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Laser acceleration of electrons in vacuum
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Several features of vacuum laser acceleration are reviewed, analyzed, and discussed, including electron
acceleration by two crossed laser beams and acceleration by a higher-order Gaussian beam. In addition,
the vacuum beat wave accelerator (VBWA) concept is proposed and analyzed. It is shown that accelera-
tion by two crossed beams is correctly described by the Lawson-Woodward (LW) theorem, i.e., no net
energy gain results for a relativistic electron interacting with the laser fields over an infinite interaction
distance. Finite net energy gains can be obtained by placing optical components near the laser focus to
limit the interaction region. The specific case of a higher-order Gaussian beam rejected by a mirror
placed near focus is analyzed in detail. It is shown that the damage threshold of the mirror is severely
limiting, i.e., substantial energy gains require very high electron injection energies. The VBWA, which
uses two copropagating laser beams of different frequencies, relies on nonlinear ponderomotive forces,
thus violating the assumptions of the LW theorem. Single-particle simulations confirm that substantial
energy gains are possible and that optical components are not needed near the focal region.

PACS number(s): 41.75.Lx, 41.75.Ht, 42.62.Hk, 52.40.Nk

I. INTRODUCTION

In recent years there has been a renewed interest in the
possibility of accelerating electrons by laser fields in vacu-
um [1—6]. This is partly due to the development of ul-
trahigh power ( ~ 10 TW), short pulse ( ~ 1 ps), tabletop
lasers based on chirped-pulse amplification [7,8]. A large
portion of laser-driven electron acceleration research has
focused on plasma-based schemes such as the plasma beat
wave accelerator [9,10] and the laser wake field accelera-
tor [10—12]. Although plasma-based schemes can
achieve ultrahigh acceleration ( ~ 10 GV/m) and offer
the possibility of guiding the laser pulse (preventing pulse
diffraction}, they suffer from several difficulties including
laser-plasma instabilities, plasma uniformity require-
ments, and electron beam-plasma collisions. Laser ac-
celeration in vacuum can eliminate the difticulties associ-
ated with the plasma. In this article we will (i) discuss
some general features and characteristics of laser ac-
celeration in vacuum, including what has become known
as the Lawson-Woodward (LW) theorem [13—15]; (ii) an-
alyze electron acceleration using two crossed laser beams
in vacuum, which was the subject of recent papers [4,5];
(iii} discuss and analyze electron acceleration by a
higher-order Gaussian mode in vacuum; (iv) quantify cer-
tain limitations on acceleration imposed by the damage
threshold of optical components; and (v) propose and an-
alyze a vacuum laser acceleration concept called the vac-
uum beat wave accelerator.

A major difBculty in using laser fields in vacuum to ac-
celerate electrons is that the phase velocity of the electric
field in the direction of the accelerated electrons is
greater than c for a focused laser beam. For example,
consider a transversely polarized laser field propagating
in the z direction with a Gaussian radial profile. Since
the electric field E is radially bounded, V.E=O implies a
finite E, component that can accelerate electrons travel-

ing in the z direction. The phase velocity v of the E,
field is given approximately by Uz /c = 1+1/( kZz ),
where co=ck is the laser frequency, Zii =kwo/2 is the
Rayleigh length, which is the characteristic distance over
which the laser spot size w (z) expands,
w =wo(l+z /Zz )'~, and wo is the minimum spot size
of the laser beam at focus. In effect, the vacuum disper-
sion relation is given by co /c =k, +4/wo, where k, is
the axial wave number and U i,

——co/k, . Since Uz )c, rela-
tivistic electrons with v, =c will phase slip with respect to
E, and will eventually decelerate. This will occur over a
slippage distance z„defined to be the distance over which
a relativistic electron phase slips by m,

kz, ~U, /c —U~z/c ~
=m, which gives z, =mZii. If the elec-

tron interacts over a distance large compared to the shp-
page distance z »z„ the accelerating and decelerating
regions tend to cancel, resulting in a very little net energy
gain. In fact, one can show that if an electron with v =c
interacts with a laser field in vacuum over an infinite re-
gion (z = —Do to ~), the net energy gain is zero. This is
the main point of the so-called LW theorem [13—15].

Recently, a vacuum laser acceleration configuration
that uses two crossed laser beams was discussed and ana-
lyzed [4,5]. Here the first and second beams propagate at
angles of 8 and —8 with respect to the z axis such that
their focal points intersect at the origin (z =0) as shown
in Fig. 1. The two lasers have the same frequency and
are phased such that the transverse electric fields cancel
on axis while the axial fields add. Properly phased elec-
trons injected along the z axis can be accelerated by the
net axial component of the laser field. However, a highly
relativistic electron traveling along the z axis from —~
to + ~ will experience both accelerating and decelerat-
ing phase regions of the laser field. In fact, analysis indi-
cates that the net energy gain vanishes over an infinite in-
teraction region [5], which is in agreement with the LW
theorem, contrary to the claims of Ref. [4].
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FIG. 1. Coordinate system and electric fields for two crossed
laser beams.

One or more of the assumptions of LW theorem
[13—15] must be violated in order to achieve a nonzero
net energy gain by using laser fields in vacuum. The LW
theorem assumes that (i) the laser fields are in vacuum
with no walls or boundaries present, (ii) the electron is
highly relativistic (U =c) along the acceleration path, (iii)
no static electric or magnetic fields are present, (iv) the
region of interaction is infinite, and (v) ponderomotive
efFects (nonlinear forces, e.g. , the v XB force) are neglect-
ed. For example, finite energy gains can be achieved by
introducing a background of gas into the interaction re-
gion, as in the inverse Cherenkov accelerator [16,17].
Physically, the gas reduces the phase velocity of the laser
such that v + c, reducing the slippage. Alternatively, ac-
celeration can result from the introduction of a periodic
magnetic wiggler field, as in the inverse free electron laser
[18—24]. In vacuum, a nonzero energy gain can be
achieved by the introduction of optical components that
limit the interaction distance to a finite region about the
laser focus. Typically, the optimal length of this region is
the slippage distance z, . An example of such a
configuration is shown in Fig. 2, in which a mirror
placed near the focal point rejects a higher-order Gauss-
ian mode.

