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Thomson scattering of intense lasers from electron beams at arbitrary interaction angles
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Analysis of nonlinear Thomson scattering of intense lasers from relativistic electron beams is extended
to describe off-axis scattering geometries. Electron trajectories are calculated for the case of a plane
electromagnetic wave of arbitrary intensity, either circularly or linearly polarized, interacting with a rel-
ativistic electron beam at an arbitrary interaction angle. The trajectories are used to derive analytic ex-

pressions for the intensity distribution of the scattered radiation. These expressions are valid in the non-

linear regime (arbitrary laser intensity) and include the generation of harmonics. The effect of interac-
tion angle on the intensity distribution is discussed and spectra are plotted numerically for the specific
cases of head-on and transverse scattering. TheAependence of x-ray frequency, pulse duration, and pho-
ton Aux on interaction geometry are also examined. Applications to the laser synchrotron source are
discussed. There are potential advantages of both head-on and transverse interaction geometries: head-

on scattering results in the generation of higher frequencies and higher photon cruxes; normal incidence
scattering can result in ultrashort x-ray pulses.

PACS number(s): 41.75.Ht, 41.60.Ap, 41.75.Fr, 52.40.Nk

I. INTRODUCTION

Recently there has been considerable interest in the
possibility of designing a compact source of x rays based
on the Thomson scattering of intense laser fields from
electron beams [1—10]. An x-ray source based on this
mechanism, referred to as a laser synchrotron source
(LSS) [5—7], could produce short pulses of tunable, nar-
row band x rays, and thus have many applications in
medicine, biological science, and materials science. Such
a source is now practical, due in part to advances in
solid-state laser technology, which have made compact
sources of ultraintense laser radiation available [11—13].

In a previous paper, we developed a detailed theory to
describe the nonlinear Thomson scattering of intense
laser fields from beams and plasmas [1]. This theory de-
scribed scattering of linearly or circularly polarized laser
fields of arbitrary intensities, but was limited to a colinear
geometry (that is, when the laser pulse and electron beam
meet head-on). In the present paper, we generalize our
previous results to describe nonlinear Thomson scatter-
ing, and the radiation that results, when the laser pulse
and the electrons meet at an arbitrary angle. Expressions
for the intensity distributions are obtained for both
linearly and circularly polarized incident laser fields of
arbitrary intensities. This work is based on classical radi-
ation theory, which is valid as long as the energy of the
radiated photon is much less than the electron energy,
fico «ymc; for an incident laser of the type now avail-
able, with wavelength —1 pm (intensity + 10' W/cm
and laser strength parameter ao —1), this implies electron
energies below -50 GeV.

Extending the analytic description of nonlinear Thom-
son scattering to off-axis angles is important for several
reasons. First, there may be practical constraints on real-
istic experimental configurations that preclude the use of

head-on interaction geometry; this work allows calcula-
tion of the radiation pattern for a particular experimental
setup. Second, there are specific advantages to different
scattering geometries; for example, since the x-ray pulse
length is determined by the interaction time, transverse
scattering provides a means to achieve ultrashort ( ( 1 ps)
x-ray pulses [9]. There may also be advantages to being
able to change the interaction geometry; as an example,
changing the interaction angle is one way of tuning the
x-ray frequency. Further, the analytic expressions ob-
tained in this paper provide the tools to calculate the spa-
tial and spectral distribution of radiation from real elec-
tron beams interacting with real laser pulses. Since the
expressions derived are functions of electron energy and
incident angle, they enable analysis of beams with finite
emittance and energy spread.

The idea of producing high energy photons by scatter-
ing laser light off relativistic electron beams is not new.
Thomson scattering (or inverse Compton scattering) in

the linear regime was discussed by Arutyumian and
Tumanian [14], and Milburn [15] in the early 1960s, and
has since been explored in several experiments (both as an
electron beam diagnostic [16,17], and as a method of pro-
ducing x rays and y rays [18—22]). Nonlinear Thomson
scattering from a single electron initially at rest was first
examined analytically in the classic work of Sarachik and
Schappert [2]. Our previous work extended and general-
ized those results [1], and examined in detail the proper-
ties of the radiation that results from nonlinear Thomson
scattering (again, in a head-on geometry). Several au-
thors [23—32] have analyzed the synchrotron radiation
produced as relativistic electrons travel through a static,
periodic transverse magnetic field. This process is quite
similar to Thomson scattering, as can be seen by viewing
the interaction in the electron frame, a frame in which
the static, transverse field appears as (very nearly) a radi-
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ation field. All work on the details of the radiation pat-
terns has been confined to head-on interaction geometry.

A laser synchrotron source is somewhat analogous to a
conventional synchrotron source. In a conventional
source, x rays are generated by a high energy electron
beam passing through the periodic, transverse magnetic
field of an undulator (or wiggler) magnet. X rays are gen-
erated along the electron beam axis with a wavelength
A, =A,„/2y,where A,

„

is the undulator wavelength and y
is the relativistic factor of the electron beam. Similarly, in
the LSS, x rays are generated as an electron beam passes
through the laser radiation field. For head-on geometry,
backscattered x rays are generated along the electron
beam axis at a wavelength A. =A,o/4y, where A,o is the
laser wavelength. (The above assume the dimensionless
field strengths of the undulator field and the laser field are
«1.) Since the typical laser wavelength (A,o= 1 pm) is
some four orders of magnitude shorter than the typical
undulator wavelength (A,„=4cm), an LSS requires a
much lower energy electron beam to produce a given
wavelength x ray. For example, in order to generate 30
keV (A, =4 nm) x rays, a conventional synchrotron source
with k„=4cm requires a very high electron beam,
E&=12 GeV; in contrast, an LSS employing a laser of
wavelength A,o= 1 pm requires only E& =40 MeV, an en-
ergy that is typical of those available from compact rf
linacs, and a factor of 300 less than that required by the
conventional synchrotron source. Because a much lower
electron beam energy is needed to produce a particular
photon energy, the LSS can employ more compact elec-
tron accelerators, and thus can be relatively compact it-
self, particularly when compared to conventional syn-
chrotron sources.

The laser synchrotron source has several other attrac-
tive features: the x rays are near-monochromatic (band-
width typically a few percent), are well collimated (in a
cone of 8, —1/y in the direction of the electron beam),
and are tunable over a broad portion of the x-ray spec-
trum (by varying electron energy or interaction angle).
Further, the x rays can be emitted in extremely short
pulses, and the polarization can be changed by changing
the polarization of the incident laser.

The dimensionless laser strength parameter ao plays an
important role in determining the character of the emit-
ted radiation. ao is the normalized amplitude of the vec-
tor potential of the incident laser field, ao=eAo/m, c
(just as K, the undulator strength parameter, is the nor-
malized amplitude of the vector potentia1 of the undula-
tor magnetic field), and is related to the intensity Io of the
laser by

ao=0. 85X10 [A,o (pm)][Io (W/cm )]'~

When ao « 1, scattering occurs in the linear regime. Ra-
diation is generated at the (Doppler upshifted) fundamen-
tal frequency. When ao ~ 1, scattering occurs in the non-
linear regime, and radiation is generated in the funda-
mental and in higher harmonics. State-of-the-art com-
pact laser systems based on chirped-pulse amplification
[11—13] can currently deliver ultrashort pulses ( & 1 ps) at
ultrahigh power ( ) 10 TW) and intensity ( ) 10' W/cm,

corresponding to ao —1 for a laser of wavelength 1 pm).
Thus, lasers which can be used to explore Thomson
scattering in the nonlinear regime exist.

