due to
the similarity to transverse wake-Geld effects. An exper-
iment to Ineasure the emittance increase as a function of
pressure in the SLC Arcs is being pursued to conGrm the
theory and the simulations described.

Several possible remedies have been suggested. The
addition of ten short gaps in the bunch train might al-
leviate the problem for the PEP-II HER. It also may be
possible to design lattices in which the ion &equency is
strongly location dependent. Both of these options re-
quire further study. Finally, if the instability saturates
at an amplitude of about lo. , it is conceivable to de-
sign damping rings in which the equilibrium emittance
is about half the desired emittance. Preliminary simu-
lations indicate that the saturation is not complete and
that further amplitude growth at a smaller rate is possi-
ble.

The analytical model described is a linearized approx-
imation and does not include nonlinearities of the ion-
beam force or the lattice. However, these nonlinearities
are included in the simulations, which yield rise times
for the parameter regimes compared that are in excellent
agreement with the analytic model. It is not known at
this time if and when the Landau damping due to the
nonlinear ion-beam force becomes signiGcant, and our
model should be extended to include this eifect [21]. A
large number of other questions also remain to be an-
swered. Among them are the saturation or Glamentation
due to detuning at large vertical amplitudes, the initial
growth from noise, the effect of synchrotron motion on
the growth rate, the rise time in the presence of different
ion species, the possible damping due to the nonlinearity
of the beam-beam interaction in circular colliders, and
the study of coherent oscillation modes of higher order.
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