Although finite energy gains can be achieved in princi-
ple by limiting the interaction distance to a slippage dis-
tance, this may be difficult to realize in practice due to
limitations imposed by the damage threshold of the opti-
cal components. If the laser-electron interaction distance
is limited to approximately z„ it is possible to show that
the maximum energy gain 68',„of the electron is
b W,„(MeV) =Co[P(TW)]', where P is the laser
power in TW and Co is a constant. Typically, Co is in
the range 20—30, depending on the specific laser
geometry. The damage threshold of the optical com-
ponents used to limit the interaction distance is charac-
terized by a critical intensity I&. Typically, for a 1-ps
laser pulse, Iz ~ 5 TW/cm [25]. Since the slippage dis-
tance is typically on the order of a Rayleigh length

z, =m.Zz, the optical components must be placed rela-
tively close to the focal point. This implies that the in-
tensity at the surface of the optics is given by
I, =P/(nico). H.ence, for a fixed laser power P, the sur-
face intensity can be reduced such that I, &I& simply by
increasing the focal spot size wo. Naively, one might as-
sume that this would not affect the total energy gain of
the electron, since 58',„depends only on the laser
power I'. This, however, is not the case. As the spot size
increases, the phase velocity of the accelerating field de-
creases such that v h~c. Phase slippage, which limits
the acceleration distance, is then dominated by the
initial electron injection energy and not by diffraction,
as previously assumed. The result 5W,„(Me V )

=Co[P(TW)]' only applies if the initial electron injec-
tion energy 8'I is above a critical value 8'. Typically,
W, (MeV) =wo/A, , where 1, is the laser wavelength.
Hence, increasing wo increases 8', . For example, A, =1
pm, P =10 TW, and I& =5 TW/cm
imply wo)0. 8 cm and 8' &9 GeV. For 8'I «8;,
both the slippage distance and the maximum energy
gain are greatly reduced, i.e., z, «Zz and 58',„
=COP' (WI/W, ) . For A, =l pm, P =10 TW, I&=5
TW/cm, and WI=1 GeV, the maximum energy gain is
68',„—1 MeV.

Laser acceleration of electrons in vacuum can be real-
ized using the nonlinear or ponderomotive forces associ-
ated with the laser-electron interaction. The LW
theorem assumes that the electron is traveling with v =c
and that the velocity is unaffected by the laser fields.
Ponderomotive forces arise by considering the effect the
laser field has on the electron trajectory. Consider one or
more laser beams propagating in along the z axis, which
interact with a relativistic electron traveling along the z
axis. The rate of change of the electron energy gain is
determined by the term v-E, where v is the electron ve-
locity. Typically, vacuum acceleration schemes are con-
cerned with the term v, E„where v, =c, such that the en-
ergy gain is determined by the integral f dz E, The LW.
theorem, as discussed in Sec. II, specifically addresses this
case. If the transverse electric field E~ of the laser is
finite along the z-axis, a transverse velocity v~ will be in-
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troduced. In the one-dimensional limit (tvo »A, ), conser-
vation of canonical momentum implies vz -—ed~/(ymc ),
where Aj is the vector potential, E~= —(I/c)BA~/Bt,
and y = (1—v /c )

' is the relativistic factor of the
electron. Hence v~.E~-(1/y)BA ~/dt. This term, which
is unaccounted for in the LW theorem, is responsible for
changes in the electron energy due to nonlinear, "pon-
deromotive" effects. The use of ponderomotive forces
can result in substantia1 energy gains even in the limit of
an infinite interaction region. Hence optical components
are not required near (within a few Z„) the laser focus.

In Sec. V we propose and analyze a vacuum beat wave
accelerator (VBWA), which relies on the ponderomotive
acceleration resulting from the beat wave produced by
the interaction of two laser beams. In the VBWA, two
laser beams of different frequencies are copropagated in
the presence of an injected electron beam, as shown in
Fig. 3. Properly phased electrons, traveling essentially
along the same axis as the two laser beams, experience an
axial acceleration from the beat term in the v XB force.
By properly choosing the frequencies, focal spot sizes
and/or the focal points of the two beams, the phase ve-
locity of the beat wave can be adjusted such that v~h

~ c.
Hence the phase velocity can be tuned to the electron ve-
locity and the problem of phase slippage can be reduced.
The acceleration mechanism in the VBWA is similar to
that of the inverse free-electron laser (IFEL) [18—24]. In
effect, the wiggler field in the IFEL is replaced by one of
the lasers in the VBWA.

The remainder of this paper is organized as follows.
Section II presents a discussion of LW theorem. Electron
acceleration in vacuum by using two intersecting laser
beams is analyzed in Sec. III. Specifically, it is shown
that the results of the LW theorem apply to this
configuration. Vacuum acceleration by a higher-order
Gaussian mode is discussed and analyzed in Sec. IV.
The importance of the injection energy 8'I being greater
than the critical energy 8', is emphasized. Limitations
due to the damage threshold of optical components are
discussed in Sec. V. It is shown that if optical com-
ponents are required within a Rayleigh length Z~ of
focus, then increasing the focal spot size to avoid damage

Laser Spot Size

implies a large value for the critical energy W, . If
O'I « W„ the energy gain will be reduced by the factor
Wt /W, « 1. In Sec. VI the VBWA is proposed and ana-
lyzed. This includes single-particle simulations based on
model equations that describe the electron motion. The
paper concludes with a discussion in Sec. VII.