For o6'-axis geometries, in the nonlinear regime, the
frequency of backscattered radiation (radiation emitted in
the direction of the electron's average motion in the laser
field) is given approximately by co =coo2y n ( 1+P,o) /
(1+ao/2), where coo is the laser frequency, n is the har-
monic number, and P,o is that component of the
electron s initial velocity which is directed toward the on-
coming laser pulse (which travels in the —z direction).
For head-on interactions, P,o- 1; for off-axis interactions,

P,o decreases as the scattering angle increases. There are
several things to notice about this relation. First, the ra-
diated frequency is increased by a relativistic Doppler
factor, which varies from -4y for head-on scattering to
-2y for transverse scattering. (This dependence of ra-
diated frequency on initial scattering angle is familiar
from inverse Compton scattering in the low ao limit, and
is easily understood by viewing the process in the average
electron frame: the electron sees a laser pulse of Doppler
shifted frequency that depends on scattering angle; it
then emits radiation in the forward direction, which un-
dergoes a second Doppler shift when transformed to the
observer's frame. ) Second, the intensity of the laser in-
duces a frequency shift; the frequency of backscattered
radiation is reduced by a factor of (1+a o/2). Finally,
the frequency of harmonics increases with harmonic
number. Harmonics become important in the nonlinear
regime, when ao=1. For ultrahigh intensities, a,'»1,
numerous harmonics are generated, and the result is a
near continuum of scattered radiation with harmonics ex-
tending out to some critical harmonic number, n, -ao,
beyond which the intensity of the scattered radiation rap-
idly decreases [1]. [Note that this also implies that an ul-
traintense laser incident on a stationary plasma (yo= 1)
can be used to produce soft x rays by generating radiation
in high harmonics, i.e., A, =ho/n [1].] The generation of
significant radiation into high harmonics (possible with
current state-of-the-art lasers) provides an additional ave-
nue to pursue in order to obtain high frequency radiation.

With high laser intensities (ao —1), it is possible to gen-
erate high peak cruxes of x rays. A laser synchrotron
source could be designed to produce high peak cruxes of
ultrashort pulse ( & 1 ps) x rays using a high intensity,
short pulse, chirped-pulse-amplification laser system in
conjunction with a high peak current rf linac. The aver-
age Aux of such a configuration will be limited by the
average power (repetition rate) of the laser and/or elec-
tron beam. It is also possible to design an LSS to operate
at high average Aux. This requires the use of a high aver-
age power laser (such as a diode-pumped solid-state sys-
tem) and a high average current electron accelerator
(such as a betatron or a high repetition rate linac). The
possibility of using "super" cavities to store and confine
an input laser beam [10] or the use of a ring resonator
laser configuration [7] have been suggested as methods
for generating high average Aux, and the backscattering
of radiation in a high power free electron laser is also be-
ing explored [4]. The choice of whether to design an LSS
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for high peak or high average Aux would depend on the
particular x-ray application; both are now feasible.

In this paper we extend our previous results, which
considered only head-on laser-electron interaction, to de-
scribe off-axis scattering geometries as well. In Sec. II,
we calculate the electron orbits for the case of a plane
electromagnetic wave, either circularly or linearly polar-
ized, interacting with an electron beam of arbitrary ener-

gy at arbitrary interaction angles. The coordinate sys-
tems and transformations are defined in Sec. III. Then,
in Sec. IV, the electron orbits in the laser field are used to
derive analytic expressions for the intensity distribution
of the scattered radiation. The expressions obtained are
valid in the nonlinear regime (arbitrary laser intensity)
and include the generation of harmonics. In Sec. V, the
effect of interaction angle on the intensity distribution is
discussed, and spectra are plotted numerically for the
specific cases of 01=0, 90', where 81 is the laser-electron
beam interaction angle. These plots show the intensity of
radiation into the first three harmonics for both linear
and circular polarization, and illustrate the effect of off-
axis geometries on the radiation pattern. In Sec. VI, we
discuss the effects of interaction angle on the x-ray pulse
duration and the photon Aux. This paper does not con-
sider various nonideal effects, such as finite electron ener-

gy spread, electron beam emittance, and nonuniformities
in the laser pulse intensity; this will be the subject of fu-
ture work.

II. ELECTRON MOTION
IN INTENSE LASER FIELDS

+(1—5 )' sin(kog)e ], (2)

where 5 =1 for linear polarization and 5 =0 for circu-
lar polarization, ko=2~/Xo is the wave number of the
laser field, and g=z +ct (describing light traveling in the
—z direction). Using this representation, (a ), =a 0 /2
for both linear and circular polarizations, where the sub-
script s signifies the slow component (an averaging over
the laser wavelength). In the following, the laser field is

The equations of motion of an electron interacting with
a laser pulse are determined by the radiation field of the
laser and the space-charge field of the electron beam.
Under certain conditions, the effect of the space-charge
field can be neglected. In this section, we derive the gen-
eral equations describing electron motion in the com-
bined fields, then show that for electron beams of interest
in this application only the laser field need be considered.

The laser field and space-charge field can be represent-
ed using the normalized vector and scalar potentials,
a=e A/m, c and C&=e4/m, c, respectively, where m,
is the electron mass, e is the magnitude of the electron
charge, and c is the speed of light. In the Coulomb
gauge, V a=O implies a, =O in one dimension (1D).
Then, a~ represents the laser field and 4 represents the
space-charge field.

The normalized vector potential of a laser radiation
field of arbitrary polarization is represented by

a=(ao/&2)[(1+ti )'~ cos(kog)e„

assumed to be moving to the left ( —z direction) and the
electrons are initially (prior to the interaction with the
laser field) moving with velocity vo=v, oe +U Oe +v,oe,
(see Fig. 1).

The electron motion in the fields a and N is governed
by the relativistic Lorentz equation, which may be writ-
ten in the form

u=V@+— a —PX(VXa),1 d 1 8
c dt c Bt

(3)

where P= v/c is the normalized electron velocity,
u=p/m, c =yP is the normalized electron momentum,
and y=(1+u )' =(1—P )

' is the relativistic factor.
Assuming that the laser field, a~, and hence the quantities

P, u, and y are functions only of the variable
g=z +ct, Eq. (3) implies the existence of two constants
of the motion [1,33,34],

dn
(u —a )=0,

d (y+u, —N)=0 .
d'g

(4a)

(4b)

Equation (4a) is just conservation of canonical transverse
momentum in 1D, and Eq. (4b) can be interpreted as con-
servation of energy in the wave frame. Equations (4a)
and (4b) can be integrated to give

ui =ai+ uj.o

y+u, —N=yo+u, o, (5b)

where, prior to the laser interaction (when ai=0),
ui=uio, 4=0, u, =u, o, and y =yo=(1+ u,o+ u io )'2 2 1/2

The two constants of the motion, Eqs. (5a) and (Sb), com-
pletely describe the nonlinear motion of electrons in the
potentials a and 4. They allow the electron motion to be

x' )(&

ck scattered
radiation

elec
laser

FIG. 1. Schematic diagram showing Thomson scattering of
an intense laser field by a free electron, and the relationship be-

tween the two Cartesian coordinate systems used in this paper.
The laser pulse travels in the -z direction, so the (x,y, z) system
is used to calculate electron trajectories; the electron's average
motion (during its interaction with the laser) is in the z' direc-

tion, and therefore the spherical coordinates used in the radia-

tion calculation are defined in reference to the (x',y', z') system.
The angles 01 and v are the angles between the z and z' and x
and x' axes, respectively.
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specified solely in terms of the fields, i.e.,

ho —(1+ui)
ho+(1+ui )

y =(ho+ 1+u i )/2ho,

pJ(a.l +ulo ) /r

(6b)

(6c)

P(
x (g) =xo+P,„g+ —( 1+5~ )'~ sin(kog),

2

r&
y(g)=yo+P, r) —(1—5 )' cos(ko7)),

&2

z(r)) =zo+P), g — (1+5' )' sin(kor))
2

(10a)

(lob)

ho=yo(1+P o) (7)

where h 0
=y0+ u,0+@.

For typical electron beams of interest, it can be shown
that the electrostatic potential is suKciently small that it
can be neglected, and consequently ho =go+ u, o. In gen-
eral, 4=@' '+4'", where N' ' is the initial equilibrium
space-charge potential (prior to interaction with the laser
pulse) and 4' ' is the potential due to the presence of the
laser field. For a long, axially uniform electron beam,
~4~ '~ & v&, where v& =[Ib (kA)]/17po is the Budker pa-
rameter and I& (kA) is the beam current. Since vb «1

(0)for beams of interest, 4' ' can be neglected. The space-
charge potential induced by the laser pulse, N"', can be
neglected provided that the laser-electron interaction
time TO is short compared to an effective electron plasma
Period, i.e., To «co 'yo ( I+P,o)/(1+ao/8)'~, where
roz=(4rre n, /m, )'~ is the plasma frequency and n, is
the ambient electron density. Taking p,o- 1 and ao «8,
this can be written as To (ps)«35yo~ [n, (cm )]
For example, T0«3.5y0 ps for n, =10' cm . In this
"short-pulse" limit, 4"' can be neglected, the constant of
motion in Eq. (5b) becomes y+u, =y(1+P, ), and ho is
given by

(1—5 )' coskoq —z~5 sin(2kog),
2

(10c)

where (xo,yo, zo) are related to the initial position of the
electron and additional terms of order Ao/Lo have been
neglected, where I.O is the laser pulse length. In the above
equations,

r, =ao/hoko

z2 = ao /8h 2oko

P&
= u o/ho =P o/( 1 +P o)

P&y
=uro/h o =Pro/( 1 +P o )

ho (1+ao/2+u jo)
2h 0

(1 la)

(1 lb)

(1 lc)

(11d)

(1 le)

Notice that for either circular (5 =0) or linear
(5 = 1) polarization, the average components of the elec-
tron momentum u„,u~, u, (averaged over a laser period),
and the average axial electron velocity, P, =u, /c, are
given by

The quantity 4'" can also be estimated in the opposite
limit, appropriate for laser interaction with plasmas [1].
The remainder of this paper will be concerned with
laser-electron interactions in the short-pulse regime.

The electron orbits, r(r))=x(g)e +y(r))e +z(r))e„
can be calculated as a function of g using Eqs. (6a) —(6c)
and the relation

~x +@0 &

Qy =Qy0,

u, =u, o
—ao/4ho,

P,o
—ao/4yoho

1+a o /4yoh o

(12a)

(12b)

(12c)

(12d)

u„= (1+5 )' cos(ko71)+u„o
&2

(9a)

u~
= (1—5&)'~ sin(kog)+u~o, (9b)

1
Q h —1—2

2S0
(1+5 )'i cos(kog)+u o2

2

=P=(1+P, )
1 dr 81
c dt ' dq

which gives dr/dg=u/ho. Using the general form for
the laser field given by Eq. (2), the normalized com-
ponents of the electron momentum are given by

cos8r =u, /(u o+" o+" ) (13)

Hence, the axial momentum of the electron beam is re-
duced as a result of its interaction with the laser field.
This is due to the ponderomotive force associated with
the front of the laser pulse [2,35]. This implies that the
angle at which the electron beam is propagating with
respect to the z axis (i.e., the laser-electron beam interac-
tion angle) is modified by the presence of the laser. In
terms of the average components of the electron momen-
tum, the laser-electron beam interaction angle OJ, defined
as the angle between the z axis and the average direction
of the electron beam (while it is within the laser field), is
given by

Hence,

—(1—5~)'~ sin(kog)+u o2

(9c)

Although this change in direction is generally small, it is
important: the scattered radiation will occur in a narrow
cone centered about the direction of the electron beam
within the laser field, and not about the initial direction
of the electron beam.



52 THOMSON SCATTERING OF INTENSE LASERS FROM. . . 5429

III. COORDINATE TRANSFORMATIONS

e~ =l,e„+m,ey+n je, ,

y
—2C~ + 2ey + ll2e~

e, =l3e +m3e +n3e, .

(14b)

(14c)

The coordinate system (x,y, z) used in the previous sec-
tion was defined in reference to the incident laser field.
The electron beam, as it interacts with the laser field, is
moving at some angle Oz with respect to the z axis, where
8t is given by Eq. (13). Since the scattered radiation will
emerge in a narrow cone about the direction of the elec-
tron beam, it is convenient to introduce a new coordinate
system (x',y', z'), such that the electron beam is propaga-
ting along the z' axis; then e, e, =cos0&, where e, , are
unit vectors in the z and z' directions. In terms of the
coordinate system (x,y, z), the direction of propagation of
the electron beam is given by u e, .=u e +uy e +u,e„
where u =u +u +u, . The unit vector e ~ is chosen to
reside in the (x,z) plane, which is the plane of polariza-
tion for the case of linear polarization (i.e., when 5~ =1
the electric field is in the x direction). The relationship
between the coordinate systems is shown in Fig. 1. As-
suming that the electron beam axis is in the first quadrant
of the (x,y, z) plane, i.e., u, u~, u, )0, the unit vectors
transform according to

(r, 8,$) (with 8 measured from the z' axis and P measured
from the x ' axis) to perform the calculation of the radia-
tion pattern (Sec. IV). This coordinate system is related
to the (x',y', z') system through the usual transforms
x'=r sin8cosg, y'=r sin8 sing, z'=r cos8; the unit vec-
tors (e„,es, e&) are given by

e„=sin8 cosine„+sin8 singe .+cos8e, ,

es=cos8cosge +cos8singe —sin8e, ,

e&= —singe +cosine

(16a)

(16b)

(16c)

These can further be related to the unit vectors (e„,e~, e, )

using the transformations of Eq. (14). It is useful to ex-
plicitly write out the relation for e„because it provides
an opportunity to define quantities used in Sec. IV:

e,=Q„e„+0e„+(0,—1)e,

where

(17)

0„=l
&
sin 8 cosP+ 1z sin 8 sing+ l3cos8,

Q~ =m, sin8 cosP+ m & sin8 sing+ m 3cos8,

0, = 1+n
&
sin8 cosP+ n zsin8 sing+ n 3cos8 .

(18a)

(18b)

(18c)

The reason for the form of the definition of 0, will be-
come clear in Sec. IV.

The transform coefficients can be expressed in terms of
the rotation angles 0~ and v, where v is the angle between
the x and x' axes (e e„=cosv),

l i =cosv,

Iz= —sin(v)(1 —cos 8J/cos v)'

l3 =tanv cosO&,

m) =0,
mz =cos8t/cosv,

m3=(1 —cos 8t/cos v)'~

p1 )
= slnv,

n z
= —cos( v)( 1 —cos 8t /cos v) 'i

n3 cos0$

(15b)

(15c)

(15d)

(15e)

(15g)

(15h)

(15i)

These coefficients could also be written in terms of the
components of average electron momentum by noting
that cos8t=u, /u and cosv=u, /(u„+u, )'~ . For circu-
lar polarization, the (x,y) symmetry of the laser field al-
lows us to choose our coordinate system so that
Qy Qyo 0 In that case, v =Oz, and the above expres-
sions simplify considerably.

In this new coordinate system, the average electron
motion is in the z' direction, and the electron executes
periodic motion in (x',y', z'), which depends on the in-
cident angle and the laser polarization. Since the scat-
tered radiation will emerge in a narrow cone about the
direction of the electron's average (relativistic) motion, it
is convenient to introduce the spherical coordinates

IV. SCATTERED RADIATION

The energy spectrum of the radiation emitted by a sin-
gle electron in an arbitrary orbit r(t) and p(t) can be cal-
culated from the Lienard-Wiechert potentials [36],

d I
@CO 8Q f dt[nX(nXP)]

4m c

Xexp[ico(t —n r/c)] (19)

d Ig
Qco 8Q

2
1p

dg .es exp(if)
4~ c ~p

(20a)

where d~I/dc@ d 0 is the energy radiated per frequency co

per solid angle 0 during the interaction time T and n is a
unit vector pointing in the direction of observation. This
expression can be evaluated using standard classical tech-
niques; we follow the general approach used in previous
analyses of Thomson scattering in a counterpropagating
geometry [1,2], and by several authors in an analysis of
undulator radiation [23—29].