II. LAWSON-WOODWARD THEOREM

where E,(k„,k ) is the Fourier amplitude and
k, =(co /c —k„—k )'~ is the vacuum dispersion rela-
tion. Electromagnetic fields in vacuum satisfy V-E=O,
which implies X', = —(k„l„+k P~ )/k, . Without loss of
generality, 2 =0 is assumed. For a highly relativistic
electron moving along the z axis, i.e., x =y=O and
t =z/c, the total energy gain is proportional to

f dz E, = —f dk f dk (k /k, )E (k„k )

X5(k, —co/c) . (2)

By introducing a change of variables k„=k~cosP and
k =kissing, where fdk„ f dk = fdP f dk~k~ and

5(k, —to/c )=(k, /k~)5(kj ), it is clear that

f" dz E, = —f dP f dk~(k~cosP)

The LW theorem states that, under certain conditions,
the net energy gain of a relativistic electron interacting
with an electromagnetic field in vacuum is zero [13—15].
The theorem assumes that (i) the laser field is in vacuum
with no walls or boundaries present, (ii) the electron is
highly relativistic (v =c) along the acceleration path, (iii)
no static electric or magnetic fields are present, (iv) the
region of interaction is infinite, and (v) ponderomotive
efFects (nonlinear forces, e.g., the v XB force) are neglect-
ed. Given the above assumptions, the lack of an energy
gain can be shown [1] by considering the vacuum wave
equation V' E= —(co/c) E, where to is the frequency.
For a relativistic electron moving in the z direction v, =c,
the acceleration is due to the E, component, which is
given by

E, =(2~) 'f dk-„ f dk, P, (k. , k, )

Xexp[i(k x+k~y+k, z cot)], —

envelope of
laser at m2

direction of laser
beam

XE„(k~cosg, kissing)5(k~) =0,
(3)

Wp2
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ZR

FICi. 3. Schematic of the vacuum beat wave accelerator
configuration.

assuming k~P ~0 as k~ ~0. Hence there is no net ener-

gy gain.
In order to achieve a nonzero energy gain by using

laser fields in vacuum, one or more of the assumptions in
the LW theorem must be violated. For example, a finite
interaction region (on the order of a few Zz) can be con-
sidered. However, this may be dificult to achieve in
practice due to the high-intensity requirement on the
laser field and the damage threshold limitations of optical
components, as discussed in Sec. V. Alternatively, one
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can rely on nonlinear forces to produce the desired ac-
celeration, such as the ponderomotive force associated
with the v XB term. This can lead to substantial energy
gains even in the limit of an infinite interaction region.
An example of an accelerator based on the nonlinear
ponderomotive force is the vacuum beat wave accelera-
tor, which is discussed Sec. VI.

III. TWO CROSSED LASER BEAMS

Recently, a vacuum laser acceleration configuration
was discussed and analyzed [4,5]. In this scheme a pair
of linearly polarized laser beams with gaussian profiles,
having the same frequency, are focused and intersected in
vacuum, as shown in Fig. 1. Here the first laser propa-
gates along the zi axis and the second laser propagates
along the z2 axis, where the z, axis and the z2 axis are ro-
tated by angles of O and —O, respectively, with respect to
the z axis. The phases of the lasers are such that the
transverse electric fields cancel on axis while the axial
fields add. Properly phased electrons injected along the z
axis can be accelerated by the net axial component of the
laser field. However, a highly relativistic electron travel-
ing from z= —ao to ao will experience both accelerating
and decelerating phase regions of the laser field. In fact,
the net energy gain vanishes over an infinite interaction
region [5], which is in agreement with the LW theorem,
contrary to the claims of Ref. [4].

The axial electric field associated with the intersecting
laser beams can be calculated by writing the laser fields in
the (x,y, z) coordinate frame. In the (x„yi,zi) coordi-
nate frame, where x1 =x cosO —z sinO, y1 =y, and
zi =z cosO+x sinO, the electric field of the first laser
beam consists of a transverse and longitudinal component

l

E,=E 1e„,+E„e„,where e„, and e„are unit vectors.
In the paraxial approximation (A, ((ivo), the electric field
components of a Gaussian laser beam are given by [26]

2
E01WO ~1

exp —
cosset, ,

W1 W1

2
P'1 z1

sinf, — cosfi
Zii

(4a)

2E01X1
exp

kw1

(4b)

where the phase of the transverse field E 1 is

pi =kz, cot +—z i r i /(Zii w i )
—tan '(z i /Zi, ) +$0 (5)

Eo, is the maximum field amplitude, ivi=wo(1+z, /
Zz )' is the laser spot size, ivo is the minimum spot size
(waist), Zii =~wo/A, is the Rayleigh length, A, =2~c Ice is
the wavelength, m=ck is the frequency, k is the wave
number, r, =(x i+yi )', and Po is a constant. The lon-
gitudinal field component in Eq. (4b) is necessary for the
field to be divergence free, i.e., a physically realizable vac-
uum electromagnetic field. This important field com-
ponent is not considered in Ref. [4]. In obtaining Eq. (4b)
it was assumed that w0 &)A, , which is consistent with the
paraxial approximation. The field components for the
second laser beam are given by Eqs. (4a) and (4b) with the
subscript 1 replaced by 2.

The total transverse E„and axial E, components of the
combined laser fields in the (x,y, z) coordinate frame
are E (x,y, z, t)=(E„i+E 2)cosO+(E„—E,2)sinO and
E,(x,y, z, t) = —(E„,—E 2)sinO+(E„+E,2)cosO. In or-
der to have only an axial field component along the z axis
(x =y =0), we set Eo, = —E02=E0, such that
E,= E„z and E„—=E,2. This gives E„(0,0,z, t)=0 and

E,(0,0,z, t) =— 2E0sinO.' ~ . -p-
(1+z cos 8)

(z/Od) sin 8

(1+z cos 8)
(cosg+z cosOsing)

2E0sinO
exp

(1+z cos 8)

(z/Od ) sin 8

(1+z cos 8)
cosfi (6)

where

z cos Otan OP=kz cosO cot+ — —tan '(z cosO)+$0,
Od(1+z cos 8)

8 f d—z/y, —z(8/8„) /(1+z )

—2 tan 'z+Po, (9)

g, =g —tan '(z cosO), z=z/Zit, and Od=ivo/Zii is the
di6raction angle. For small intersection angles O«1,
the axial accelerating field in Eq. (6), acting upon an elec-
tron traveling with velocity U, =c, is

t = fdz Iv, has been assumed, v, Ic = 1 —I/2y„and
( 1 2/ 2) —1/2

The phase velocity U h of the accelerating field in Eq.
(8) is greater than c and therefore slips ahead of the elec-
tron. The expression for g, in the limit 8 ((1 implies