The scattered radiation will be polarized in the direc-
tion of nX(nXp), where n=e„and nX(nXp)

0
= —p.e —p.e . Hence, the scattered intensity can be
written as I =I&+I&, where I and I& are the intensities
of radiation with polarizations in the e& and e& directions,
respectively. Using the relation cpdt=(dr/dg)dg, and
identifying the pha~". f=e(t —n.r/c), Eq. (19) can be
written as d I/dcodQ. =d Is/dcodQ+d I&/deed&,
where
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d I~
dco dQ

2
I0 dr

dg e& exp(ii/t)
4m C "10 dg

(20b)

The integration is now over the independent variable
r/=z+ct, with limits of integration go=(1+p, )cT/2,
where p, is the average axial electron velocity given by
Eq. (12d); Eqs. (20) can also be written solely in terms of
the phase by noting that —k(dr/dr/) ee=(B i//BOBg)
and —k(dr/dr/) e&=(d JIB/dq)e „/2. The phase can
be expressed in terms of the electron trajectory
x ( g ),y ( g ),z ( g ) using the transformation coefficients
Q, Q,Q„

10

I, = f dr/ sin(kor/)exp(ig)
Y/0

ip S1Qk gp=e g J (b )[J + +i(b )
k

(b )]e
'( —i) /2

(24c)

where k =kg —nkp. The summations in the above ex-
pressions can be simplified by using Graf's addition
theorem [37]

J (b, )J„+(b, )e' "/ =J„(b,)(b, +ib, )"Ib,",
i/j=kr/ k[Q„—x(g)+Q y( r/) +Q,z(g)] . (21) (25)

We now calculate the intensity distributions of emitted
radiation for the cases of circularly polarized and linearly
polarized laser light, using the electron trajectories given
in Eqs. (10) with values of 6 of 0 and 1, respectively.

A. Circular polarization

For circular polarization (u 0=0 and v=81 ), using the
trajectories in Eqs. (10a)—(10c) and 5 =0, the phase can
be written in the form

where b, =b, +b, . Using the recursion relations
J„+,+J„,=2nJ„/b, and J„+i—J„,= —2J„',the radi-
ation spectrum for the n harmonic can be written as

d I„ekp sinkgp
[A ~J„+A2(J„'/b, ) ], (26a)

ddt dQ

where

2 '2
keg n

kp BI9 2b,2 BO

2
i//= i//0+ kgb/ b, sinkage+

—b, c sok go,

where

t//0= k(Q„—xo+Q yo+Q, zo),
g=l —Q„P,„—Q P, —Q,P„

= 1 —( 1+cosO/cosOt )P„,
b, =kr, (Q„—Q,P,„)/&2

(22)

(23a)

(23b)

ab, ab,
'

2 c gg s gg

Bb,+ b,
0= m. /2

ab,—b
e= /z

n2 8 ab,+ b, +b,
e= /2

' ~0 e=-/2

(26b)

(26c)

= (kr, /v 2) [cosO sin(Ot )(1—P„)—/3,

+sinOcos(P)(cos81+P, sinOI )], (23c)

b, =kr, (Q —Q,Pi )/V2
= (kr, /&2)sinO sing . (23d)

Here, the orbit parameters r„p,, and /3„are given by
Eqs. (1 la), (1 lc), and (1 le).

The spectrum of scattered radiation can be found by
calculating the integrals:

and J„=J„(b,). We discuss the features of the spectra,
and show plots of specific examples, in Sec. V.

In the backscattered direction, i.e., along the z' axis,
the above expressions simplify considerably. For 0=0,
the arguments become b, =0 and b, =b, ; the backscat-
tered spectrum can then be written as

d I„(8=0) e&k2 sinkqo ao2
' — '2

2

dcodQ m c

X [(J„')+(cosOI+Pi„sinOI)
YJ0Ip= dgexp i

0
X(nJ„/b, ) ], (27)

sink gp=e 'g 2J (b, )J„+(b, )e'
k

IOI, = f dq cos(ko7))exp(ii/j)
~0

sink gp=e 'y Jm(b, )[J„+m+,(b, )
k

+J„+,(b, )]e'

(24a)

(24b)

where b, =(nao/&2ho)sin81 if k is taken to be its reso-
nant value, k =nko/g = nko/[1 —(1+cos8/cosOt )p„].
Furthermore, when b, ((1,Eq. (27) will be dominated by
the fundamental, i.e., J& =—,

' and Jl =b, /2. In the limit

Ot =0 (head-on scattering), b, =0, and only the funda-
mental, n =1, is nonzero. In this limit, the term in the
square brackets in Eq. (26) is equal to —,', and we recover
the result obtained previously for backscattered radiation
in a head-on geometry [1].
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B. Linear polarization
Bo= X 2Jm(bz)Jn+2 m(bi ) (32a)

For linear polarization, the rotation angles 8I and v are
defined by Eqs. (13) and (15), and the phase can be writ-
ten as 8, = g J (bz)[J„+2m+,(b, )+J„+zm,(b, )], (32b)

(28)

+(l3 P, —n3)cos0 —P,„], (29a)

'(l =go+ kg 21
—b, sinkozi+ bzsin2koii,

where fo and g are given by Eqs. (23a) and (23b),

b, =kr, (Q —A,P,„)
=kr 1 [(l 1

—Pi„n1 )sin8 cosP+ ( l z
—Pi„nz )sin8 cosP

82= g Jm(bz)[J„+2m+2(b, )+J„+zm 2(bi)] . (32c)

We discuss the features of the spectra, and show plots of
specific examples, in Sec. V.

The general expression for the spectrum of backseat-
tered radiation, i.e., in the direction 8=0, is given by

bq=kQ, z2

=kzz(1+n, sin8cosp+nzsin& sinp+n3cos8) . (29b)

d I„(0=0)
de) dQ

2 2e2k2 sink'go a o

4~2c k b 2 p

sink go=e g W (bz)J„+z (bi ),
k

Y)p

I, = f d iicso( koi)exp(ig)

sink go=e 'g J (bz)
k

(30a)

X [Jn +2m +1(bi )+Jn +2m —1(bi )]
Y)p

Iz= f d iciso( 2kor)ie x(pig)
0

sink go=e 'g J (bz)
k

(30b)

X [J„+2m+2(bi)+J„+zm 2(bi )], (30c)

where k =gk —nko. Using these results, the spectrum
can be written as

d I&„eko sinkgo

dao d Q 4m2c

2

Here, the orbit parameters r„pi„,and zz are given by
Eqs. (11a), ( 1 1c), and ( 1 1e), and the transformation
coefficients (I, m, n) are given by Eqs. (15a)—(15i). To cal-
culate the spectrum, it is necessary to evaluate the in-
tegrals

t/0

Io= f dil exp(ig)
0

X [P1 +Pi, +Pi„(2Pi,+Pi„+Pi )]8 i

2

+ (Pi„+P, )8
16h o2

+
/

Pl (Pl +Pi +Pl )8182
2 0

(33)

where the arguments of the Bessel functions are
bi =nkor, pi„/pi and bz=kzz(1+pi, /pi), the resonant
wave nuinber is k =nko/(1 —P« —Pi), Pi =Pi„
+Pi~+Pi, and Pi„~,are given by Eqs. (11c)—(lie).

It is possible to gain some insight into the radiation
patterns by examining the backscattered spectrum for
three different interaction geometries: head-on scattering
in which the laser and electron beams are colinear
(81=0, pi=p„,and p, =p,~ =0); transverse scattering
in which the electron beam is normal to the plane of the
laser polarization (Ol=n/2, p(=pi&, and pi„=pi,=0);
transverse scattering in which the electron beam is in the
plane of the laser polarization (Ol=n. /2, P, =Pi„,and

Piy =Pi. =0)
For head-on scattering, the arguments of the Bessel

functions become b, =0, bz=2kzz, and Eq. (33) reduces
to

k agX
k ~g

Bo
ab, ab,

B(+2
~g

B
d I„(0=0)

dco dQ

sink go

4~c k

2 p 2

ao

ho

2Bi, (34a)

d Iy e ko sink'go

deeds 4~ c

2

(3 la) where

81 [J(n +1) 2/(bz ) J(n —1)/2(bz)] (34b)

where

Bb) Bb2
B)—2 B2

. y=-/2 ()4' . y= /2

(31b)

and k =nko/(1 —2p, ). Note that only odd harmonics
are generated, and that we recover the previous result for
colinear scattering [1].

Now consider transverse scattering in which the elec-
tron beam is normal to the laser plane (P, =P,~). For
this case, b, =0, bz =kzz, and Eq. (33) becomes
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d I„(8=0) e&k& sinkilo

co d + 4m'2c

2' 2ap

hp

X Bi+
a P B2

16h 2
(35a)

co(1+a,' / 2)
4$, N,

where

Bi [J(n+1)/2(b2) (n —))/2(b2)] (35b)

2 [~(n+2)/2(b2 )+J(n —2)/2(b2)] (35c)

and k =nko/(1 —Pi). Both odd and even harmonics are
generated, with B

&
describing the odd harmonics and B2

describing the even harmonics.
The most complicated of the three cases is that of

transverse scattering in which the electron beam is in the
plane of polarization (P) =P) ). Then bi does not vanish,
and hence the Bessel function sums do not collapse. In
this case, b )

=nkpr ), b2 =kz2, and

FIG. 2. The frequency of radiation into the fundamental
(n = 1) as a function of observation angle. Resonance contours,
e)(0), are shown for three different interaction angles, 01=0',
60', and 90'. The frequency is plotted in dimensionless units,
co/[4yocoo/(1+ a 0/2)] (4yocoo is the frequency of the fundamen-
tal along 0=0 in the low ao limit); the observation angle is plot-
ted in units of y00.

d I„(8=0)
dc' dQ

sink gp

4~c k

'2
2ap

hp

ap
X P)B) + B~

0
(36)

where k =nko/(1 —P, ). B, and Bz are given by the full
summations in Eqs. (32), and both odd and even harmon-
ics appear on-axis.

in units of 4yoroo/( I+ao/2), the frequency of the funda-
mental along 8=0. Increasing 01 decreases the frequen-
cy of a given harmonic.

In the limits yo))ao, Po- 1, and 8 « 1, the resonant
frequency can be written as

2(1+P o)yonroo

(1+a()/2+yo8 )
(39)

C. Resonance function

The frequency of the scattered radiation is primarily
determined by the resonance function R„(k,nko ), where

r 2sink isoR„(k,nk())=
kgp

(37)

This function is sharply peaked at ki1o=0 (i.e.,
k [1—(1+cos8/cos8I )P„]—nko =0), which corre-
sponds to a resonant frequency

n cop

1 —( 1+cos8/cos8I )P),
(38)

The denominator represents a generalized Doppler up-
shift factor. Note that with this choice of coordinate sys-
tems, with 6I=O along the center of the radiation cone,
Eq. (38) is independent of ()) .

The resonant frequency depends upon the interaction
angle, the observation angle, the electron energy, and the
laser intensity. Equation (38) indicates that the frequency
of the scattered radiation is maximum when 0=0, i.e.,
along the direction of the electron beam within the laser
field. ro)(8) (the resonant frequency of the first harmonic)
is plotted in Fig. 2 for ap=2 and three difFerent interac-
tion angles, 01=0', 60, and 90 . The frequency is plotted

hrL) /co„=I /(neo ), (40)

where Np =2gp/Ap is the number of periods of the laser
field with which the electron interacts. This is sometimes
referred to as the intrinsic bandwidth of the scattered ra-
diation. For sufficiently large Np, the frequency spectra
for two different harmonics, n and n', are well separated.
This has been assumed in deriving Eqs. (26) and (31), i.e.,
(g„R„'/F„)=g„R„F„,where F„is a function of n.
Furthermore, pro 'R„(k,nko)~5(ro —co„) as Do~0,
i.e., the spectral resonance becomes a 6 function about
the resonant frequency.

Equation (39) also implies that radiation with a band-
width Ace about co„canbe found within a cone half-angle
68 about 0=0 given by

Increasing ap decreases the frequency of a given harmon-
ic [by a factor (1+ao/2) on-axis]. Also, note that for
head-on interactions (P,o-l), the resonant frequency is
twice that for transverse interaction geometries (P,o-0).
For ao « 1, 8I =0, and 8=0, Eq. (39) reduces to the fa-
miliar result, co„=4@pn cop.

The width of the spectrum about co„, defined by
b, co = fdroR„,is given by
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(1+ac/2)hen
50 =

Fo~n
(41)

assuming hco/co « 1.

V. RADIATION DISTRIBUTIONS

The expressions derived in Sec. IV describe the spec-
trum and angular distribution of radiation emitted by a
single electron as a result of its interaction with an in-
tense laser field. The radiation is emitted in a narrow
( —1/y) cone about the forward direction (8=0). If the
laser strength parameter is low, ao & 1, most of the radia-
tion goes into the fundamental (n =1). As ao increases,
radiation into higher harmonics increases; the harmonics
become important when ao) 1. The intensity distribu-
tions below were generated for the case of an electron
with relativistic factor yo= 10, and linearly and circularly
polarized laser pulses with strength parameter ao =2. An

electron beam of this energy can be produced by a com-
pact accelerator; a laser of this intensity is near the
current state-of-the-art, and is reasonable to expect in the
next few years [13].

The plots below show the radiation as viewed by a
detector located at zo, and centered on the z' axis (i.e.,
the backscattered direction, 0=0, is in the middle of the
detector). Because the radiation is confined to a narrow
cone, x'/zo-8, and y'/zo-8; distances from the center
of the detector are measured in units of y~'/zo,
y~'/zo-yo8. Assuming the electron sees many laser
periods (an excellent assumption for picosecond laser
pulses at micron wavelengths, see Sec. VI), the resonance
function given by Eq. (37) is a 5 function, and the radia-
tion emitted into a particular angle 8 is radiation of a
particular frequency. This frequency, determined by the
resonance condition [Eq. (38), and shown in Fig. 2], is
conveyed qualitatively through a color scale applied to
the surface plots (the same scale is common to all). Fur-
ther, in the figures below, the electron is assumed to see
the same number of laser periods in each case (for both
head-on and transverse interactions); thus, the normaliza-

0

&oP

-3 z'

-3
y'x 0

Z

"eS'
c

-3

WV

0

FIG. 3. Circular polarization, head-on scattering. The normalized intensity of radiation scattered by a relativistic electron
(yp= 10) from a counterpropagating (01=0) high intensity (ap =2) circularly polarized laser pulse, viewed in the plane of a detector.
The detector is located at zo, and centered on the z' axis [backscattered radiation (8=0) falls on the center of the detector]. Dis-
tances in x',y' are measured in units yp(x'/zp), yp(y'/zp) ypO. The three figures show the radiation into the first three harmonics
(a) n = 1; (b) n =2; (c) n =3. The color scale, marked in units of 4ypcop/(1+ ap/2), indicates frequency of the scattered radiation.
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II ~ I II

~ 'PIIR%

g„lj

3 -3

0
F,P
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FIG. 4. Circular polarization, transverse scattering. The normalized intensity of radiation scattered by a relativistic electron
(yp=10) from a transversely propagating (01=90 ), high intensity (ap =2) circularly polarized laser pulse, viewed in the plane of the
detector. The detector is centered at zp along the z' (0=0) axis. Distances in x',y' are measured in units yp(x'/zp ), yp(y'/zp) ypO.
The three figures show radiation into the first three harmonics (a) n =1; (b) n =2; (c) n =3. The color scale, marked in units of
4ypcop/(1+ap/2), indicates frequency of the scattered radiation.

tion is the same for all intensity plots (the eff'ect of in-
teraction geometry on photon Aux is considered in Sec.
VI).

into the nth harmonic, because it is emitted off-axis,
occurs at less than n times the frequency of the first har-
monic. For example, the intensity of radiation into the
second harmonic peaks at an off-axis angle y00-0. 6,