2EOO (z 8/Od )
E,= —

2 exp —
2 cosg, ,(1+z ) (1+z )

Uph 1—
C

(1 —z )8 +2(1+z )Od

2(1+z )
(10)

where Near the focal point ~z~ 5 Zii,
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z, =y, A, /(1+ y, /y, ) . (12)

u h/c =1+(8 +28d)/2=1+1/(2y, ),
where y, =(8 +28d )

'~ defines a critical energy. The
slippage distance z„defined as the distance required for
the electron to phase slip by ~, can be estimated by
coz, iu,„—u, i =n, i.e.,

~ ~

Q

0
P

40

20—
8 = 0. 1 ra 8.1

4.5

In the high-energy limit y, »y„slippage is dominated
by diffraction, i.e., the second and third terms in Eq. (9).
In the low-energy limit y, (&y„slippage is dominated
by the low velocity of the electron, i.e., the first term in
Eq. (9). In the low-energy limit (y, «y, ), the slippage
distance z, =y, A, « ZR is much less than Rayleigh
length, while in the high-energy limit (y, »y, ), the slip-
page distance z, =1,/(8 +28d) can be comparable to a
Rayleigh length. The critical energy W, =(y, —1)mc
for the parameters in Ref. [4] is W, =4 MeV. In what
follows we will consider the high-energy limit. The ac-
celerating field given by Eq. (8) is shown in Fig. 4 for the
same parameters used in Fig. 2 of Ref. [4] (A, = 1 }Mm,

wo /A, =4.5, and wo /A, =8. 1).
The axial electric field on axis can be written as the

gradient of an effective potential E,= —Zz '8 U/Bz,
where

4EO (z8/8d )
U(z )= expk8

sin
z(8/8d )

(1+z )

0.2-
8 = 0. 1 r

0.1—

4.5

(13}

and the first term in Eq. (9) has been neglected, i.e., the
high-energy limit. The potential in Eq. (13) is shown in
Fig. 5. The change in energy of an electron traveling
along the z axis with velocity approximately equal to c,
injected at point zr and extracted at z„, is
b, W(zl, zz }=e [ U(zz ) U(zI )].—For the special case
where zz = —zr =zp, the energy change is

.~ -20-
~ -40
S -400 -200 0 200

Axial Dist. ance, z/P,
400

FIG. 5. EQ'ective potential U(z) plotted versus position along
the z axis for two crossed beams.

SeEp (z08/8d )
b, W= cosPoexp

'—
(1+zo)

, zo(8/8d)
X sin

( I+zo)
(14}

z08 /8
tan

I +zp

1 —z2
0

2zp
(15)

For the parameters of Ref. [4], A, = 1 p,m, 8=0. 1 rad, and
wo/A, =4.5 (8.1), we find an optimal interaction distance
of 2zo=z, =56 pm (79 pm), Zit =64 pm (210 pm), and

8d =71 mrad (39 mrad). For a finite interaction distance
2zo=z„we find that b W(MeV) =30[P(TW)]' for
wo/A, =4.5 and b. W(MeV) =26[P(TW)]'~ for
wo/k=8. 1. Hence, for P =20 TW, b, W= 130 MeV (110
MeV) for wo/A, =4.5 (8.1). Since the beams are tightly
focused and interaction distances are very short, the ac-
celerating field is extremely high. For example, an aver-
age accelerating gradient (E, ) =b, W/ez, of (E, ) =2.3
TV/m (1.4 TV/m) is obtained for wo/1, =4.5 (8.1).

where zo=zo/Zz. The coefficient in Eq. (14) can be
written as 8eEO/(k8) =88P'~ 8d /8 MeV, where P is the
laser power in TW. Note that as zp —+00, 6$'—+0, in

agreement with the LW theorem.
A finite energy gain 58'can occur over a finite interac-

tion range 2zp. The maximum energy gain occurs when

2zp is equal to a slippage distance, which is the distance
over which E, & 0 (the —width of the central peak in Fig.
4). From Eq. (14), the energy gain b, W is maximized
when zp satisfies

IV. HIGHER-ORDER GAUSSIAN MODES

—0.1
—400 —200 0 200

Axial Distance, z/P
400

FIG. 4. Accelerating axial field —E, plotted versus position
along the z axis for two crossed beams.

Higher-order gaussian modes can, in principle, pro-
vide an axial electric field component for electron ac-
celeration in vacuum [1]. By properly choosing the elec-
tron injection point, net acceleration is possible (see Fig.
2). However, damage threshold intensities on the mirror
surface place severe limits on the actual energy gain. To
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examine some of the limitations associated with finite in-
teraction regions and damage thresholds, we will consider
a specific configuration of a higher-order Gaussian mode
propagating along the z axis in the positive z direction,
after having been rejected of a mirror located at some
negative z position, as shown in Fig. 2. The results can
be readily generalized to describe more complicated
configurations. In the following, we consider a radially
polarized, axially symmetric higher-order Gaussian TEM
mode [26] given by E=E„e„+E,e„where

Twp
E,=Eo exp

w

p
2

2 sing,
w

(16a)

2Wp
E, =Ep exp

kw

2

W

2 ZI"
cos1tj — sing

w Zg W

where

g=kz rot+zr /(Z—rr w ) —2 tan '(z/Zrr )+$0,

(16b)

(16c)

w=wo(1+z /Zri )'~ is the laser spot size, wo is the
minimum spot size, Z~ =mwp/A, is the Rayleigh length,
co=ck is the frequency, and Ep and $0 are constants.
Within the paraxial approximation (wo ))A, ), the fields in
Eqs. (16) satisfy V E=O. The field components in Eqs.
(16) propagate along the positive z axis, i.e., they describe
the reflected fields depicted in Fig. 2, which can be used
to accelerate electrons traveling in the positive z direc-
tion. The electrons are essentially unaffected by the in-
cident fields.