A. Circular polarization 1.5

Plots of the normalized intensity distribution of scat-
tered radiation, dI/deodar, are shown in Figs. 3 —5. The
first of these, Fig. 3, presents the results for a counter-
streaming geometry, in which the electron and the circu-
larly polarized laser pulse meet head-on (OI=0). These
results were obtained previously [1], and are included
here for comparison with the results for off-axis scatter-
ing derived in this paper. The figure shows radiation
emitted into the first three harmonics. The first harmonic
peaks on-axis, the highest frequency radiation in that
harmonic is emitted on-axis, and the radiation pattern is
symmetric about the axis. This symmetry is expected be-
cause the electron trajectory is a helix, and its projection
in the x-y plane is a circle. The second and third (and all
higher) harmonics vanish on-axis; their radiation patterns
are symmetric and independent of P. Note that radiation

0.5

I

0 L.

FIG. 5. Circular polarization, transverse scattering. Normal-
ized intensity of the first three harmonics of Fig. 4 along the x'
axis of the detector, ap=2, yp=10. Distance along the axis is
measured in units of yp(x'/zp) ypO.
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which corresponds to a frequency of (0.89)(2'&), where co&

is the frequency of the fundamental on-axis.
The plots in Fig. 4 illustrate the effect of changing the

interaction geometry. In particular, they show the inten-
sity distribution, that results when the electron travels at
right angles to the laser pulse 01=90. The parameters
ao and yo are the same as in Fig. 3. The most noticeable
difference is in the frequency of the scattered radiation.
As the interaction angle is increased toward 90, a given
harmonic peaks at progressively lower frequencies; for
example, the frequency of the backscattered radiation in
the first harmonic is a factor of 2 lower for transverse
geometries [Fig. 4(a)] than for head-on geometries [Fig.
3(a)], a result familiar from inverse Compton scattering.

As the interaction angle is increased from 01=0 to
90', the trajectory of the electron in its average rest frame
changes, increasing in radius and rotating about the y'
axis (out of the x'-y' plane). For 81=90', the circle is ro-
tated 45' from the x' axis (i.e., the projection of the
motion on the x'-y' plane is an ellipse, and there is also a
sinusoidal motion in z'). This displaces the radiation pat-
terns slightly from 8=0 [resulting in some radiation into
the harmonics on-axis, Eq. (27)], and introduces P depen-
dence; these effects become more pronounced as ao is in-

creased, and some of them are clearly apparent in Fig. 4.
The shape of the first harmonic is nearly the same as in
the head-on geometry, and it is very slightly displaced in
x ', the second and third harmonics show the P depen-
dence, and do not vanish on-axis. The displacement is
shown more clearly in Fig. 5, which depicts the intensity
in the first three harmonics along the x' axis. The fre-
quency of the radiation at a particular part of this intensi-
ty distribution can be estimated more quantitatively by
using Figs. 2 and 5 in combination.

B. Linear polarization

Next we consider scattering between a relativistic elec-
tron and a linearly polarized laser pulse. Figure 6 illus-
trates the results, obtained previously [l], for head-on in-
teraction. This figure shows the intensity of radiation
into the first three harmonics, again for parameters
Qo =2 go= IO. The even harmonics vanish on-axis, but
the odd harmonics include a peak along 0=0. In gen-
eral, a particular harmonic n has n peaks. The motion of
the electron producing this radiation pattern, when

-3
y'. 0

3

: yv'

y

0
4m

3

FIG. 6. Linear polarization, head-on scattering. The normalized intensity of radiation scattered by a relativistic electron (yp= &0)

from a counterpropagating 01=0, high intensity (ap=2) linearly polarized laser pulse, viewed in the plane of the detector. The
p I

detector is centered at zp along the z' (0=0) axis. Distances in x',y' are measured in units yp(x'/zp), yp(y /zp) ypO. The three
figures show radiation into the first three harmonics (a) n =1; (b) n =2; (c) n =3. The color scale, marked in units o
4ypcop/(1+ate/2), indicates frequency of the scattered radiation.
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viewed in its average rest frame, is a "figure eight" with
its long axis along x', lying in the x'-y' plane. The inten-
sity distribution is thus symmetric in x'. For this value
of ao, harmonics are important; the second and third har-
monics are comparable to the fundamental.

We now consider two different classes of off-axis
scattering geometries: (I) when the electron is initially
traveling in the y-z plane (perpendicular to the plane of
polarization); and (2) when the electron is initially travel-
ing in the x-z plane (the plane of polarization). The in-
duced electron trajectories are different for these cases,
and result in different radiation patterns.

l. Electron initially traveling in the y-z plane (P' =0)

When the electron is traveling in the y-z plane, perpen-
dicular to the plane of polarization, the induced trajecto-
ry remains a figure eight in the x-z plane. When viewed
in the x',y', z' system, as the scattering angle is increased
from zero, the figure eight rotates about the x' axis until,
when the interaction angle is 90', the figure eight motion
is in the x'-y' plane. Figure 7 shows the radiation emitted
into the first three harmonics for 01=90. These plots

are quite similar to those of Fig. 6 (head-on geometry).
The main difference is in the frequency of the radiation,
as described in Eq. (38). Figure 8 shows the intensity of
these first three harmonics along the x' axis; this shows
that the even harmonics, although small, do not vanish
on-axis [see Eq. (35)].

2. Electron initially traveling in the x zp-lane(Pir =0)

When the electron is traveling off-axis in the x-z plane
(plane of polarization), the induced electron oscillations
are no longer symmetric in x'. As the interaction angle is
increased from zero, the figure eight (viewed in the
x',y', z' system) rotates about the y' axis, and excursions
from (x'=0, y'=0) increase; when the interaction angle
reaches 90', the figure eight is elongated, distorted, and
its long axis is rotated 45' from the x' axis, still in the
x'-z' plane. Figure 9 displays the radiation patterns for
an interaction angle of 90'

~ The peaks are displaced
slightly in x', more apparent is the asymmetry in the
peaks of the second and third harmonics. Figure 10
shows the intensity in the first three harmonics along the
x' axis; here the displacement is visible, and it is clear

FIG. 7. Linear polarization, transverse scattering (P,„=O).The normalized intensity of radiation into the first three harmonics
emitted by a relativistic electron (yp=10) during interaction with a high intensity (ap =2), linearly polarized laser pulse for an in-
teraction angle of 90'. In this case, the electron is traveling perpendicular to the plane of laser polarization. The detector is centered
at zp along the z' (0=0) axis. Distances in x',y' are measured in units yp(x'/zp) pp(p /zp) pp8. The color scale, marked in units
of 4&pc&)p/(1+ ap /2), indicates the frequency of the scattered radiation.
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d I
d COdQ

-3 -2

Again, a given harmonic appears at half the frequency of
the corresponding harmonic in Fig. 11(a). The even har-
monics do not vanish on-axis (although the intensity of
an even harmonic on-axis is much below that of its o6'-

axis peaks, which are not shown); note that the on-axis
intensity in the even harmonics increases relative to that
in the odd harmonics as ao is increased. In the case of
transverse scattering when the electron is traveling in the
plane of polarization, the central peaks of the harmonics
do not fall on-axis (the radiation pattern is shifted slightly
in x', see Fig. 10); thus the on-axis points fall under the
envelope of the intensities of the central peaks.

FIG. 10G. 10. inear polanzation, transverse scattering, P» =0.~ ~

Normalized intensity of the first three harmonics of Fig. 9 along
the x' axis of the ddetector. Distance along the axis is measured
in units of yo(x'/zo ) —y00.