An electron traveling with velocity U, =c along the z
axis is accelerated by the axial electric field given in Eq.
(16b),

Wp
E,(r =0)=2Eo

2 cosg, ,
w

where

g, = —k fdz/(2y, ) —2 tan '(z/Zri )+go,

(17)

(18)

y, =(1—u, /c ) '~, and we have set t = jdz/u, . The
phase velocity u h of the accelerating field in Eq. (17) is
greater than c and therefore slips ahead of the electron.
From Eq. (16c) the local phase velocity along the axis
(r =0) is given by

utah/c= [1—8d/(1+z )] (19)

where z =z /Zrr and 8d =w o /Zrl =2/kZrI . Near the fo-
cal pomt ~z~ Zrr,

u h/c =1+8d =1+1/(2y, ), (20)

where y, =(28d )
' =vrwo/V2Adefines a critica, l ener-

gy. The slippage distance z„defined as the distance re-
quired for the electron to phase slip by ~, is given ap-
proximately by coz, ~u~h' —u, '~ =m., i.e.,

y, ~ mZ~ /2

(1+y, /y, ) (1+y, /y, )
(21)

EowoU(z)= [(1—z )sin/0 —2z cosPo] .
2(1+z )

(22)

The energy gain 68'from the injection point zr to the ex-
traction point zF is given by b. W= e [ U(zF ) U(zi ) ]. —
The maximum energy gain occurs between the points
zr= —Z~ and z~=Z~ and is given by 68'=eEpwo.
This is equal to the maximum E, amplitude 2EO/kwo,
multiplied by eZ+, i.e., the slippage distance is approxi-
mately Zz.

On the other hand, in the low-energy limit (y, «y, ),
the second term in Eq. (18) can be neglected and the ener-
gy gain is given by
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FIG. 6. Accelerating axial field —E, plotted versus position
along the z axis for the higher-order Gaussian mode. The solid
curve is the high-energy limit y, »y, and the dashed curve is
the low-energy limit y, « y, .

In the high-energy limit y, »y„slippage is dominated
by diffraction, i.e., the second term in Eq. (18). In the
low-energy limit y, «y„slippage is dominated by the
low velocity of the electron, i.e., the first term in Eq. (18).
In the low-energy regime (y, « y, ) the slippage distance
is much less than a Rayle'igh length (z, =A.y, «Zrl ),
while in the high-energy regime (y, »y, } the slippage
distance is approximately a Rayleigh length
(z, =mZrI /2).

Figure 6 shows the accelerating field as a function of
axial distance for high- (solid curve) and low- (dashed
curve) energy injection. In obtaining these curves, y, was
assumed to be constant in the first term in Eq. (18) for the
phase. In both cases the total area under the curves is
zero, i.e., there is no net energy gain from —ao &z & ao.
However, by injecting and/or extracting the electrons at
a finite axial position, it is possible, in principle, to
achieve net energy gain.

In the high-energy limit (y, »y, }, the first term in
Eq. (18) can be neglected and the accelerating axial elec-
tric field can be written as the gradient of a potential
E,= —Zri 'BU/Bz, where
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V. LIMITATIONS DUE TO
THE DAMAGE THRESHOLD

In principle, limiting the interaction distance to a small
region near the focus ean lead to substantial energy gains,
as discussed in the previous sections. In practice, howev-
er, the energy gain can be limited by the intensity damage
threshold of the optical components. As an example,
consider placing a mirror at a distance —z, /2 from the
focus (z =0) and using the higher-order Gaussian mode
described in Sec. VI (see Fig. 2). A short laser pulse
propagating along the —z axis rejects off the mirror. At
the same time, an electron beam propagating along the z
axis could pass through a small hole or a thin window in
the mirror such that it would interact with and be ac-
celerated by the rejected laser pulse. The electron would
gain energy as it traveled from z = —z, /2 to z, /2. How-
ever from z =z, /2 to ~ the electron would lose half the
gained energy. The total electron energy change can be
estimated by one half the maximum value given by Eq.
(24).

The laser intensity on the surface of the mirror must be
less than the damage threshold limit P/(nw, ) & Id, where.
w, is the radiation spot size on the mirror surface and Id
is the mirror damage threshold intensity. Typically, for a

(23)

where Wr, + W( zg, F ), w= ~c'1 ., and lzi, F I &&Z~ have
been assumed. In the limit 4W « W~, the maximum en-

ergy gain in the low-energy limit is 5W =8eEoy, /
(k wo)=eEowoy, /y„which is simply the maximum
field 2EO/kmo multiplied by eZa (y, /y, ), where

Zit(y, /y, ) is approximately equal to the slippage dis-
tance.

Hence, for a finite interaction region centered about
the focus, we can write the following expression for the
maximum energy gain, which is approximately valid in
either the high- or low-energy limits:

31[P(TW)]'
(1+y', /y, )

where the average laser power is given by P = cEo~w 0/32.
Here the critical energy W, =mc y„where
y, =two/v'2A, , can be written as W, (MeV) = 1.1(tco/A, ).
In the high-energy limit (y, ))y, ), the optimal interac-
tion distance is approximately 2', while in the low-
energy limit (y, «y, ), the optimal interaction distance
is approximately ky, «Zz. In the high-energy limit,
the energy gain can be substantial, i.e., AW=100 MeV
for P = 10 TW. In the low-energy limit, however, this en-
ergy gain is reduced by the factor y, /y, «1. Unfor-
tunately, when damage thresholds are considered, the
low-energy limit y, (&y, appears to the relevant regime
for typical parameters of interest.

1-ps laser pulse, Id 5 TW/cm [25]. The damage inten-
sity Id increases with decreasing laser pulse duration and
the precise values for ultrashort pulses ~100 fs are
currently under investigation [25]. Since the slippage dis-
tance is much less than (approximately equal to) a Ray-
leigh length in the low- (high-) energy limit, the radiation
spot size on the mirror is approximately the radiation
waist w, =wo. Hence, for a fixed laser power, the intensi-
ty at the mirror surface I, can be made lower than Id by
increasing the focal spot size, i.e., wo)(P/m'Id)' . In-
creasing w o increases the critical energy, since
y, =rico/(&2A, ). The condition I, &Id implies
y, )mP/(2I&A, ), which corresponds to a critical energy
W =mc y, of

6.4 P(TW)
~(pm) I„(TW/cm )

1/2

(25)

Typically, this value of y, is quite high. For a P=10
TW, A, =1 pm laser and a mirror with an intensity dam-
age threshold of Id=5 TW/cm, we find y, ) 1.8X10
such that the injected beam energy should be greater than
9 GeV to be in the high-energy limit [27]. On the other
hand, if the injected energy is below this critical value,
the energy gain is one-half that given by Eq. (24) with
y, (&y„ i.e.,

5W(MeV)

VI. VACUUM BEAT WAVE ACCELERATION

Acceleration of electrons in vacuum can be realized us-
ing the nonlinear or ponderomotive fields associated with
two laser beams. We propose a vacuum beat wave ac-
celerator in which two laser beams of different frequen-
cies are copropagated in the presence of an injected elec-
tron beam; see Fig. 3. Properly phased electrons, travel-

& 3.8 X 10 [A(pm)] [ W&(MeV)) [P(TW)]

XId(TW/cm ), (26)

where Wz —-mc y, is the injection energy and we have
used Eq. (25) for W, . For A, = 1 pm, P =10 TW, Id=5
TW/cm, and Wz=1 GeV, the energy gain is small
EW&0.6 MeV.

Hence, when the optics are placed close to the focal
point (within Zz ), the intensity damage threshold re-
quires that the minimum spot size at focus be large
wo)(P/mId)'~ . If one can remain in the high-energy
limit y, )&y„ the energy gain will remain unchanged,
since AW-P' and the total laser power is assumed to
be constant. However, as the spot size wo increases, the
critical energy increases, y, =

two�/&2A,

) (~P /
2IdA, )'~ . For typical parameters of interest, y, corre-
sponds to many GeV. When y, (&y, the energy gain is
reduced 6W-P' y, /y, . Although we have considered
the specifi example of a higher-order Gaussian mode
reAecting off a mirror, these same arguments regarding
the damage threshold can be applied to other laser ac-
celeration techniques [1,2] in vacuum that rely on limit-
ing the interaction region by using optical components.
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ing essentially along the same axis as the two laser beams,
experience an axial acceleration from the beat term in the
vXB force. For example, two laser beams of different
frequency can be obtained by splitting a single laser pulse,
frequency doubling one of the pulses, and recombining
the pulses. The acceleration mechanism in the VBWA is
similar to that of the inverse free electron laser [18—24].
In effect, the wiggler field in the IFEL is replaced by one
of the lasers in the VBWA.

In the following analysis of the VBWA, the spot sizes
of the laser beams are taken to be large compared to their
wavelength and the lasers are assumed to be circularly
polarized. The total laser field, represented by the vector
potential, is A(z, r, t ) = A, + Az where A, and A2
represent laser 1 and 2, respectively, and are given by

2~ 01 WOi T
(e„cosg; +ea sing; ),

W;
(27)A;= exp

the subscript i = 1,2 denotes the laser beam, w;(z)

=ck;, and go, is constant.

where

g,. =k,z co, t+r zl—(Z„;w ) tan '(z/Z—F, )+go;,
(28)

wavelengths, spot sizes, and focal points of the two laser
beams. Along the axis r =0 and near the focus of the two
lasers ~z~ (Zri;, the phase velocity is

uph/c = 1 (1
Zilch/Zri2)/(~kZri

i ) (32)

where AkZR, )&1 has been assumed. Notice that Uph &c
for ZR2& ZR&. The relativistic factor associated with the
phase velocity y h

= (1 —u h /c )
'r is

h, kZri, /2
1 —Z /Z

(33)
R1 R2

which can be tuned to the electron injection energy by
appropriately choosing the laser parameters. The slip-
page distance z„which is the distance over which an
electron phase slips by an amount of m with respect to the
beat wave, i.e., Acoz,

~ u, ' —u zh' -n, i—s.
z, =2~1".ZR1/i~kZR1 2r.'—(1—ZR1/ZRZ) ~

(34)

which can be made large by approximately choosing the
laser parameters.

The acceleration distance is limited not by the slippage
distance but by the diffraction range, i.e., Rayleigh
length. For a properly phased electron, the rate of
change of energy is d W/dt =cF, and the maximum ener-

gy change is

A. Basic mechanism
dW/dz=aoia02b, kmc /(1+ W/mc ), (35)

The basic mechanism of the VBWA can be ascertained
by considering the nonlinear ponderomotive force. The
axial component of the ponderomotive force F, arising
from the —e(v X B/c ) force is

mc2 c (a a), (29)
2y az

where a=ai+al, a=e A/mc is the normalized laser
vector potential, and y is the electron relativistic mass
factor. Substituting Eq. (27) into Eq. (29) we find that

F,=—

mc
F, = api ao2b k sill( g2

—g, ),
y

(30)

(31)

where co2 —
m&

=Aco=chk & 0. The accelerating gradient
is inversely proportional to the electron energy. The elec-
trons will also experience an axial force from the axial
component of the electric field E,. Since E, is zero on
axis it will be neglected in this discussion. The effects of
E„however, are included in the simulations presented in
Sec. VI C.

The local phase velocity of the accelerating field, as
determined by the beat wave phase kg =g2 —g„ is

u h (1+z2)—(1—zz)r /woz

c b,kZri2(1+zz )

(1+z i ) —(1—z i )r /wo,

b kZri i( 1+z i )

where we have set sin(g2 —gi) =1 and W=mc (y —1) is
the electron energy. For the purposes of illustration we
set ap& =ap2=ap ZR]=ZR2=ZR, and take the effective
acceleration range to be two Rayleigh lengths. Equation
(35) yields

WF= ( Wr+ 8' (a wu, /A, , ) (A, , /A, 2
—1)m c ]'r (36)

AX,„apa
wo yl(1+a )

where WF ( Wr) is the final (initial) electron energy and
we assumed 8 I )&mc . For circularly polarized
radiation, the laser power is given by P, (TW )

=0.043(ao;wo;/1, ;) . The final energy can be written as
WF=Wr+480(A, , /A2 —1)P„where the energies WrF
are in MeV and the laser power I'& is in TW.