VI. TOTAL SCATTERED FLUX .

AND PULSE LENGTH

The power radiated by a single electron undergoing rel-
ativistic quiver motion in an intense laser field can be cal-
culated from the relativistic Larmor formula [36]

2 2

1.5

2ep — y2
3c

df
dt

(42)

O'I

dCOdQ

~ 0 ~

~ 00
0

0
~ a =2

able =z +
Assuming the electron orbit is a function of o 1 thon y e vari-
a e g =z +ct and using the constant of motion
d(y —u, )/dg=0 implies

0.5 0

~ ~~~ ~ ~~~

P = ,'e ckoacyo—(1+P,o) (43)

0

(a)

CO

4g, CO,

10

where an averaging over a laser period has been per-
formed. The photon flux per electron (photons per
second per electron) is found by dividing Eq. (43) by the
average energy of the radiated photons: Flux=P/A(co ),
where

(1+ac/2)
(44)

d'I
dCOdQ

1,5

0.5

ao 2

~ ~ ~
~~

to 0
a =40

(b)

6
CO

4f, CO,

10

(1+a o /2)(1+Pc, )

(n )(1+P, )
(45)

where o;=e «c ]37 is the fine structure constant. In

the limit a 0 « 1, this reduces to

Here (n ) ts the average harmonic number and y»1
h as been assumed. The total number of photons radiated

70

by a single electron N is found by multiplyin th h t
ux y the interaction time T. The single electron-laser

interaction time can be expressed in terms of No, the
number of laser periods with which the laser interacts,
cT= ~o/(1+P, ). Hence, the number of radiated Pho-
tons per electron is given by

FIG. 11. (a( ) Intensity of odd harmonics on-axis (0=0) vs
normalized frequency for a linearly polarized laser pulse, and
head-on interaction. The results for a =2 4 d 6 h

Intensity of harmonics on-axis vs normalized frequency for a
linearly polarized laser pulse, and transverse scattering, electron
traveling in the y-z plane.

N=o.Noa~o . (46)

The total number of photons generated, N~, is found by
multiplying N by the total number of electrons, N„in-

volved in the laser-electron beam interaction, i.e.,
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+r aNe+oa o .2 (47)

The specific values for the total number of electrons radi-
ating, and the total number of laser periods with which a
single electron interacts with the laser field, depend on
the particular geometry of the interaction.

Notice that the angular density of photons radiated
from a single electron in the backscattered (8=0) direc-
tion, in the limits a o &(1 and yo)) 1, may be written as

2
dX 2 ~o

=aNpap [1+(cos8I+/3, sin8I ) ] .2

2
(48)

This expression was derived using Eq. (27) and
N I, /fico. For either head-on (8I=O) or transverse
(8I =m. /2) scattering geometries, the quantity in the
square brackets is =2. The half-angle of the radiation
cone Oc into which scattered photons are radiated, can
be defined by %=2me&dN/dQ, where dN/dQ is given
by Eq. (48). Hence,

8c=1/(yp&2m) . (49)

cT = min[Lp/(1+@, ), 2rp/Pzp, 2' /P, ] . (50)

The duration of the scattered radiation pulse will de-
pend on the particular geometry of the interaction. Con-
sider head-on interactions. For suKciently short electron
beams, Lb & Lo, Zz, the scattered pulse duration is given
by c~~=Lb, since the scattered radiation pulse and elec-

In the remainder of this section, the total number of
photons generated, N, as given by Eq. (47), and the
duration of the scattered pulse ~z, will be estimated for
two interaction geometries: head-on (8I=O) and trans-
verse (81=ir/2). In the following, we consider a laser
pulse with an axial (along the z axis) length Lp and a
transverse radius ro, and include the effects of vacuum
diffraction. For a laser pulse with a Gaussian radial
profile of the form exp( r /r, ), the sp—ot size r, of the
field will evolve according to r, =rp(1+z /Zz )'~, where
Zg =~1o /1 o is the Rayleigh length and r o is the
minimum spot size (radius) at the focal point z =0.
Hence, Z~ is the characteristic distance over which a
laser pulse with a focused spot size of ro will diffract. In
the following, difFraction is assumed to limit the laser
propagation to a distance of 2Z+. The electron beam is
highly relativistic (yp)) 1), with a length Lb (along the z'
axis) and a radius rb (along the x' or y' axis). We assume
that the electron beam and laser pulse are properly syn-
chronized and aligned so as to optimize the interaction.

As noted previously, the total number of laser periods
with which a single electron interacts is given by
Np =(1+P,)cTIAp, where P, is the average axial electron
velocity given by Eq. (12d). The time that a single elec-
tron interacts with the laser field T can be limited by (1)
the axial pulse length of the laser, Lo, i.e.,
cT=Lpl(1+P, ), (2) the transverse dimension of the
laser pulse 2rp, i.e., cT=2rp/P~p, or (3) the diffraction
length of the laser pulse 2Zz, i.e., cT =2Zz IP, . In gen-
eral, the interaction time will be given by the minimum of
these quantities, i.e.,

tron beam move essentially together. For long electron
beams, the x-ray pulse duration will be limited by the
spatial extent of the laser pulse, i.e., c~&=4Zz+Lo.
Hence, for head-on interactions,

cv»=min[L b, (4Z~ +L p) ] . (51)

For transverse interactions, c~~=Lb for short electron
beams (Lb (Lp), whereas cr&=2r&+Lp or 2Zii+Lp for
long electron beams. Hence, for transverse interactions,

c1» min[Lb, 2rb+Lp 2Zg +Lp] (52)

Similar arguments can be made to estimate the total
number of electrons which interact with the laser field.
Again, this depends on the specifics of the interaction
geometry. It is convenient to express the total number of
electrons involved in the interaction as N, =(Ib/e)f r»,
where Ib is the total electron beam current and f is a
geometric filling factor (to properly account for the over-
lap between the electron beam and laser pulse); so
(I&le)f is the electron fiux (electrons/second) in the
direction of electron beam propagation. For head-on in-
teractions, the filling factor is given by

f=min[1, rp/rb) . (53)

For transverse interactions, f =f f», where f„andf»
are the filling factors in the x' and y' directions, respec-
tively. Geometric arguments imply

f, , =min[1, L p /2rb, Z~ Irb ],
f».=min[ 1, rp Ir& ] .

(54a)

(54b)

As an example, consider x rays generated from head-on
and transverse interactions between an electron beam and
(i) a short-pulse (150 fs, L p =45 pm) and (ii) a long-pulse
(10 ps, Lp=3 mm) laser. An electron beam will be as-
sumed with yp= 79 (40 MeV), Lb = 1.5 mm (5 ps), rb =50
pm, and Ib =200 A. This corresponds to a total charge
of 1 nC and a total electron fiux of I&/e = 1.25 X 10 ' s
The laser pulse parameters are A.o= 1 pm, ro =50 pm, and
a laser power of P = 10 TW. This corresponds to
ao=0. 43 and Zz =7.9 mm. These parameters are sum-
marized in Table I.

The wavelength of the backscattered x rays is
A, =A,p/4yp=0. 4 A (31-keV photons) for the head-on in-

teraction, and A, =A,p/2yp=0. 8 A (16-keV photons) for
the transverse interaction. In both cases, the total x-ray
Aux will be confined to a cone of half-angle
8c = 1/(yp&2m. ) =5 mrad. Using the above notation, the
total number of scattered photons is given by

N» =a(Ib Ie)fr»Npa p .

Consider the short (150 fs) laser pulse example. For
the head-on interaction, the total number of periods for
which a single electron interacts with the laser is
Np=Lp/A, p=45, the filling factor is f=1, and the x-ray
pulse duration is ~~=Lb/c =5 ps. This implies a total
x-ray Aux of N =3.8X10 photons. For the transverse
interaction, Np=Lp/Ap=45, f„=Lb/2rb =0.45, f».=1,
and r» = (2rb +L p ) Ic =480 fs. This implies
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TABLE I. Electron beam and laser parameters.

Beam
Beam
Beam
Beam
Total

Electron beam
energy Eb
current Ib
pulse length Lb/c
radius rb

charge Qb

parameters
40 MeV ( yp =79)

200 A
5 ps

50 pm
1 nC

Laser pulse parameters
Wavelength A,p

Peak power I'p

Spot size rp

Rayleigh length Z&
Intensity Ip
Strength parameter ap

1 pm
10 TW
50 pm

7.9 mm
2.6 X 10' W/cm

0.43

Lp/c, short-pulse case
L p /c, long-pulse case

150 fs
10 ps

VII. DISCUSSION

This paper presents a detailed theoretical description
of nonlinear Thomson scattering of intense laser fields
from relativistic electrons, extending previous colinear re-
sults to arbitrary interaction angles, with particular em-
phasis on the important case of transverse scattering. The
theory is valid for linearly or circularly polarized incident
laser fields of arbitrary intensities. Expressions for the in-
tensity distributions of scattered radiation were calculat-
ed analytically, ' the intensity distributions were evaluated
numerically for both head-on and transverse interaction
geometries. Properties of the scattered radiation were ex-
amined, with particular attention given to the effect of in-
teraction angle on the frequency and spatial distribution
of the radiation. The effect of scattering angle on the ra-
diated x-ray Aux and pulse length was explored in some
detail.