In the above analysis, it was assumed that the electrons
remain close to the z axis. However, the electrons under-
go transverse oscillations as they are accelerated along
the z axis. The magnitude of the transverse oscillations,
which must be much less than the laser spot size, can be
estimated for a highly relativistic electron. In the pres-
ence of a single laser beam the transverse oscillation Ax is
given by dbx/dt=(ca/y)cosg, where g=(k —Zri ')z

kct. By setting t =z/u—„the wave number of the trans-
verse oscillation is given approximately by k„,= 1/Zii
for 2y, )&kZR and k„,=k/2y, for 2y, «kZR. An es-
timation of the maximum electron oscillation amplitude
is given by

where z; =z/ZR;. This phase velocity can be less than c
and can be controlled by appropriately adjusting the where a =kZri /(2y, ) =(irwu/y, g)2 and
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=(1+a p
)'~ . In order for the electrons to remain in the

high-intensity fields, it is necessary that b,x,„/wp (1.
2&;

a, = g 2 [(x —z,y)sing, . —(z,x+y)cosg, ],
i=1,2 kiwi~

(45)

B. Radiative losses

A limit to the maximum energy attainable in the
VBWA is imposed by radiative losses. As the electrons
interact with the laser Gelds, they will undergo transverse
quiver oscillations, which will cause the electrons to radi-
ate. The power radiated by a single electron PR is given
by the relativistic Larmor formula [28]

2
2e y

3c
du
dt dt

where r, =e /mc is the classical electron radius. In-
cluding this term in the equation for evolution of the
electron energy Eq. (35) gives

dy hk
dz y

=a01a02

2
2 2

a 01

ZR1

a 02

ZR2
2

where y, » k; Z21, /2 has been assumed. Setting
dy/dz=0 gives a maximum value for y. Assuming
Ak =k„a01=a02, and ZR1=ZR2, the maximum electron
energy is given by

W,„=m.mc (wp, /A, , )(3wp, /2r, )' (41)

or W,„=1.3( w p( /A, , ), where W,„ is in GeV and w p,
and A, , are in pm. As an example, for w0, =10 pm and
A, 1=1pm, 8',„=28GeV.

C. Single-particle simulations

To verify the basic mechanism of the VBWA, single-
particle simulations were performed. These simulations
are based on model equations derived from the relativis-
tic Lorentz force equation, which can be written as

where u=p/mc is the normalized electron momentum.
It can be shown that the power radiated is determined
primarily by the transverse motion of the electron in the
laser field. In the one-dimensional limit (wp » A, ), conser-
vation of canonical momentum implies uz=a~, where
a~=a„e +a e . For a single laser beam

T 2

PR ———Feme y a0k 2
+2322211

dx 1
&, cosg;,

y z i=12

dy 1
a;sing;,

y z i=12

(47a)

(47b)

where y=y, yi, y, =(l —P ) '~, P, =u /c, and
yi=(1+a„+a~)' . Since z is the independent variable,
t = fdzlu, is used in the expression for each phase g, ,

Eq. (28).
Analytical solutions to Eq. (46) can be found in the

high-energy limit for electrons that remain near the axis.
Setting x =y =0 and t =z/c and assuming Z11, =Z112,
the electron energy is given by

y~ —yI =2ap, ap2hkZii sin(pp2 /pi)
2 2=

X(tan 'z„—tan 'z, ), (48)

where yl F =y(z =zt ~). For the case of an infinite in-
teraction region zr= —ao and zF= ~, the electron ener-

gy is given by yz —yr =2ma 01 a025ZR assuming2 2=
sin(pp2 —/pi)=1. Letting ap2=api, the electron energy
8'=mc y can be written in terms of the laser power
Pi(TW) =0.043(ap, wp, /A, , ) as

where w0;)&X; has been assumed. For a sufBciently
broad laser pulse (wp, . »A, , ), the transverse canonical
momentum of the electrons is approximately conserved.
This also assumes that the transverse quiver motion, i.e.,
the first term on the right-hand side of Eq. (42), Ba1/Bt, is
much greater than the radial ponderomotive force F„,
i.e., the second term on the right-hand side of Eq. (42),
F„——(1/2y)Via, which is small for typical VBWA pa-
rameters. Hence u~=a~, which assumes that far from the
laser focus the initial transverse velocity of the electron is
zero. The electron energy is then determined by the
equation

d y &1&2
b,k sin($2 —$1)

dz yP,

2&;
[(x —z;y )cosf;+ (z;x+y)sing, . ] . (46)

s
——1,2 I

The transverse orbits are given by

d u /dt =Ba/Bt —(cu/y ) X ( V Xa ), (42)
W~(MeV) =

[ [ Wt(MeV)]

where u=p/mc is the normalized electron momentum.
The evolution of the electron energy is described by

dy Idt =(u/y) Ba/Bt, . (43)

a =&, +az+2a, &2cos($2 p, )+a, , —(44)

where a; =(ap;wp; /w, )exp( —r /w, . ). The axial com-
ponent of the field is given by V.a=0,

where y =(1+u )'~ . For the fields in Eq. (27), a =a a
is given by

+750(A, 1/A, 2
—1)P,(TW) ]

' (49)

which is in approximate agreement with the estimate
given in Sec. VIA.

Equation (49) is the energy gain from the ponderomo-
tive term only, i.e., the first term on the right-hand side of
Eq. (46). The particle was assumed to remain on axis
(x =y =0), hence the efFects of the axial electric field E„
represented by the summation term on the right-hand
side of Eq. (46), were neglected. However, the transverse
electric field produces transverse electron oscillations and
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the effects of E, can be significant. In the high-energy
limit 2y, &)kZ~, the magnitude of the transverse orbits
can be large, i.e., x,y-apZz/y. This implies that the
axial field terms in Eq. (46), which are proportional to x
and y, can be as large as the ponderomotive term.

The theoretical energy gain of Eq. (49) and the impor-
tance of the axial field terms in Eq. (46) can be verified by
single-particle simulations. In these simulations, the
model equations (46) and (47) are solved numerically.
Here we consider a particle with an injection energy of
Wr —-50 MeV (yr =100) copropagating with two high-
intensity laser pulses. The lasers have wavelengths 1 i=1
pm and A,2=0.5 pm and spot sizes mp& =10 pm and
wpz wpi /~2. As in Eq. (49), Z„i

=Z+2 =Zz and
Q Oi Q 02 Q 0 ~ An intensity parameter of Q 0

= 1 ~ 53 was
chosen such that lasers 1 and 2 have power 10 and 20
TW, respectively. The final energy predicted by Eq. (49)
is 8'F ——100 MeV for these parameters.

Simulations were performed with and without the
effects of the axial electric field E„i.e., with and without
the summation term on the right-hand side of Eq. (46).
These results are shown in Fig. 7, in which the particle
energy is plotted versus axial position z. The solid line
shows the evolution of the electron energy including the
effects of E„i.e., all terms are kept on the right-hand side
of Eq. (46). The dashed line shows the electron energy
neglecting the effects of E„i.e., only the first term is kept
on the right-hand side of Eq. (46). In these simulations,
input phases Pp, and Ppz are chosen such that
$2 —gi —-m/2 at z =0, which maximizes the acceleration
near focus. Simulations were performed over the region—30' &z & 3OZz, where Zz ——0.31 mm. The solid line
(E,WO) gives a final energy of W~=93 MeV and the
dashed line (E, =0) gives W~ =90 MeV. Both are some-
what less than the theoretical estimate, which assumes
x =y=0. As the electron oscillates off axis, the laser
field amplitude is reduced, 8-apexp( r lw p)—, thus re-
ducing the ponderomotive acceleration. Furthermore,
the transverse oscillation of the electron is such that the
E, terms in Eq. (46), proportional to x and y, contribute

i00

80—

40
-30 —20 —i 0 0 10 20

Axial Distance, z/ZR

FIG. 7. Particle energy versus axial position z from the com-
plete model equations (solid line) and with the effects of E,
neglected, i.e., the second term in Eq. (46) is dropped (dashed
line).

significantly to the acceleration of the electron. This re-
sults in the oscillatory behavior of the energy near the
origin and a slightly higher final energy, as shown by the
solid curve in Fig. 7. The average accelerating gradient
observed over the entire 60Z& simulation region is
( Wz —W~)/60Z~ =50 GeV/m.

VII. DISCUSSION

Electron acceleration by laser fields in vacuum is sub-
ject to the LW theorem [13—15], which states that the net
energy gain of a highly relativistic electron interacting
with an electromagnetic field in vacuum is zero. Howev-
er, a net energy gain can be obtained by violating one or
more of the assumptions of the LW theorem. We have
shown that the concept of using two crossed laser beams
in vacuum to accelerate electrons obeys the LW theorem
[5], i.e., a highly relativistic electron traveling from
z = —Oo to ~ achieves zero net acceleration.

A relativistic electron can obtain a net energy gain if
the interaction distance is limited to a slippage distance
z, about the focal point of the laser fields. Typically,
z, Z~. To limit the interaction region, optical corn-
ponents are needed relatively close ( SZ~ ) to the focal
point. This, however, may be impractical due to the
high-intensity requirement on the laser field and the rela-
tively low damage threshold of typical optical com-
ponents. We examined the specific case of electron ac-
celeration by a higher-order Gaussian-mode laser, which
is refiected by a mirror placed a distance ~z, /2~ from
focus. The maximum energy gain of the electron is given
by Eq. (24), i.e., b, W= 31P'~ /(1+ W, /W~ ), where 5 W
is in MeV, P is in TW, and W, (MeV) =wp/A, is the criti-
cal energy. For substantial energy gains, the injection en-
ergy must exceed the critical energy. For a fixed laser
power P, limiting the intensity at the mirror surface to a
value below the damage threshold I& implies a large focal
spot size wp, i.e., wp ~(P/rrId)' . This implies a large
value for the critical energy. For 8'z « 8„the energy
gain A8'is greatly reduced. A similar argument can be
applied to other configurations [1,2] that rely on electron
acceleration by the axial laser field E, over a limited in-
teraction region near the laser focus.

We have proposed a vacuum beat wave accelerator in
which two laser beams of different frequencies are copro-
pagated in the presence of an injected electron beam.
Properly phased electrons, traveling essentially along the
same axis as the two laser beams, experience an axial ac-
celeration from the beat term in the vXB force. Since
the VBWA relies on the nonlinear ponderomotive forces
associated with the vXB term, it violates the assump-
tions of the LW theorem. Hence the VBWA can lead to
substantial energy gains, even in the limit of an infinite
interaction region. The VBWA has the further advan-
tage that, by appropriately choosing the wavelengths,
spot sizes, and focal points of the two lasers, the phase
velocity U„h of the beat wave can be adjusted. By tuning
the phase velocity to obtain U & & c in the vicinity of the
laser focus, phase slippage can be reduced. The validity
of the VBWA mechanism was confirmed by performing
single-particle simulations.
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The maximum energy gain in the VBWA accelerator is
given by Eq. (49). For Wt & b, W and b, k =k i,
b, W(MeV)=27[P, (TW)]' . It is insightful to compare
this to a plasma-based, laser-driven accelerator, such as
the laser wake field accelerator (LWFA). For a LWFA in
the standard configuration [10—12], i.e., using a single
laser pulse with a pulse length L, equal to the plasma
wavelength and assuming that the laser pulse undergoes
vacuum di6'raction, the energy gain is given by
b, W(MeV) =580(A, /L )P(TW). Hence, for equal powers
P& =P, the single-stage energy gain in the VBWA can be
greater than that in the standard LWFA for

Pi(TW) &(L/21K, ), e.g., Pi &27 TW for A, =l pm and
L/c=0. 5 ps. For P, =27 TW, b, &=140 MeV. This
demonstrates that, for single-stage energy gains in the
100-MeV regime, the VBWA is comparable to other
laser-driven accelerator schemes.
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