The intensity distributions derived in Sec. IV describe

TABLE II. X-ray parameters for the short-pulse laser.

X-ray pulse parameter

Photon wavelength A,

Filling factor f
Laser periods Xp
Photon pulse length ~~
Total photons N~

Head-on
(e, =o)

0.4 A (30 keV)
f=1

45
5 ps

3.8X 10

Transverse

0.8 A (15 keV)
f„=0.45, fy =1

45
480 fs

1.6X10'

=1.6X10 photons. These parameters are summa-
rized in Table II.

Consider the long (10 ps) laser pulse example. For the
head-on interaction, the total number of periods for
which a single electron interacts with the laser is
Np=Lp/A, p=3000, the filling factor is f=1, and the x-
ray pulse duration is r =Lb Ic =5 ps. This implies a to-
tal x-ray Aux of X& =2.5X10' photons. For the trans-
verse interaction, Np 2l'plop=100 f 1 f 1 and
rr=Lblc =5 ps. This implies N =8.4X10 photons.
These parameters are summarized in Table III.

TABLE III. X-ray parameters for the long-pulse laser.

X-ray pulse parameter

Photon wavelength X

Filling factor f
Laser periods Np
Photon pulse length ~~
Total photons N~

Head-on
(~1=0)

0.4 A (30 keV)
f=1
3000
5 ps

2.5X 10'

Transverse

0.8 A (15 keV)

f. =l f, =l
100

5 ps
8.4X 10

radiation emitted by a relativistic electron as a result of
its nonlinear interaction with a high intensity laser pulse.
In all cases, the radiation is emitted into a narrow cone
about the electron's forward direction; the linewidth is
narrow, depending (in the case of a single electron and
neglecting variations in the laser intensity profile) on the
number of laser periods the electron sees during the in-
teraction. For the special case of head-on interactions,
the results are familiar: if the light is circularly polar-
ized, the fundamental peaks on-axis, all higher harmonics
peak off-axis, vanish on-axis, and their intensity distribu-
tions are independent of P; if the light is linearly polar-
ized, the fundamental and all odd harmonics exhibit a
peak on-axis, even harmonics vanish on-axis, and the ra-
diation pattern of the nth harmonic has n peaks. For
both types of polarization, the harmonics become impor-
tant when ao —1; if ao»1, harmonics dominate the
spectrum. If the electron and the laser pulse interact at
an angle, both the frequency and spatial distribution of
the scattered radiation are altered. The frequency of ra-
diation into the nth harmonic, for both circular and
linear polarization, is given by Eq. (38). The resonant fre-
quency depends on the initial scattering angle as well as
on the observation angle. This is familiar from inverse
Compton scattering (in the low ap limit), and shows that
the peak frequency of each harmonic decreases as the
scattering angle increases. For transverse geometries, the
frequency of backscattered radiation is a factor of 2 lower
than it would be for head-on geometries.

For off-axis scattering, if the light is circularly polar-
ized, a small amount of radiation appears on-axis in the
higher harmonics; there is asymmetry in P, which is most
apparent in the higher harmonics. These effects increase
with both angle and laser intensity. If the light is linearly
polarized, and the electron is initially traveling in the y-z
plane (perpendicular to the plane of polarization), then
the spatial pattern is very similar to the colinear case. If
the electron is initially traveling in the x-z plane, the en-
tire pattern is shifted slightly in x', and the n peaks in the
nth harmonic are now no longer symmetric about x'.
These effects increase with both interaction angle and
laser intensity.

A laser synchrotron source based on nonlinear Thom-
son scattering of intense lasers from relativistic electron
beams may provide a means to produce tunable, narrow
band x-ray radiation for use in a variety of practical and
experimental applications. This type of source has
several attractive features. It can be quite compact, be-
cause the electron beam need not be highly energetic; it
can be tuned in frequency through a factor of 2 by chang-
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ing the interaction angle, or over a wider factor by chang-
ing electron energy or employing harmonic radiation; it
has a very narrow bandwidth b,ro/ra= I/Xo (in practice,
bandwidth is limited by electron beam emittance); and it
is capable of producing x rays in extremely short pulses
( &1 ps).

An LSS could be based on a colinear (or nearly col-
inear) geometry or on a transverse geometry. There are
advantages to both. The colinear geometry produces scat-
tered radiation at the highest frequency: that is, it would
generate the highest frequency for a given electron ener-
gy, or would require the most modest electron energies if
x rays of a given frequency were desired. Head-on in-
teraction also results in the highest photon fIux for a
given laser pulse and electron beam because it results in
the longest interaction time. The transverse geometry, on
the other hand, allows the production of extremely short
x-ray pulses [9], which could have important application
in biology or medicine; the x-ray intensity is lower (be-
cause of the shorter interaction time), and the x rays pro-
duced have a lower energy (for a given energy electron
beam), but as the example summarized in Table II illus-
trates, a 1SO-fs laser pulse and a 5-ps electron beam could
produce an x-ray pulse of -480 fs in duration.

In this paper we have calculated the radiation pro-
duced by a single electron as a result of its interaction
with a square pulse of high intensity laser light. The in-
tensity distribution resulting from the interaction of a
real electron beam with a real laser pulse will be some-
what different as a result of the electron beam emittance
and energy spread, and the shape of the laser pulse. For
example, if the beam emittance is too large, the angular
structure of the harmonic intensity distributions can be
smeared out. The normalized emittance is given approxi-
mately by c„=ypl'b8, „where 6I, , is the rms angular
spread of the beam electrons. In order for the intensity
peaks in the harmonic radiation to remain well defined, it
is necessary that 8, , (&Op Q where 0 „zis the angular
separation between peaks. For the third harmonic
(linearly polarized case), Figs. 6—10 indicate that
8~„&=1/yo. Hence, resolution of the third harmonic in-
tensity peaks requires c„«100mm mrad, assuming
rI, =100 pm. The effects of beam emittance and energy

spread on the x-ray bandwidth and brightness have been
discussed previously for the colinear case [1]; this paper
provides the tools necessary to obtain detailed radiation
patterns produced by lasers scattering off realistic elec-
tron beams. A detailed analysis of beam and laser pulse
effects will be the subject of future work.

The results of this paper are directly relevant to several
experiments (being planned or currently underway),
which will explore Thomson scattering as a means of pro-
ducing high frequency radiation [4,9,10,38—42]. Two of
these experiments, one at the Institute of Laser Technolo-
gy in Osaka [10] and the other at the Lawrence Berkeley
Lab (LBL) [9,40], will employ off-axis scattering
geometries. In Osaka, x rays will be produced by scatter-
ing the radiation stored in a Fabry-Perot "super" cavity
pumped by a high power, mode-locked Nd: YAG (yttrium
aluminum garnet) laser; since the cavity is tilted with
respect to the electron beam, the electrons and radiation
will intersect at an angle. At LBL, researchers plan to
scatter an ultrahigh power, subpicosecond laser pulse off
a 50-MeV electron beam at right angles; this transverse
geometry is being employed in order to generate subpi-
cosecond x-ray pulses. The work presented here should
be useful in interpreting the results of these experiments.

In addition, early results are available from experi-
ments at the Naval Research Lab (NRL), where soft x
rays (20 eV) have been produced by scattering high inten-
sity laser pulses from a mildly relativistic (650 keV) elec-
tron beam [41]; this experiment is currently being up-
graded to perform scattering off a higher energy (5 MeV)
beam. Both the LBL and NRL experiments are using ul-
trahigh power, chirped-pulse amplification laser systems,
which are capable of delivering laser pulses with ap ~ 1.
Experiments using these ultrahigh laser intensities should
provide experimental observation of nonlinear Thomson
scattering.
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